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Objectives: To evaluate the effectiveness of habitat-based radiomics in

differentiating early-stage serous borderline ovarian tumors (SBOTs) from

serous malignant ovarian tumors (SMOTs), thereby enhancing diagnostic

precision and treatment strategies.

Methods: We conducted a retrospective analysis of 210 patients with

histopathologically confirmed SBOTs (n=95) and SMOTs (n=115) between

December 2017 and February 2021. Multi-detector computed tomography

images were obtained and analyzed using habitat-based radiomics, which

segments tumors into distinct microenvironments based on Hounsfield Unit

values. Clinical characteristics and imaging features were assessed, and

predictive models were developed using logistic regression. Model

performance was evaluated through receiver operating characteristic analysis,

calibration curves, and decision curve analysis (DCA).

Results: The habitat-based models, the Habitat2 and the combined model,

demonstrated high area under the curve values of 0.960 and 0.957 in the

training set, with similar performance observed in the validation set. Solid

components of tumors were identified as key differentiators, with only one

radiomics feature from cystic regions retained in the final model. DCA

indicated that habitat-based models provided significant clinical utility.

Conclusions: Habitat-based radiomics model was developed and validated for

accurately preoperative differentiation between SBOTs and SMOTs, emphasizing

the importance of solid tumor regions for accurate diagnosis.
KEYWORDS

habitat-based radiomics, serous borderline ovarian tumors, serous malignant ovarian
tumors, preoperative differentiation, computed tomography
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Introduction

Early-stage serous borderline ovarian tumors (SBOTs) and

serous malignant ovarian tumors (SMOTs) present distinct

clinical and pathological characteristics that impact their

management and outcomes (1). SBOTs, typically considered low

malignant potential, exhibit less aggressive behavior and can often

be treated conservatively with surgery alone, leading to a five-year

survival rate exceeding 90% (2). Conversely, SMOTs are associated

with a more aggressive clinical course requiring extensive surgical

intervention and adjuvant chemotherapy, which significantly

reduces survival rates, especially in advanced stages (3). The

differences in treatment approaches and prognostic outcomes

highlight the importance of accurate diagnosis. Accurate

identification allows for tailored surgical strategies that can

prevent unnecessary radical procedures for patients with SBOTs,

while ensuring timely and appropriate interventions for those

with SMOTs.

Differentiating early-stage SBOTs from SMOTs preoperatively

is difficult due to their overlapping clinical presentations and

imaging characteristics. Both conditions exhibit features such as

irregular wall or septal thickening, solid-cystic masses, and vascular

irregularities (4–6). Furthermore, serum tumor markers like cancer

antigen 125(CA125) can be elevated in both conditions, limiting

their utility in distinguishing between SBOTs and SMOTs (7). This

diagnostic ambiguity highlights the need for improved preoperative

evaluation strategies.

Radiomics is a sophisticated imaging technique that extracts a

wide range of quantitative features from medical images, providing

a deeper insight into tumor characteristics beyond what can be

observed visually (8). Traditional radiomic approaches generally

focus on the entire tumor, often neglecting the phenotypic

variations within different sub-regions of the tumor. A novel

method, known as “habitat”, addresses this limitation by

segmenting tumors into sub-regions based on the identification of

grayscale voxels with similar imaging properties. Habitat-based

radiomics is focus on the spatial distribution of tumor

microenvironments, thereby capturing the heterogeneity within

tumors that traditional radiomics may overlook. This spatial

analysis can provide critical insights into tumor behavior, offering

advantages in differentiating between tumor types and predicting

treatment responses (9–11).

In our previous study, we constructed the multi-detector

computed tomography (MDCT)-based radiomics model to

discriminate SBOTs from SMOTs (12), the application of habitat-
Abbreviations: ACC, Accuracy; AUC, area under the curve; CA125, cancer

antigen 125; CI, confidence interval; DCA, decision curve analysis; FIGO,

International Federation of Gynecology and Obstetrics; HE4, human

epididymis protein 4; HU, Hounsfield Unit; LASSO, least absolute shrinkage

and selection operator; MDCT, multi-detector computed tomography; NPV,

negative predictive value; OR, odds ratio; PPV, positive predictive value; ROC,

receiver operating characteristic; SBOT, serous borderline ovarian tumor; SD,

standard deviation; SEN, sensitivity; SMOT, serous malignant ovarian tumor;

SPE, specificity; VOI, volume of interest.
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based radiomics for the preoperative differentiation between early-

stage SBOTs and SMOTs remains underexplored. Investigating this

innovative approach could reveal significant differences in imaging

biomarkers that may aid clinicians in making more accurate

diagnoses, potentially improving patient outcomes. The aim of

this study is to evaluate the efficacy of habitat-based radiomics in

distinguishing early-stage SBOTs from SMOTs, thereby facilitating

improved diagnostic precision and tailoring individualized

treatment strategies.
Materials and methods

Patients

This study is a retrospective analysis that received approval

from the institutional review board, with a waiver for informed

consent. We identified 210 patients from the hospital’s database,

consisting of 95 patients with SBOTs and 115 patients with SMOTs,

covering the period from December 2017 to February 2021. To

ensure confidentiality, all patient data were anonymized.

Identifiable information was removed, and unique identification

codes were assigned to each patient.

Inclusion criteria were: 1) histopathological confirmation of

SBOTs or SMOTs following surgery, and 2) classification of these

tumors as stage I or II according to the International Federation

of Gynecology and Obstetrics (FIGO). Exclusion criteria

included: 1) tumors classified as stage III or IV by FIGO, 2) any

preoperative treatments (such as radiotherapy, chemotherapy, or

chemoradiotherapy) before MDCT imaging, and 3) incomplete

clinical data or suboptimal image quality. For the analysis, the

patient cohort was divided into a training set (146 patients) and a

validation set (64 patients) based on the date of the MDCT

examination. The selection process is illustrated in Figure 1,

which provides a clear overview of the patient cohort’s composition.
MDCT image acquisition

Pelvic MDCT images were obtained using five different CT

scanners: AquilionONE (Canon Medical Systems, Otawara, Japan),

Discovery CT750 HD (GE Medical Systems, Waukesha, WI, USA),

Optima CT670 (GE Medical Systems, Milwaukee, WI, USA), iCT

256 (Philips Medical Systems, Best, Netherlands), and SOMATOM

Definition Flash (Siemens Medical Systems, Forchheim, Germany).

The imaging parameters utilized included a current range of 100 to

300 mA, a voltage setting of 120 kV, a pitch varying from 0.599 to

0.984, slice thicknesses between 1 and 1.2 mm, and rotation times

ranging from 0.42 to 0.6 seconds.

For contrast enhancement, Iohexol with a concentration of 300

mg iodine/mL was administered intravenously via a power injector,

at a volume of 85 to 100 mL, infused at a rate of 2.0 to 3.0 mL/s.

Post-contrast CT scans were conducted at predetermined intervals:

the arterial phase at 30 seconds, the venous phase at 60 seconds, and

the delayed phase between 90 and 120 seconds.
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To address the variability caused by using different CT scans in this

study, image preprocessing was performed prior to segmentation and

feature extraction to improve the stability of the radiomic features,

making themmore suitable for further analysis. To standardize the CT

images, two steps were implemented: (1) restricting pixel intensity

values to a range of −800 to 800 to minimize the effect of extreme

values and outliers, and (2) adjusting the window width to 350

Hounsfield units (HU), the window level to 50 HU, and setting the

image dimensions to 512×512 to ensure visual consistency across

images from different CT scans.
Clinical risk factors

Clinical data, including age and CA125 levels (categorized as

≤50 U/mL and >50 U/mL), as well as levels of human epididymis

protein 4 (HE4) (≤150 pmol/L and >150 pmol/L), were extracted

from the hospital’s medical record system. Two radiologists, each

with over 10 years of experience in abdominal imaging,

independently reviewed the scans without knowledge of the

clinical details or pathological findings.

The conventional imaging features recorded included the tumor

size on axial MDCT scans, the size of solid components, tumor

laterality (unilateral or bilateral), texture (predominantly cystic or

solid), margin appearance (smooth or irregular), presence of ascites

(absent or present), and any vascular irregularities (present or

absent). Vascular abnormalities were characterized by any of the

following criteria: a) disorganized or tortuous vessel patterns, b)

microaneurysms, or c) arteriovenous fistulas.
Volume of interest delineation and sub-
region clustering

The VOIs were depicted by two radiologists, each with over 10

years of experience. VOI segmentation was carried out using the
Frontiers in Oncology 03
open-source software ITK-SNAP (http://www.itksnap.org). Both

radiologists reached a consensus on the delineation of the VOIs.

Following this, tumors were segmented into three distinct habitats

based on clusters of HU values, which were used to identify regions

with similar imaging characteristics. Habitat 1 corresponds to the

cystic regions, while habitat 2 and habitat 3 represent solid tumor

components with different densities. The K-means method was

applied for clustering the sub-regions in this study, and the

Calinski-Harabasz (CH) value was used as the criterion to

determine the optimal number of clusters at the patient

population level. We tested the number of clusters from 2 to 10

and ultimately selected three clusters based on the CH value.

The intra-class and inter-class correlation coefficients (ICC)

were used to assess the reproducibility of the radiomic features. To

ensure stability and consistency in the radiomic parameters, we

selected 30 patients, with the VOIs initially drawn by one radiologist

and redrawn for feature extraction one month later. Additionally,

the VOIs of these 30 patients were outlined by a second radiologist

to verify interobserver repeatability. Only those features with an

ICC ≥ 0.75 were deemed highly stable and retained for

further analysis.
MDCT radiomics feature extraction

A total of 1,835 radiomic features were extracted from each sub-

region. These features are classified into three primary categories:

(I) geometry, (II) intensity, and (III) texture. Geometry features

describe the three-dimensional shape of the tumor, while intensity

features correspond to the first-order statistical distribution of voxel

intensities within the tumor. Texture features, on the other hand,

assess the spatial patterns of intensity, reflecting second- and

higher-order distributions of these values. To extract texture

features, several methods are utilized, such as the gray-level co-

occurrence matrix, gray-level run length matrix, gray-level size zone

matrix, and the neighborhood gray-tone difference matrix.
FIGURE 1

The flowchart of the selection of patients.
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Feature selection

All radiomic features extracted from the MDCT venous phase

were normalized using Z score normalization, which transforms the

data to have a mean of 0 and a standard deviation of 1. We

conducted statistical analysis using the Mann-Whitney U test

alongside feature screening for all radiomic features. Only those

with a p-value less than 0.05 were retained. Spearman’s rank

correlation coefficient was then calculated, and for pairs of

features with a correlation coefficient greater than 0.9, only one

feature from each highly correlated pair was kept. Finally, the

remaining radiomic features in the training set were selected

using least absolute shrinkage and selection operator (LASSO)

regression. The features with nonzero coefficients were identified

through 10-fold cross-validation, applying the one-standard error

of the minimum (1-SE) criterion to tune the regularization

parameter (l), which controls the strength of the regularization.
Prediction model development

In the analysis of clinical characteristics, univariate logistic

regression was utilized to evaluate their association with the

differentiation between SBOTs and SMOTs. Variables that

exhibited a statistically significant correlation (p-value < 0.05)

were subsequently included in a multivariate logistic

regression analysis.

Following this, we employed Python’s Scikit-learn to develop

logistic regression models, along with several other predictive

models, to distinguish between SBOTs and SMOTs using both

radiomic and clinical features. These models included four single

models and two combined models: clinic model, habitat 1 model,

habitat 2 model, habitat 3 model, habitat whole tumor model

(merged habitat 1 model, habitat 2 model, and habitat 3 model),

and combined model (merged clinic model, habitat 1 model, habitat

2 model, and habitat 3 model).
Evaluation and validation of the different
models

The performance of each model was evaluated through a series

of validation metrics. Receiver operating characteristic (ROC)

analysis was conducted to assess the discriminative power of each

model, with area under the curve (AUC) values calculated.

Statistical comparisons between AUCs were made using the

Delong test to identify significant differences in model

performance. Calibration of the models was assessed through

calibration curves, comparing predicted probabilities with

observed outcomes. The Hosmer-Lemeshow test was used to

further evaluate the model fit, with p-values indicating the degree

of agreement between predictions and actual outcomes. Lastly, a net

benefit analysis was performed to evaluate the clinical utility of each

model across a range of threshold probabilities. Decision Curve

Analysis (DCA) was used to measure net benefit, allowing for
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comparisons of each model’s effectiveness in decision-making. A

flowchart illustrating this process is presented in Figure 2.
Statistical analysis

The analysis was performed using SPSS (version 20) and

custom Python code (v.3.7.12) on the Onekey v.4.10.27 platform.

Descriptive statistics summarized continuous and categorical

variables, with t-tests and chi-square tests for group comparisons.

Univariate logistic regression identified key variables for

multivariate analysis. Radiomic features were extracted using

PyRadiomics v.3.0 and selected via Mann-Whitney U test and

LASSO regression. Logistic regression models were built using

scikit-learn (v.1.0.2). Model performance was evaluated with ROC

analysis, AUC calculation, and Delong tests. Calibration was

assessed with calibration curves and the Hosmer-Lemeshow test,

and clinical utility was evaluated through DCA. Statistical

significance was set at p < 0.05.
Results

Patient characteristics

The clinical characteristics of the patients in both the training

and validation sets are presented in Table 1. The analysis revealed

that, with the exception of tumor size (p = 0.039), there were no

statistically significant differences between the two groups.

Multivariate logistic regression identified solid size (p=0.003,

OR=1.04, 95% CI: 1.017-1.063) and predominantly solitary

texture (p=0.032, OR=2.717, 95% CI: 1.264-5.847) as significant

independent predictors for differentiating SBOTs from

SMOTs (Table 2).
Construction of habitat models

After performing feature dimension reduction, the habitat1

model retained 15 features, the habitat2 model retained 24

features, and the habitat3 model retained 11 features. For the

habitat whole tumor model, which combined features from

habitat1, habitat2, and habitat3, a total of 1 feature was retained

from habitat1, 8 features from habitat2, and 8 features from habitat3

(Figure 3). It was noteworthy that there was only one

feature ultimately retained that were extracted from the habitat1

images. These features were then used to construct logistic

regression models.
ROC analysis for training and validation
sets

In the analysis of distinguishing between early-stage SBOTs and

SMOTs using habitat-based radiomics, the ROC curves
frontiersin.org
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demonstrate that habitat2, habitat3, habitat whole tumor, and the

combined model achieve high AUC values in the training and

validation sets (Table 3). The ROC curves and the Delong test

results (Figure 4) indicate that habitat2, habitat3, habitat whole

tumor and combined model show significant improvements in

AUC, suggesting their superior predictive performance. This

consistency across both training and validation sets highlights the

potential clinical utility of habitat2, habitat3, habitat whole tumor,

and the combined model in accurately distinguishing SBOTs from

SMOTs. A clinical-radiomics nomogram was effectively

constructed using the clinical-radiomics model (Figure 5).
Calibration and model fit analysis

Calibration performance of each predictive model was assessed

in both the training and validation sets. In the training set

calibration plot (Figure 6A), all models displayed calibration

curves that closely followed the ideal calibration line, indicating a

generally good agreement between predicted probabilities and

observed outcomes. In the validation set calibration plot

(Figure 6B), calibration performance varied slightly, however, still

aligning with the diagonal line across most probability ranges.
Net benefit analysis

The clinical effectiveness of each predictive model was evaluated

using DCA in both the training (Figure 6C) and validation sets
Frontiers in Oncology 05
(Figure 6D). Clinic model and habitat1 model shows low net benefit

across threshold probabilities, suggesting limited added value in

clinical decision-making. Habitat2, habitat3, habitat whole tumor,

and the combined model display robust net benefits in

both datasets.
Discussion

A primary advantage of habitat-based radiomics lies in its

ability to capture spatial heterogeneity within tumors, which is

crucial for understanding tumor biology (13). Traditional imaging

techniques often overlook these spatial relationships, leading to

oversimplified tumor characterizations (9). SBOTs and SMOTs

mostly present as a solid-cystic mass, with high tumor

heterogeneity (14). By segmenting tumors into different

“habitats”, this approach enhances our ability to analyze

regions with varying characteristics, ultimately improving

diagnostic precision.

A significant aspect of our methodology involved segmenting

VOIs into three sub-regions based on clustered HU values. Habitat1

represented the cystic portions, while habitat2 and habitat3

encompassed various solid components characterized by different

densities. The different habitats may exhibit distinct biological

behaviors. In our study, the results demonstrate promising

potential for these models. In the training set, ROC curves

indicated that habitat2, habitat whole tumor, and the combined

model achieved AUC values of 0.960, 0.955, and 0.957, respectively.

In the validation set, habitat3 and the combined model achieved the
FIGURE 2

The radiomics flowchart of the study.
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highest AUC values, with habitat2 and habitat whole tumor still

outperforming other tested models. These findings highlight the

significant performance of habitat-based radiomics, showing not

only high accuracy but also superior sensitivity and specificity

compared to traditional imaging methods.

Previous studies utilizing traditional machine learning

techniques have reported varied success but often lack the

diagnostic accuracy achieved by our habitat-based models. For

instance, Liu et al. (15) employed T2-weighted imaging-based

radiomics to discriminate ovarian borderline tumors from

malignancies based on two-dimensional and three-dimensional

lesion segmentation methods, achieving AUC values 0.79 and

0.83, which do not match the impressive results of our habitat2

and habitat whole tumor models. Yong’ai Li et al. (16) reported

performance of the MRI-based machine-learning model was robust
Frontiers in Oncology 06
in discriminating borderline epithelial ovarian tumor versus early-

stage malignant epithelial ovarian tumor, with AUCs of 0.909 and

0.920, indicating competitive yet inferior performance compared to

our models. The incorporation of habitat-based radiomics captures

the spatial heterogeneity essential for understanding tumor

behavior, offering insights that conventional methods

may overlook.

Interestingly, our findings revealed that only one feature was

retained from the habitat1 images, indicating that cystic portions

contribute minimally to tumor differentiation. And solid

components more effectively reflect underlying tumor biology and

may provide critical information regarding tumor aggressiveness

and behavior, emphasizing the need to focus on solid tumor

elements that provide more distinctive radiomic features. In a

similar study, Rie Mimura et al. demonstrated that histograms of

the apparent diffusion coefficient from solid tumor components

aided in differentiating between borderline ovarian tumors and

carcinoma (5). By extracting and analyzing the characteristics of

solid portions, our habitat-based approach emphasizes unique

features vital for distinguishing between these tumor types. This

methodology aligns with findings from advanced imaging studies

that highlight the importance of spatial heterogeneity in tumor

assessments (17, 18). Recognizing spatial distribution enhances

diagnostic performance and supports the clinical relevance of

habitat-based radiomics in routine practice.

Our habitat-based radiomics models not only demonstrate

enhanced discriminative power but also effectively integrate

relevant clinical data to improve predictive performance.

Integrating clinical factors, such as serum tumor markers, can

refine preoperative discrimination (19, 20). In a prior study, we

established that the HE4 level serves as an independent predictor in

the clinicoradiological model for distinguishing between early-stage

SBOTs and SMOTs (12). To comprehensively consider both clinical

factors and features from different habitat regions, we constructed a

combined model, integrating the merged clinical model with the

habitat 1, habitat 2, and habitat 3 models, to develop a nomogram.

The results demonstrated that the nomogram exhibited strong

accuracy and clinical utility. This suggests that radiomics-based

nomogram can enhance preoperative differentiation between early-

stage SBOTs and SMOTs. Overall, despite advancements in other

screening methods (21), the habitat-based nomogram offers

significant diagnostic advantages, enhancing preoperative

assessment and ultimately informing patient management strategies.

While our habitat-based radiomics model shows promising

performance in distinguishing early-stage SBOTs from SMOTs,

its computational complexity and clinical deployment feasibility

must be considered for real-world application. The model involves

extracting a large number of quantitative features from MDCT

images, which requires substantial computational resources during

the training phase (22). However, once the model is trained, the

prediction process is relatively efficient, and it can be applied in

clinical practice with reduced computation time. In order to further

optimize the model, we could explore techniques such as feature

selection refinement or leveraging high-performance computing, to
TABLE 1 Comparison of clinicoradiological characteristics of patients in
training set and validation set.

Characteristics Training
set

Validation
set

P

Age (mean ± SD), years 46.17±11.65 45.80±12.50 0.834

CA125 0.693

≤50U/mL 49 (33.56) 24 (37.50)

> 50U/mL 97 (66.44) 40 (62.50)

HE4 0.901

≤150pmol/L 101 (69.18) 43 (67.19)

>150pmol/L 45 (30.82) 21 (32.81)

Location 1

Unilateral 67 (45.89) 29 (45.31)

Bilateral 79 (54.11) 35 (54.69)

Texture 1

Predominantly cystic 87 (59.59) 38 (59.38)

Predominantly solid 59 (40.41) 26 (40.62)

Margins 0.541

Smooth 97 (66.44) 39 (60.94)

Irregular 49 (33.56) 25 (39.06)

Ascites 0.823

Absent 102 (69.86) 43 (67.19)

Present 44 (30.14) 21 (32.81)

Vascular abnormalities 0.728

Absent 101 (69.18) 42 (65.62)

Present 45 (30.82) 22 (34.38)

Size (mean ± SD), mm 78.86±32.31 87.28±31.18 0.039

Diameter of solid component (mean
± SD), mm

32.02±22.04 30.50±19.43 0.918
CA125, cancer antigen 125; HE4, human epididymis protein 4; SD, standard deviation.
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facilitate faster analysis and improve overall clinical usability (23).

Regarding clinical feasibility, despite the high performance

demonstrated in our study, integrating habitat-based radiomics

into clinical practice presents certain challenges. The model relies

on precise tumor segmentation, which necessitates the expertise of

radiologists for accurate delineation of VOIs. Therefore,

implementing this model would require specialized training for

clinicians or the development of semi-automated tools to assist with

VOI segmentation. Furthermore, as we used various CT scanners in

this study, the model’s stability across different imaging platforms
Frontiers in Oncology 07
and institutions needs to be confirmed in multicenter studies to

ensure generalizability. With these considerations in mind, we

envision that future advancements in computational power and

artificial intelligence will enable smoother integration of habitat-

based radiomics into routine clinical workflows, potentially

improving early-stage diagnosis and treatment planning for

ovarian tumors.

To further validate its clinical applicability, we plan prospective

studies to assess the model’s performance in real-world practice and

compare it with MRI and ultrasound-based methods for a more
TABLE 2 Univariate and multivariate analysis of clinicoradiological characteristics in the training set.

Characteristics Univariate analysis Multivariate analysis

OR(95%CI) P OR(95%CI) P

Age 1.009 (1.003-1.015) 0.012 1.003 (0.982-1.023) 0.838

CA125 1.111 (0.948-1.302) 0.272 – –

HE4 1.433 (1.166-1.759) 0.004 1.465 (0.727-2.951) 0.37

Location 1.026 (0.868-1.214) 0.798 – –

Texture 1.329 (1.101-1.606) 0.013 2.717 (1.264-5.847) 0.032

Margins 1.239 (1.019-1.507) 0.072 – –

Ascites 1.173 (0.961-1.430) 0.188 – –

Vascular abnormalities 1.196 (0.981-1.459) 0.137 – –

Size 1.004 (1.000-1.007) 0.075 – –

Size of solid component 1.017 (1.009-1.025) 0.001 1.04 (1.017-1.063) 0.003
CA125, cancer antigen 125; HE4, human epididymis protein 4; OR, odds ratio.
FIGURE 3

The retained features after performing feature dimension reduction in habitat 1 (A), habitat 2 (B), habitat 3 (C), and habitat whole tumor (D).
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comprehensive evaluation. Additionally, we aim to explore the

relationship between different habitat characteristics and tumor

biological behavior, along with the evaluation of survival rates and

other relevant prognostic factors, to further assess the clinical utility

of the model.

However, this study has several limitations. Since the study was

conducted at a single center, its findings should be validated through
Frontiers in Oncology 08
multicenter studies. The exclusion of late-stage SBOTs and SMOTs

may limit the model’s generalizability. Additionally, the retrospective

design introduces the possibility of selection biases, highlighting the

necessity for prospective and external validation studies. Moreover,

the ovarian-adnexal reporting and data system was not incorporated

into the preoperative assessment in this study, and its potential role in

enhancing diagnostic accuracy needs further investigation.
FIGURE 4

ROC curves of the six models in the training (A) and validation (B) sets. The Delong test results of the training (C) and validation (D) sets.
TABLE 3 Accuracy and predictive value between six models.

Model Training set Validation set

AUC (95%CI) SEN SPE ACC PPV NPV AUC (95%CI) SEN SPE ACC PPV NPV

Clinic 0.775
(0.6962-0.8547)

0.734 0.776 0.753 0.795 0.712
0.801
(0.6825-0.9196)

0.889 0.643 0.781 0.762 0.818

Habitat1 0.876
(0.8227-0.9302)

0.810 0.761 0.788 0.800 0.773
0.752
(0.6332-0.8707)

0.528 0.893 0.688 0.864 0.595

Habitat2 0.960
(0.9321-0.9886)

0.924 0.910 0.918 0.924 0.910
0.813
(0.7028-0.9241)

0.667 0.964 0.797 0.960 0.692

Habitat3 0.902
(0.8532-0.9503)

0.810 0.881 0.842 0.889 0.797
0.835
(0.7385-0.9322)

0.833 0.679 0.766 0.769 0.760

Habitat Whole tumor 0.955
(0.9231-0.9877)

0.962 0.851 0.911 0.884 0.950
0.818
(0.7156-0.9213)

0.861 0.643 0.766 0.756 0.783

Combined 0.957
(0.9259-0.9875)

0.962 0.866 0.918 0.894 0.951
0.835
(0.7358-0.9348)

0.861 0.643 0.766 0.756 0.783
frontie
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value.
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Conclusions

This study shows that habitat-based radiomics effectively

distinguishes early-stage SBOTs from SMOTs. The limited ability

of cystic components to differentiate highlights the need to analyze
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solid regions for better diagnostic accuracy. These findings suggest

habitat-based radiomics offers advantages over traditional imaging

techniques, potentially improving tumor characterization and

patient management. Future research should validate these results

in larger cohorts to confirm its role in oncological imaging.
FIGURE 6

Calibration curves in the training (A) and validation (B) sets. DCA for the six models in the training (C) and validation (D) sets.
FIGURE 5

The radiomics nomogram developed in the training set.
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