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Single-cell sequencing
reveals the role of aggrephagy-
related patterns in tumor
microenvironment, prognosis
and immunotherapy in
endometrial cancer
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Ganghui Li1,2, Bao Liu1,2, Jianrong Huang1,2*, Yinde Huang5*

and Chengzhi Zhao1,2*

1Department of Gynecologic Oncology, Chongqing Health Center for Women and Children,
Chongqing, China, 2Department of Gynecologic Oncology, Women and Children’s Hospital of
Chongqing Medical University, Chongqing, China, 3Chongqing Key Laboratory of Translational
Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital,
Chongqing, China, 4Clinical Medical College, North Sichuan Medical College, Nanchong,
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Background: As a type of autophagy, aggrephagy degrades the aggregation of

misfolded protein in cells and plays an important role in key genetic events for

various cancers. However, aggrephagy functions within the tumor

microenvironment (TME) in endometrial cancer (EC) remain to be elucidated.

Methods: A total of 36,227 single cells from single-cell RNA-seq data derived

from five EC tumor samples were comprehensively analyzed using a nonnegative

matrix factorization (NMF) algorithm for 44 aggrephagy-related genes. Bulk

RNA-seq cohorts from public repositories were utilized to assess the

prognostic value of aggrephagy-related TME clusters and predict immune

checkpoint blockade immunotherapeutic response in EC.

Results: Fibroblasts, macrophages, CD8+T cells, and lymphatic endothelial cells

were categorized into two to five aggrephagy-related subclusters, respectively.

CellChat analysis showed that the aggrephagy-related subtypes of TME cells

exhibited extensive interactions with tumor epithelial cells, particularly for

macrophages. Moreover, aggrephagy regulators may be significantly

associated with the pseudotime trajectories of major TME cell types as well as

the clinical and biological features of EC. Bulk-seq analysis showed that these

aggrephagy-related subclusters had significant predictive value for the survival

and immune checkpoint blockade response in EC patients. Notably,

immunohistochemical staining results manifested that the TUBA1A+
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macrophage subtype was linked to less lymph node metastasis and longer

survival, which were consistent with the bioinformatics analysis findings.

Conclusions: This study provided a novel view of aggrephagy signaling in the EC

tumor microenvironment, and intervention of aggrephagy was expected to

improve the survival rate of EC patients.
KEYWORDS

endometrial cancer, aggrephagy, tumor microenvironment, immunohistochemistry,
prognosis
Introduction

Endometrial cancer (EC) is amalignancy that arises from the lining

of the uterus (1). The incidence of EC in 2022 was 420,242 worldwide,

and EC is the sixth most commonly occurring female cancer. EC has

been broadly divided into two types by histology and clinical outcomes

(2–4). Type I tumors comprise the large majority of grade I or grade II

endometrioid adenocarcinomas, are associated with estrogen excess,

hormone-receptor positivity, and obesity, and are often preceded by

endometrial hyperplasia (5, 6). Type II tumors are more common in

older, non-obese women, primarily including grade III endometrioid

adenocarcinomas, undifferentiated, serous clear cells, and

carcinosarcomas. Type II tumors are typically estrogen-independent,

arising in atrophic endometrium from intraepithelial carcinoma, and

are related to a poorer prognosis (7, 8). Surgery is the primary

treatment for EC, but 15-20% of patients continue to relapse after

surgery (9). Additionally, chemotherapy and radiotherapy tend to fail

and are estimated to benefit only 10-15% of recurred patients (10). The

median survival rate of patients with recurred or metastatic EC is less

than 1 year (11). There remains a lack of effective treatment options for

patients with advanced or terminal-stage EC. Therefore, identifying

new potential molecular targets for diagnosing and treating EC is of

critical clinical importance.

As tumors progress and metastasize, tumor cells typically

demonstrate elevated metabolic activity and increased protein

synthesis. The synthesis and degradation of proteins are closely

related to the biological functions of tumor cells (12). When under

various internal and external stress factors, the imbalance in protein

degradation leads to the accumulation of misfolded proteins, forming

protein aggregates (13). Abnormal functional protein aggregation can

further affect downstream signal transduction and eventually

promote tumor progression (14). In eukaryotic cells, the ubiquitin-

proteasome system (UPS) is the primary pathway for eliminating

misfolded proteins (15). SPOP is an adaptor protein of the CUL3-

RBX1 E3 ubiquitin ligase complex, which mediates targeted

ubiquitination and proteasomal degradation of specific proteins

(16). Notably, SPOP mutations (5.7-10%) identified in EC impair

UPS function, leading to toxic protein accumulation that drives

tumor progression (17, 18). Aggrephagy, a form of selective
02
autophagy, can degrade specific abnormal protein aggregates,

inclusion bodies, and other structures, serving as a crucial pathway

for cells to eliminate misfolded proteins (19). By efficiently removing

abnormal protein aggregates, aggrephagy protects cells from their

toxic damage and maintains the balance of protein degradation (20).

Thus, as a therapeutic approach against protein aggregates,

aggrephagy is gaining increasing attention and offers new

perspectives for tumor treatment (14, 21–23).

The tumor microenvironment (TME) is a dynamic and

complex system composed of tumor cells, immune cells, stromal

cells, extracellular matrix, an extensive vascular network, and other

secreted factors (24). The infiltrating immune cells include T cells, B

cells, and macrophages; the stromal cells mainly include tumor-

associated fibroblasts (CAFs) and endothelial cells (25, 26).

Numerous studies have confirmed that the TME in which tumor

cells reside plays a crucial role in the initiation, progression, and

metastasis of tumors (27). Single-cell RNA sequencing (scRNA-

Seq) is a novel technology that amplifies, sequences, and analyzes

the RNA transcriptome of individual cells at the single-cell level,

allowing exploration of each cell’s gene expression and functional

state (28). This technology enables a comprehensive analysis of the

complex interaction networks between tumor cells and the tumor

microenvironment within the TME from a single-cell perspective

(29). Moreover, scRNA-Seq can further investigate the intricate

intercellular communication between different cell subtypes in the

TME, providing a theoretical foundation for exploring tumor

formation, progression, and treatment.

Previous research indicated that macrophages can increase the

resistance of EC to radiotherapy, and CAFs promote the rapid

progression and metastasis of EC by participating in intercellular

communication (30, 31). The infiltration degree of various T cell

subgroups plays a crucial role in predicting the prognosis of EC

(32). However, little research has reported the cell-cell interaction

between aggrephagy-related subtypes of TME cells and tumor cells.

Understanding the interactions and molecular mechanisms

between aggrephagy-related subtypes and the tumor cells can

provide deeper insights into EC and guide diagnosis and treatment.

In this study, we used scRNA-seq to explore how aggrephagy

affects key TME cells, including T cells, macrophages, CAFs, and
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endothelial cells, in the occurrence, development, and treatment of

EC. Through a comprehensive analysis of the microenvironment

associated with EC, this study revealed that aggrephagy may affect

EC progression by regulating intercellular communication within

the TME.
Materials and methods

Study design and data collection

scRNA-seq data from five EC patients were sourced from

GSE173682 in the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo). Following sample integration

and batch correction, we established a gene expression and

phenotype matrix comprising 36,227 cells. Additionally, we

collected bulk mRNA sequencing data and clinical records for

705 patients from The Cancer Genome Atlas (TCGA) and GEO

databases, including TCGA-UCEC, GSE63678, GSE17025, and

GSE115810 (Supplementary File 1). All datasets analyzed in this

study are accessible via previous publications or in the public

domain, which are vetted by their ethics committee.
Visualization of EC sample cell types
and subtype

We processed the scRNA-seq matrix using the Seurat package

(v4.4.0) within the R environment. After generating the Seurat

objects, we selected the top 2,000 genes as the most variable features.

These features provided the basis for normalizing scRNA-seq data

at the single-cell level, a task accomplished through the

FindVariableFeatures function in Seurat. We applied the

ScaleData and RunPCA functions to determine the number of

principal components. Further dimensionality reduction was

achieved using the t-SNE and UMAP methods, which effectively

summarized the top principal components. Cell clustering was

performed using the FindNeighbors (dimension = 15) and

FindClusters (resolution = 0.8) functions. We utilized the

respective gene expression levels of well-known marker genes to

annotate the major cell types within EC. The primary marker genes

include myeloid cells (C1QA, LYZ, CD68, CD1C, CPA3); epithelial

cells (EPACAM, CDH1, KRT7, KRT19); fibroblasts (LUM,

PDGFRA, PDGFRB, ACTA2); endothelial cells (VWF, CCL21,

PECAM1); T/B cells (CD8A, IL7R, NKG7, CD3E, KLRD1,

CD79A); and smooth muscle cells (MYH11, MYLK).
Pseudotime trajectory analysis of
aggrephagy gene for TME cells

Monocle package (v2.22.0) was applied for scRNA-seq data to

explore the correlation of aggrephagy regulators and pseudotime

trajectories (33). The highly variable genes were defined using the

following criteria: mean expression levels ≥ 0.1 and empirical
Frontiers in Oncology 03
dispersion ≥ 1 * dispersion fit. Subsequently, we used the

‘plot_pseudotime_heatmap’ function to generate heatmaps that

display the dynamic expression of aggrephagy regulators in the

pseudotime trajectories of different TME cell types in EC.
Non-negative matrix factorization of
aggrephagy−related genes in TME cells

To explore how aggrephagy affected the different cell types

within the TME, a list of 44 aggrephagy-related genes was

downloaded from the molecu lar s ignature database

(Supplementary File 2). Subsequently, we conducted a dimension

reduction analysis for aggrephagy-related genes in all TME cell

types. To balance computational scalability and resolution, we first

applied principal component analysis (PCA) to identify major cell

clusters. Subsequent, the non-negative matrix factorization (NMF)

was employed to identify different cell subtypes within these cell

types, according to the scRNA expression matrix. These analytical

procedures strictly adhered to established methodologies in

previous studies (34).
Identification of marker genes for
aggrephagy−related cell subtypes within
TME cells

The FindAllMarkers function was applied to list the markers of

each NMF cluster within EC. To select characteristic genes, we set

the log fold change (logFC) threshold to 0.5. If a gene with logFC

greater than 1, prioritize aggrephagy-related genes that ranked

highest in the list. We utilized the DotPlot function to show the

top-ranking genes with the highest expression levels in each NMF

cluster. The FeaturePlot function was used to illustrate the

distribution of specific aggrephagy genes within the NMF clusters

in the TME of EC.
Cell−cell communication analysis

We used the CellChat package (v1.6.1) to generate CellChat

objects and facilitate the analysis of intercellular communication.

The ligand-receptor interactions were utilized to find

communication patterns between different cell types. We

projected the ligands and receptors into the protein-protein

interaction network to identify cell communication events.

Besides, we specifically explored communication between

subtypes of aggrephagy-related cells and epithelial cells.
NMF aggrephagy−related subtypes
functional enrichment analysis

We used the clusterProfiler package (v4.2.2) to detect the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and the Reactome
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pathway databases based on the marker genes of the aggrephagy

clusters in TME cell types. The CytoScape enrichment map function

was applied to visualize these pathways. Gene sets with an adjusted

p-value of < 0.05 were considered as significantly enriched. We used

the scMetabolism package (v0.2.1) to evaluate the activity of cell

metabolic pathways.
NMF aggrephagy−related subtypes
SCENIC analysis

We used The SCENIC package (v1.3.1) to explore the gene

regulatory network involving transcription factors (TFs) in EC (35).

Two gene motifs, hg19-tss-centered-10 kb and hg19–500 bp-

upstream from the RcisTarget database, were applied to detect the

transcription start site and explore gene regulatory networks within

the scRNA-seq data of OS. TFs with adjusted p-values corrected by

the Benjamini–Hochberg method of less than 0.05 were used for

further analysis.
Survival analyses with aggrephagy−related
signatures in public bulk RNA
−sequence datasets

Based on the FindAllmarker function, we generated

aggrephagy-related gene signatures for all NMF cell clusters. We

also calculated the main cell types within the EC TME based on the

scRNA data. Then, we used the GSVA function to compute these

gene signature scores in public EC datasets. To explore the

relationship between the aggrephagy-related NMF signatures and

the overall survival rate of EC patients, we conducted the log-rank

test and Cox proportional hazard regression analysis. The cutoff

values of different NMF cell signatures were calculated using the

Survminer package (v0.4.9) to plot Kaplan–Meier curves.
Immunotherapy analysis

To forecast the responses of EC patients to immune checkpoint

blockade (ICB) immunotherapeutic, we uploaded expression data

to the Tumor Immune Dysfunction and Exclusion (TIDE) website.

After obtaining the output data, we analyzed the connections

between aggrephagy-related NMF signatures. Additionally,

immune checkpoints extracted from public datasets were assessed

against the respective dataset.
Immunohistochemistry
semiquantitative analysis

Tissue sections on the microarray were subjected to antigen

retrieval using Tris-EDTA (pH 9.0) for 20 minutes. After returning

to room temperature, sections were treated with 3% hydrogen

peroxide to block endogenous peroxidase activity. Subsequently,
Frontiers in Oncology 04
sections were incubated with either an anti-TUBA1A antibody

(1:100; Servicebio, Wuhan, China) or an anti-CD86 antibody

(1:100; Servicebio, Wuhan, China) overnight at 4°C. The next

day, after reaching room temperature, secondary antibodies

conjugated to either HRP or a fluorophore were applied and

incubated for 1 hour at room temperature. After washing with

PBS, t i ssue sect ions were developed using DAB for

immunoh i s t o ch em i s t r y o r s t a i n ed w i t h DAPI f o r

immunofluorescence. The slides were then scanned using an

Olympus microscope (Tokyo, Japan). Intensity Scoring: Cell

staining intensity is scored on a four-tier scale: 0 points for no

positive staining (negative), 1 point for light yellow (weakly

positive), 2 points for brownish yellow (positive), 3 points for

dark brown (strongly positive). Percentage of Positive Cells: The

percentage of positive cells is also graded on a four-tier scale: 1 point

for ≤25%, 2 points for 26%-50%, 3 points for 51%-75%, and 4 points

for >75%. The final score is calculated by multiplying the intensity

score by the percentage score (36). Immunofluorescence:

Semiquantitative analysis for immunofluorescence is performed

according to methodologies described in previous literature (37).
Statistical analysis

The standard tests included the Student’s t-test, Wilcoxon rank-

sum test, Kruskal–Wallis test, and Chi-square test for continuous

target or category variables. The log-rank test was used for survival

analyses. Statistical analyses of this study were conducted in R 4.1.3

software, and a two-sided p-value < 0.05 was regarded as

statistically significant.
Results

Single cell landscape of EC

Dimensionality reduction and annotation of single cells for five

EC samples were conducted to explore the TME and cellular

diversity. We set the gene expression range for each single cell

between 200 and 4,000, resulting in 29,667 cells. UMAP analysis

was performed based on the differentially expressed genes of all

cells, and 19 clusters were found (Figure 1A). One marker gene of

each cluster was selected for visualization (Figure 1B). We

annotated each cluster and identified six main clusters, including

myeloid cells, epithelial cells, CAFs, endothelial cells, T/B cells, and

smooth muscle cells according to previously reported cell marker

genes (Figure 1C, D). Figure 1D visualizes the proportion of

different cell types in each sample. Cell-chat analysis showed

complex cell communications among these cell types (Figure 1E).

The epithelial cells have apparent communication with endothelial

cells, T/B cells, CAFs, and myeloid cells. Subsequently, we generated

the heat map to show the expression of the aggrephagy-related

genes in different cell types (Figure 1F). Several aggrephagy-related

genes were highly expressed in the six cell types, including RPS27A,

HSP90AA1, UBC, TUBA1A, and VIM (Figure 1F).
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Novel aggrephagy−related CAFs
contributed to the TME of EC

We conducted dimensionality reduction and NMF clustering

for 13,004 CAFs and found five new CAF subtypes (Figure 2A). The

pseudotime analysis showed that the aggrephagy-related genes had

an important role in the trajectory process of CAFs (Figures 2B, C).

The cell-cell communication analysis showed that aggrephagy-

related fibroblast clusters and epithelial cells had different

numbers of ligand-receptor links (Figure 2D). The activation state

of the signal pathway showed that VCP+CAF-C1 and TUBB2B
Frontiers in Oncology 05
+CAF-C2 subclusters interacted more with epithelial cells

(Figure 2D). Among the signaling molecules, the epithelial cells

mainly sent MIF and MK, while the VCP+CAF-C1 and TUBB2B

+CAF-C2 subcluster mostly received MK, PTN, FGF and

VISFATIN (Figure 2E). The KEGG enrichment analysis revealed

that the VCP+CAF-C1 cluster exhibited obvious protein export,

proteasome, and protein processing in the endoplasmic reticulum

pathway (Figure 2F). We calculated the Pan-CAF signatures

reported in a previous study and detected that the VCP+CAF-C1

cluster was negatively associated with any CAF subtype (38). By

contrast, the TUBB2B+CAF-C2, HSP90AA1+CAF-C4, and
FIGURE 1

Overview of aggrephagy-related genes in the single-cell data for EC. (A) Dimensionality reduction clustering of EC samples. (B) Annotated marker
genes for major cell types. (C) UMAP plot highlighting the six main cell clusters in EC. (D) Cell composition within each EC sample. (E) Cell–Cell
communications between the main six cell types by Cell chat analysis. (F) Heatmap illustrating aggrephagy-related gene distribution in major
cell types.
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TUBA1A+CAF-C5 were strongly associated with desmoplastic

CAF (pan-dCAF), myofibroblast-like CAF (pan-myCAF), and

inflammatory CAF (pan-iCAF), respectively (Figure 2G).

According to the gene regulatory network analysis, significant

differences were observed among five clusters of CAF subtypes. In
Frontiers in Oncology 06
the VCP+CAF-C1, HSP90AA1+CAF-C4, and TUBA1A+CAF-C5

clusters, several TFs, such as CREB5, FOSL2, STAT3, JUND,

NFKB1, and CEBPG, were significantly upregulated. However, in

the TUBB2B+CAF-C2 and non-aggre-CAF-C3 clusters, most TFs

did not show notable upregulation (Figure 2H). The expressions of
FIGURE 2

Identification of novel aggrephagy-related CAFs in the TME of EC. (A) UMAP plot showing five subtypes of aggrephagy-related NMF CAFs. (B)
Pseudotime trajectory analysis illustrating aggrephagy-related gene dynamics in CAFs. (C) The developing status of CAFs NMF clusters obtained in
pseudotime analysis. (D) Cell–Cell communications from aggrephagy-related CAFs to epithelial cells. (E) Relative strength of enriched outgoing and
incoming signals in aggrephagy-related CAFs and epithelial cells. (F) Heatmap showing activated KEGG pathways in aggrephagy-related CAFs by
using the DEGs among these groups (p < 0.05). (G) Association between CAF subtypes and aggrephagy-related CAFs. (H) Heatmap displaying
differential TFs activities across five aggrephagy-related CAFs. (I) Heatmap showing the different average expression of common signaling pathway
genes in the five aggrephagy-related CAFs.
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the VCP+CAF-C1 and Non-aggre-CAF-C3 pathway genes were

significantly different, as shown in the pathway heatmap (Figure 2I).

These results indicated the heterogeneity of CAFs in EC and the

significance of aggrephagy for the classification of CAFs.
Identification of novel aggrephagy-related
macrophages in the TME of EC

We extracted 1,473 macrophages from the myeloid cells (1,954

cells) (Supplementary Figures S1A-D). After further integrating the

five macrophage NMF clusters, we get three main aggrephagy-
Frontiers in Oncology 07
related macrophage clusters named Non-Aggre-Mac-C1, TUBA1A

+Mac-C2, and HSP90AA1+Mac-C3 (Figure 3A). The aggrephagy-

related genes played a crucial role in the trajectory process of

macrophages according to Pseudotime analysis (Figures 3B, C).

Different number of ligand-receptor links between these

aggrephagy-related macrophage clusters to epithelial cells were

discovered by cell-chat analysis (Figure 3D). Additionally, the

activation state of the signal pathway showed an obvious

difference, and the TUBA1A+Mac-C2 subcluster interacted more

with epithelial cells (Figure 3E). We conducted KEGG enrichment

analysis to evaluate the relationship between aggrephagy-related

macrophage clusters and special pathways and found 30 metabolic
FIGURE 3

Identification of novel aggrephagy-related macrophages in the TME of EC. (A) UMAP plot showing three subtypes of aggrephagy-related NMF
macrophages. (B) Pseudotime trajectory analysis illustrating aggrephagy-related gene dynamics in macrophages. (C) The developing status of
macrophages NMF clusters obtained in pseudotime analysis. (D) Cell–Cell communications from aggrephagy-related macrophages to epithelial
cells. (E) Relative strength of enriched outgoing and incoming signals in aggrephagy-related macrophages and epithelial cells. (F) Metabolic pathway
analysis of aggrephagy-related macrophages subtypes. (G) M1 and M2-like phenotype scoring among different aggrephagy-related macrophage
subtypes. (H) UMAP plot illustrating M1 and M2 activity across aggrephagy-related NMF macrophage subtypes. (I) Heatmap showing the different
average expression of common signaling pathway genes in the three aggrephagy-related macrophage subtypes.
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pathways enrichment results (Figure 3F). The metabolic pathways

enrichment results showed that TUBA1A+Mac-C2 were activated

in SPP1, MIF, VISFATIN, and GALECTIN pathways (Figure 3F).

No significant difference was observed between M1 and M2

macrophages among aggrephagy-related subclusters of

macrophages (Figures 3G, H). SCENIC analysis showed different

activations of TFs among macrophage subclusters. From the

pathway heatmap, TFs of TUBA1A+Mac-C2 were mainly down-

regulated, and HSP90AA1+ Mac-C3, Non-Aggre-Mac-C1 were

opposite (Figure 3I). Overall, we identified novel aggrephagy-

related macrophage subclusters and observed that these

subclusters were comparatively more active in metabolism and

transcription than non-aggrephagy-related subclusters.
Contribution of aggrephagy−related CD8
+T cell to TME of EC

After further analysis, we identified six main cell types, including

CD8+T cells, regulatory T cells, conventional T cells, NK cells, B cells,
Frontiers in Oncology 08
and plasma cells from the 5,077 T/B cells (Supplementary Figures

S2A-D). Subsequently, 2,173 CD8+T cells were divided into 12

clusters by the NMF algorithm, and a total of five aggrephagy-

related cell clusters were finally generated. The pseudotime analysis

showed that aggrephagy-related genes play a role in the early and late

stages of cell differentiation (Figures 4B, C). There were different

numbers of ligand-receptor links between these aggrephagy-related

CD8+T cell clusters and epithelial cells according to the results of cell-

cell communication analysis (Figures 4D, E). Enrichment analysis

with KEGG showed that DYNLL1+CD8+T cells-C1, non-Aggre-

CD8+T cells-C2, and TUBA1C+CD8+T cells-C5 cluster exhibited

different pathway activation, while the UBB+CD8+T cells-C1 and

UBE2N+CD8+T cells-C4 did not show significant pathway

activation (Figure 4F). Furthermore, aggrephagy-associated CD8+T

cells exhibit inactive characteristics and variable T cell activity.

Notably, UBB+CD8+T cells-C1 showed characteristics of both an

active CD8_exhau subtype and a more pronounced CD8_cytoto

subtype (Figure 4G). SCENIC analysis showed different activation of

TFs among CD8+T cell subclusters. From the pathway heatmap, TFs

of UBB+CD8+T cells-C1 and UBE2N+CD8+T cells-C4 were mainly
FIGURE 4

NMF clusters of aggrephagy-related genes in CD8+T Cells. (A) UMAP plot showing five subtypes of aggrephagy-related NMF CD8+T cells. (B)
Pseudotime trajectory analysis illustrating aggrephagy-related gene dynamics in CD8+T cells. (C) The developing status of CD8+T cell NMF clusters
obtained in pseudotime analysis. (D) Cell–Cell communications from aggrephagy-related CD8+T cells to epithelial cells. (E) Relative strength of
enriched incoming signals in aggrephagy-related CD8+T cells and epithelial cells. (F) Heatmap illustrating activated KEGG pathways in aggrephagy-
related CD8+T cells. (G) Heatmap showing the CD8+T cell function signatures (exhaustion score and T cytotoxic score) among five aggrephagy-
related CD8+T cells subtypes. (H) Heatmap showing differential activities of TFs among five aggrephagy-related CD8+T cell clusters. (I) Heatmap
showing the different average expression of common signaling pathway genes in the five aggrephagy-related CD8+T cell.
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up-regulated, and other subclusters were opposite (Figure 4H). The

expressions of pathway genes of the five subclusters were also

different, as shown in the pathway heatmap (Figure 4I). To

summarize, we identified that specific aggrephagy-related CD8+T

cells, such as UBB+CD8+T cells, showed increased activity in cellular

interactions, TFs, and T-cell cytotoxicity.
Identification of novel aggrephagy-related
lymphatic endothelial cell in the TME of EC

We found three main cell types including vein cells, artery cells,

and lymphatic endothelial cells (LECs), from the 2,751 endothelial cells

after further analysis (Supplementary Figures S3A-D). Lymph node

metastasis is a common characteristic of EC. Therefore, LECs were

divided into two aggrephagy-related cell clusters by the NMF algorithm

(Figure 5A). The aggrephagy-related genes had an essential role in the

trajectory process of LECs, varying in the early and late stages of cell

differentiation (Figures 5B, C). Cell-cell communication analysis

showed different numbers of ligand-receptor links between two

aggrephagy-related LEC clusters and epithelial cells (Figures 5D, E).

The KEGG enrichment analysis was conducted to explore the

relationship between aggrephagy-related LEC clusters and special

pathways (Figure 5F). HSP90AA1+lymphatic-ECs-C2 showed

significant activation in protein processing in the endoplasmic

reticulum and IL-17 signaling pathway (Figure 5F). SCENIC analysis

showed obvious different activation of TFs between non-Aggre-

lymphatic-ECs-C1 and HSP90AA1+lymphatic-ECs-C2 (Figure 5G).
Aggrephagy−related TME patterns guide
EC prognosis and immunotherapy

We recalculated the aggrephagy-related gene expression in bulk

RNA and scRNA data to find the signature of the main EC TME cell

types. Based on the DEGs of aggrephagy-related TME cells, we used

the GSVA to calculate the aggrephagy sub-score in 548 EC patients

downloaded from TCGA-UCEC and to explore their prognosis. All

scores were divided into two groups for the cox regression analysis.

Notably, as the variation in the aggrephagy genes across special

aggrephagy sub-cell types, the overall survival rates of EC patients

were significantly different among these sub-clusters, including

CAFs, macrophages, and CD8+T cells (Figures 6A-F). Especially,

we observed a positive correlation between the expression of

TUBA1A+MAC-C2 and survival probability, which was similar

to the results from the TCGA database (http://gepia2.cancer-

pku.cn/) and the Kaplan-Meier Plotter online platform (https://

kmplot.com/) (Supplementary Figures S4A-B). Subsequently, we

used the transcriptomic biomarkers of EC patients to predict ICB

immunotherapy response by the TIDE website (Figures 6G, H). The

results of logistic regression analysis indicated that different TME

cell subclusters contributed to the ICB response in EC patients in

both the TCGA-UCEC, GSE17025, GSE115810, and GSE63678

databases (Figures 6G, H). According to our predictions, high
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expression of DYNLL1+CD8+T cells and UBE2N+CD8+T cells

was associated with a worse ICB response.
TUBA1A+Mac subtype is linked to less
lymph node metastasis and longer survival

In our analysis, TUBA1A was identified as a marker gene for

specific subtypes of macrophages. TUBA1A+macrophages were

associated with a better prognosis. Immunohistochemistry further

revealed that TUBA1A is highly expressed in EC (p < 0.0001), with

significantly higher expression levels observed in N0 stages (no

lymph node metastasis, p < 0.0001). However, no statistically

significant difference was observed between T1+T2 and T3 stages

(p = ns) (Figures 7A-C). These findings suggested that TUBA1A

expression increases during tumorigenesis but is associated with

fewer lymph node metastases. Furthermore, immunofluorescence

staining showed a significant increase in the relative intensity of

CD68 and TUBA1A co-expressing cells in both T1+T2 stages (p <

0.001) and N0 status (p < 0.001) (Figures 7D, E). These results

suggest that TUBA1A+Mac-C2 are associated with lower T-stage

and are accompanied by fewer lymph node metastases. Overall,

TUBA1A may exert a pro-tumorigenic effect, but its presence is

linked to improved prognostic outcomes.
Discussion

Autophagy is a tightly regulated and highly conserved

lysosomal degradation pathway. It primarily consists of three

main pathways, including chaperone-mediated autophagy,

microautophagy, and macroautophagy (39–41). It is widely

acceptable that autophagy deficiency or deregulation is associated

with different human diseases, such as cancer, autoimmune, and

neurodegenerative disorders (41). Several studies have explored the

crucial role of autophagy in the pathophysiology of EC (42–45).

However, no study has investigated the potential role of aggrephagy

in EC, and even few reports of aggrephagy associated single cell level

(46, 47). As a type of macroautophagy, aggrephagy can degrade

specific abnormal protein aggregates, serving as a crucial pathway

for cells to eliminate misfolded proteins (19). A deeper

understanding of the specific mechanisms of action of aggrephagy

in EC can provide insights for the advancement of drug research

and treatments. In this study, we have comprehensively investigated

aggrephagy-related genes of main cell types in the TME of EC and

further identified the diversity of cell-cell interaction between

aggrephagy associated TME cell subtypes and tumor cells,

especially tumor epithelial cells at the 10X Genomic single-cell

sequence level. We are able to understand how aggrephagy of these

diverse cellular components of TME affects the clinical outcomes of

individual EC patients by this unique and new perspective.

Cancer epithelial cells constitute the majority of tumor tissue

and play a crucial role in the progression and biological behavior of

EC (48). Within the complex and dynamic TME, cancer epithelial
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cells actively interact with various components, including immune

cells, stromal cells, and endothelial cells (49). This interaction is

bidirectional, with cancer epithelial cells both influencing and being

influenced by their microenvironment. Understanding the intricate

relationships within the TME is essential for developing more

effective therapeutic strategies targeting. In this study, we

discovered that the TME cells, including CAFs, macrophages, T

cells and LECs all manifested the different aggrephagy regulatory

patterns and the extensive communication with tumor epithelial

cells. Furthermore, CellChat analysis showed that ligand-receptor

pairs, the activation of angiogenesis related pathways further

mediated the communication between aggrephagy-related

subtypes of TME cells and tumor epithelial cells.

As one of the most important components of stromal cells,

CAFs consist of pan-myCAFs, pan-iCAFs, pan-nCAFs, pan-dCAFs,

and pan-pCAFs, according to specific molecular characteristics

(38). In this study, we found that CAFs had complex cellular

communication with cancer epithelial cells, especially the MIF-

related pathway. Additionally, VCP+CAF-C1 and TUBB2B+CAF-

C2 manifested more extensive communications with tumor

epithelial cells compared with non-aggrephagy-associated CAFs.

The pathway analysis results showed the participation of

aggrephagy-related CAFs in critical signaling pathways, including

the TNF signaling pathway, NF-kappa B signaling pathway, protein
Frontiers in Oncology 10
processing in the endoplasmic reticulum, proteasome, and protein

export. Furthermore, the elevated expression of MMP factors was

obviously increased in VCP+CAF-C1, such as MMP1, MMP2,

MMP3, MMP9, and MMP10. Prognosis analysis has shown an

adverse correlation between the expression and survival rate.

Therefore, we speculated that VCP+CAF-C1 may disrupt the

matrix barrier to promote the progress and metastasis of the

tumor. Several studies have also revealed that elevated VCP

expression is related to tumor progression and metastasis,

including colorectal and breast cancers (50). The specific

mechanisms of the VCP+CAFs subcluster in EC still require

further research to be clearly elucidated.

Many studies have highlighted the crucial role of regulating and

reprogramming immune cells in tumors (51, 52). We utilized the

NMF algorithm to classify macrophages based on aggrephagy-

related genes and discovered a significant phenomenon:

aggrephagy-associated macrophage subtypes actively engaging in

extensive cross-talk with tumor cells. TUBA1A+MAC-C2 and

HSP90AA1+MAC-C3 had more extensive communications with

tumor epithelial cells compared with non-aggrephagy-associated

macrophages. Furthermore, the CellChat analysis revealed that the

TUBA1A+MAC-C2 displays a significant activation of SPP1, MIF,

VISFATIN, and GALECTIN pathways. The metabolic processes

significantly impacted macrophage, thus influencing cancer
FIGURE 5

NMF clusters of aggrephagy-related genes in LECs. (A) UMAP plot showing two subtypes of aggrephagy-related NMF LECs. (B) Pseudotime
trajectory analysis illustrating aggrephagy-related gene dynamics in LECs. (C) The developing status of LECs NMF clusters obtained in pseudotime
analysis. (D) Cell–Cell communications from aggrephagy-related LECs to epithelial cells. (E) Relative strength of enriched outgoing and incoming
signals in aggrephagy-related LECs and epithelial cells. (F) Heatmap showing activated KEGG pathways in aggrephagy-related LECs. (G) Heatmap
displaying differential TFs activities across two aggrephagy-related LECs.
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progression and immune responses, including glucose metabolism,

fatty acid metabolism, and glutamine utilization. We observed that

the metabolism-related pathways of aggrephagy-associated

macrophage, especially in the TUBA1A+MAC-C2, were notably

activated, such as fatty acid degradation, Citrate cycle (TCA cycle),

and Propanoate metabolism et al. Notably, prognosis analysis has

discovered a positive correlation between the expression of
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TUBA1A+MAC-C2 and survival probability. According to the

results from the TCGA database and the Kaplan-Meier Plotter

online platform (https://kmplot.com/), high expression of TUBA1A

is also associated with improved survival rates in EC. Subsequently,

we performed immunohistochemical staining for TUBA1A and

macrophages to further investigate the role of TUBA1A+MAC-C2

in EC. Interestingly, the immunohistochemical staining results were
FIGURE 6

Overall of the prognosis and immunotherapy response of aggrephagy-related cell types in the bulk sequence from public cohorts. (A–F) Kaplan–Meier
plot of different aggrephagy-related TME cell subtypes in TCGA-UCEC database. (G) Prediction of ICB immunotherapeutic response in TCGA-UCEC
database. (H) ICB analysis among four different datasets. Significance levels are indicated as follows: * (P ≤ 0.05), *** (P ≤ 0.001), and **** (P ≤ 0.0001).
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consistent with the findings of our bioinformatics analysis, showing

that TUBA1A+MAC-C2 is highly expressed in tumor tissues.

Additionally, EC patients with high expression of TUBA1A

+MAC-C2 had fewer lymph node metastases and better survival

outcomes. Studies have shown that TUBA1A promotes

macrophage infiltration in gastric cancer (53). The pro- and anti-

tumor activities of macrophages in tumors are often closely linked

to their polarization states. We hypothesize that TUBA1A may play

a role in mediating the effects of macrophage polarization on lymph

node metastasis in EC. Previous studies also found that

overexpression of TUBA1A can reduce the migration and

invasion abilities of cervical cancer cells (54). In the future, we

will conduct additional experiments to explore how TUBA1A

+MAC-C2 influences lymph node metastasis and prognosis in EC.

In addition to macrophages, we also identified that aggrephagy-

associated CD8+T cells are involved in complex interactions with
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tumor cells. Furthermore, aggrephagy-associated CD8+T cells

exhibit inactive characteristics and variable T cell activity. UBB

+CD8+T cells robustly activated the cell cycle pathway, upregulated

immune-related genes, and exhibited characteristics of both an

active CD8_exhau subtype and a more pronounced CD8_cytoto

subtype. Survival analysis revealed that UBB+CD8+T cells

demonstrated a better survival rate in TCGA data. This is

consistent with previous studies, which showed that CD8

cytotoxic T cells are associated with a positive impact on anti-

tumor immune responses. These findings highlight the crucial role

of aggrephagy in immune evasion and the tumor-restraining effect

of macrophages and T cells.

Lymph node metastasis is the most common form of metastasis

in EC, and LECs play a key role in this process (7, 55). The crosstalk

between LECs and tumor ce l l s appears to promote

lymphangiogenesis, providing a pathway for tumor cells to invade
FIGURE 7

Validation of TUBA1A expression in EC. (A–C) The expression levels of TUBA1A by immunohistochemistry in normal vs. tumor tissues, T1 vs. T3
stages, and N0 vs. N1 lymph node status. (D, E) Immunofluorescence analysis showing the fluorescence intensity of TUBA1A and CD68 co-
expressing cells in T1 vs. T3 stages and N0 vs. N1 lymph node status. Significance levels are indicated as follows: ns (not significant, P > 0.05), *** (P
≤ 0.001), and **** (P ≤ 0.0001).
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the lymphatic system and disseminate to distant sites. Moreover,

LECs contribute to creating a pre-metastatic niche by modulating

the tumor microenvironment and facilitating immune evasion, thus

enhancing the potential for tumor progression and metastasis (56).

Understanding the role of LECs in ECmay open up new avenues for

targeted therapies to prevent or mitigate lymphatic spread. In this

study, we discovered that LECs had complex cellular

communication with cancer epithelial cells and HSP90AA1

+lymphatic-ECs-C2 showed significant activation of MIF, GDF,

VISFATIN, TWEAK, and GALECTIN pathways. Pathway analysis

showed the participation of aggrephagy-associated LECs in essential

signaling pathways, including Protein processing in the

endoplasmic reticulum, Lipid and atherosclerosis, and IL-17

signaling pathway. However, survival analysis revealed that the

expression of HSP90AA1+lymphatic-ECs-C2 had no significant

impact on the prognosis of EC.

TFs play a crucial role in forming transcription initiation

complexes, influencing transcription processes, and subsequently

regulating downstream gene expression. Therefore, we analyzed

TFs at the single-cell level to identify cell-specific gene regulatory

networks. Each subtype of CAFs, macrophages, LECs, and CD8+T

cells showed different TF characteristics. The VCP+CAFs exhibited

a unique TF gene signature, such as NFKB2, NFKB1, FOSL1,

CEBPD, ATF4, XBP1, and CEBPG. Notably, previous studies

have discovered that RUNX1 and NR2F2 play an important role

in tumor growth and metastasis, and the VCP+CAFs also

demonstrated a worse survival rate (57–59). Furthermore, we also

discovered the higher activity of FOXO3 and NR1H3 on TUBA1A

+Mac-C2. Similarly, the correlation between tumor inhabitation

and FOXO3 and NR1H3 was reported in previous research (60–62).

Moreover, for LECs and CD8+T cells, we also found distinct TF

characteristics of aggrephagy-associated cell subtypes. Based on

these findings, we supposed that aggrephagy cell subtypes might

influence specific TF regulatory networks to reshape and reprogram

TME. Moreover, cell network analysis indicated that these

aggrephagy-related TME cells were closely connected and

interacted with tumor cells. The aggrephagy CAFs, LECs, and

immune cell subtypes exhibited increased communication with

cancer epithelial cells, suggesting that the regulation of the TME,

and possibly the development of immune suppression, may be

partially influenced by aggrephagy.

Given the complex internal patterns of aggrephagy in TME

cells, we summarized the associations between the scores of these

subclusters with prognosis and immune response based on publicly

available bulk RNA-seq data. Obviously, EC patients with different

domination of aggrephagy-related genes of the TME cells had huge

prognosis differences in OS and ICB therapy response, especially for

the CAFs, macrophages, and CD8+T cells, which disclosed that the

crucial role of TME aggrephagy in further research.

This study has several limitations. First, our single-cell RNA-seq

analysis of 36,227 cells from five EC tumor samples revealed

aggrephagy-related heterogeneity in key TME cell types, the

modest cohort size may weaken the generalizability of our

findings. Second, our findings are primarily based on

transcriptomic and histopathological correlations; functional
Frontiers in Oncology 13
validation of aggrephagy regulators at the protein level and their

mechanistic roles in EC progression remain to be explored. Third,

while TUBA1A was validated as a marker of the identified

macrophage subcluster, this study did not directly establish a

causal or functional link between TUBA1A+macrophages and

aggrephagy. Future work should employ aggrephagy-specific

assays to explore this relationship.
Conclusion

In summary, we constructed a landscape of aggrephagy in EC,

characterizing aggrephagy-related subtypes in CAFs, macrophages,

T cells, and endothelial cells. We identified TUBA1A+Mac-C2 as a

potential suppressor of lymph node metastasis in EC, providing a

potential target for prognosis and therapeutic intervention in EC.
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SUPPLEMENTARY FIGURE 1

Overview of myeloid cell clustering and marker gene expression. (A)
Dimensionality reduction clustering of myeloid cells. (B) Annotated marker
genes for major myeloid cell types. (C) UMAP plots showing marker gene

expression in detected myeloid cell types. (D) UMAP plot illustrating the four
main cell type in myeloid cells.

SUPPLEMENTARY FIGURE 2

Overview of T/B cell clustering and marker gene expression. (A)
Dimensionality reduction clustering of T/B cells. (B) Annotated marker
genes for major T/B types. (C) UMAP plots showing marker gene

expression in detected T/B types. (D) UMAP plot illustrating the seven main
cell type in T/B cells.

SUPPLEMENTARY FIGURE 3

Overview of endothelial cell clustering and marker gene expression. (A)
Dimensionality reduction clustering of endothelial cells. (B) Annotated
marker genes for major endothelial types. (C) UMAP plots showing marker

gene expression in detected endothelial types. (D) UMAP plot illustrating the
three main cell type in endothelial cells.

SUPPLEMENTARY FIGURE 4

Survival analysis of TUBA1A in two databases. (A) Overall survival analysis of
TUBA1A in TCGA database. (B) Disease free survival analysis of TUBA1A in

Kaplan-Meier Plotter online platform.
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et al. ESMO-ESGO-ESTRO consensus conference on endometrial cancer: diagnosis,
treatment and follow-up. Int J Gynecol Cancer. (2016) 26:2–30. doi: 10.1097/
IGC.0000000000000609

8. Brinton LA, Felix AS, McMeekin DS, Creasman WT, Sherman ME, Mutch D,
et al. Etiologic heterogeneity in endometrial cancer: Evidence from a Gynecologic
Oncology Group trial. Gynecologic Oncol. (2013) 129:277–84. doi: 10.1016/
j.ygyno.2013.02.023

9. Nout R, Smit V, Putter H, Jürgenliemk-Schulz I, Jobsen J, Lutgens L, et al. Vaginal
brachytherapy versus pelvic external beam radiotherapy for patients with endometrial
cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority,
randomized trial. Lancet. (2010) 375:816–23. doi: 10.1016/S0140-6736(09)62163-2
10. Tangjitgamol S, See HT, Kavanagh J. Adjuvant chemotherapy for endometrial
cancer. Int J Gynecological Cancer . (2011) 21:885–95. doi : 10.1097/
IGC.0b013e3182169239

11. Fleming GF. Systemic chemotherapy for uterine carcinoma: metastatic and
adjuvant. JCO. (2007) 25:2983–90. doi: 10.1200/JCO.2007.10.8431

12. Li X, Pu W, Zheng Q, Ai M, Chen S, Peng Y. Proteolysis-targeting chimeras
(PROTACs) in cancer therapy. Mol Cancer. (2022) 21:99. doi: 10.1186/s12943-021-
01434-3

13. Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by
macroautophagy. Int J Cell Biol. (2012) 2012:736905. doi: 10.1155/2012/736905

14. Lyu L, Chen Z, McCarty N. TRIM44 links the UPS to SQSTM1/p62-dependent
aggrephagy and removing misfolded proteins. Autophagy. (2022) 18:783–98.
doi: 10.1080/15548627.2021.1956105

15. Ciechanover A, Kwon YT. Degradation of misfolded proteins in
neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. (2015)
47:e147. doi: 10.1038/emm.2014.117

16. Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING
ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. (2013)
32:2307–20. doi: 10.1038/emboj.2013.173

17. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, et al. Integrated
genomic characterization of endometrial carcinoma. Nature. (2013) 497:67–73.
doi: 10.1038/nature12113

18. Le Gallo M, O’Hara AJ, Rudd ML, Urick ME, Hansen NF, O’Neil NJ, et al.
Exome sequencing of serous endometrial tumors identifies recurrent somatic
mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet.
(2012) 44:1310–5. doi: 10.1038/ng.2455

19. Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms
and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. (2023) 24:167–85.
doi: 10.1038/s41580-022-00542-2
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1560625/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1560625/full#supplementary-material
https://doi.org/10.1002/cncr.34479
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/0090-8258(83)90111-7
https://doi.org/10.1038/modpathol.3880051
https://doi.org/10.1002/ijc.31961
https://doi.org/10.1200/JCO.2012.48.2596
https://doi.org/10.1097/IGC.0000000000000609
https://doi.org/10.1097/IGC.0000000000000609
https://doi.org/10.1016/j.ygyno.2013.02.023
https://doi.org/10.1016/j.ygyno.2013.02.023
https://doi.org/10.1016/S0140-6736(09)62163-2
https://doi.org/10.1097/IGC.0b013e3182169239
https://doi.org/10.1097/IGC.0b013e3182169239
https://doi.org/10.1200/JCO.2007.10.8431
https://doi.org/10.1186/s12943-021-01434-3
https://doi.org/10.1186/s12943-021-01434-3
https://doi.org/10.1155/2012/736905
https://doi.org/10.1080/15548627.2021.1956105
https://doi.org/10.1038/emm.2014.117
https://doi.org/10.1038/emboj.2013.173
https://doi.org/10.1038/nature12113
https://doi.org/10.1038/ng.2455
https://doi.org/10.1038/s41580-022-00542-2
https://doi.org/10.3389/fonc.2025.1560625
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yuan et al. 10.3389/fonc.2025.1560625
20. Huang X, Chi H, Gou S, Guo X, Li L, Peng G, et al. An aggrephagy-related
lncRNA signature for the prognosis of pancreatic adenocarcinoma. Genes. (2023)
14:124. doi: 10.3390/genes14010124

21. Gibertini S, Ruggieri A, Cheli M, Maggi L. Protein aggregates and aggrephagy in
myopathies. IJMS. (2023) 24:8456. doi: 10.3390/ijms24098456
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