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Background: Breast cancer remains one of the most prevalent malignant tumors

affecting women globally. Genetic factors are significant contributors to its

pathogenesis. Single nucleotide polymorphisms (SNPs), as a common form of

genetic variation, have garnered considerable attention in recent years. However,

most studies have predominantly focused on associations between individual

loci and breast cancer susceptibility, while the complex interactions among

multiple loci across different genes remain insufficiently explored.

Methods: To analyze high-dimensional multi-locus variables, chi-square test

and random forests were employed. Bayesian networks, a sophisticated

statistical model, were used to investigate SNP interactions across multiple

genes and to construct a comprehensive genetic susceptibility model for

female breast cancer.

Results: The study analyzed 980 samples, comprising 490 breast cancer patients

and 490 controls. Key intergenic genotypes were identified involving SNPs in TP53

(rs1042522), MTHFR (rs1801133), MTHFR (rs56221660), MTRR (rs1801394), MTR-

A2756G (rs1805087), MYD88 (rs7744), and rs7851696. These interactions were

associated with a significant increase in breast cancer prevalence, rising from 48.2%

in the original data to 99% under the largest posterior probability combination.

External validation further demonstrated a breast cancer prevalence of 70%,

underscoring the robustness of the model.
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Conclusions: Interactions among the TP53, MYD88, and folate metabolism-

related genes (MTHFR, MTR, and MTRR) may play a critical role in breast

cancer susceptibility.
KEYWORDS

breast cancer, SNPs (single nucleotide polymorphism), Bayesian networks (BNs), folate
(folic acid), MyD88, TP53
1 Introduction

Breast cancer poses a major global health challenge, with 2022

data from the International Agency for Research on Cancer (IARC)

reporting 2.3 million new cases, representing 11.6% of all cancer

diagnoses, and 666 000 deaths, accounting for 6.9% of all cancer-

related fatalities. In 2023, the global incidence reached approximately

47.8 per 100 000 women (1). Advances in medical care and increased

emphasis on screening have inadvertently contributed to the observed

rise in breast cancer incidence. Several well-established risk factors

contribute to breast cancer susceptibility, including early menarche,

late menopause, advanced age, frequent childbirth, oral contraceptive

use, obesity, and alcohol consumption (2). Genetic factors are also

increasingly recognized as critical contributors to breast cancer risk.

Mutations in BRCA1 and BRCA2, as well as other genes such as TP53

and PALB2, have been strongly linked to an elevated risk of

developing the disease (3).

Treatment strategies for breast cancer encompass surgery, radiation

therapy, chemotherapy, endocrine therapy, targeted therapy, and

immunotherapy. However, despite advancements, conventional

surgical treatment and radiotherapeutic approaches are associated

with significant recurrence risks and adverse side effects. Precision

medicine approaches, including targeted therapies and

immunotherapy, have demonstrated superior efficacy, offering more

personalized and precise treatment options. Given the diverse and often

uncontrollable nature of breast cancer risk factors, the World Health

Organization (WHO) emphasizes early diagnosis, routine screening,

and comprehensive health management to improve outcomes (1).

With this in mind, we focused on the genetic underpinnings of

female breast cancer by identifying genetic variants associated with

the disease. These variants may influence cancer development, disease

progression, and therapeutic sensitivity, providing critical insights for

the prevention, diagnosis, and treatment of breast cancer in clinical

settings. Among the various forms of genetic variation, single

nucleotide polymorphisms (SNPs) are the most prevalent. These

single-nucleotide variations in DNA sequences among individuals

play a key role in genetic diversity and disease susceptibility (4).

The study of SNPs in relation to breast cancer has primarily

focused on several well-characterized genetic loci. Folic acid (FA) is

an essential B vitamin that must be obtained from dietary sources.

It plays a critical role in cellular processes, and its deficiency is

implicated in various diseases, including hypertension,
02
cardiovascular disease, neural tube defects, neonatal megaloblastic

anemia, and malignant tumors (5–11). Enzymes involved in folate

metabolism, such as methylenetetrahydrofolate reductase

(MTHFR), methionine synthase (MTR), and methionine synthase

reductase (MTRR), are of particular interest due to their roles in

oncogenesis and polymorphic loci. These enzymes are integral to

DNA synthesis, repair, and methylation processes (12–15),

disruptions of which can precipitate carcinogenesis.

Polymorphisms in MTHFR are hypothesized to influence breast

cancer susceptibility by altering DNA methylation, homocysteine

metabolism, and related pathways. The MTHFR gene, located on

human chromosome 1 (1p36.3), spans 11 exons and 10 introns,

with a cDNA length of 2 220 bp (16). SNPs such as C677T

(rs1801133) and MTRR A66G (rs1801394) have been shown to

impact enzyme activity and exhibit strong correlations with breast

cancer (17–21). For example, based on MassARRAY and regression

analyses, Tao et al. demonstrated an association between the MTRR

(rs1801394) locus and increased breast cancer risk (22).

Additionally, specific genotypes of these loci have differential

effects on breast cancer risk. The TT genotype of rs1801133 in

MTHFR significantly increases the risk of breast cancer, whereas the

CC genotype of rs9651118 is associated with reduced disease risk

and improved survival (23). Knockdown of MTR in tumor cells

disrupts folate metabolism, leading to impaired purine synthesis,

nucleotide depletion, and reduced tumor growth in both cell culture

and xenograft models (24). Furthermore, carriers of the MTRR

(A2756G) mutation exhibit an elevated risk of breast cancer (24).

Beyond folate metabolism, other genes, such as myeloid

differentiation factor 88 (MYD88) and TP53, are implicated in breast

cancer pathogenesis. MYD88, a key promoter of inflammation, fosters

an inflammatory microenvironment conducive to carcinogenesis (25).

The TP53 gene, a well-known risk factor for breast cancer, influences

susceptibility through SNPs in intronic and promoter regions, such as

rs1625895 and rs17878362, which alter gene cleavage and

transcriptional regulation, substantially elevating cancer risk (26, 27).

Traditional statistical approaches have been the primary

methods used to explore the relationship between SNPs and

breast cancer. These methods typically assess the significance of

individual loci based on P-values or evaluate interaction effects

between loci to elucidate their combined influence on disease

susceptibility. However, such approaches may only partially

capture the complex interplay of genetic factors contributing to
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breast cancer risk in women, with few studies exploring the

concerted effects of multiple genes in breast cancer. To address

this limitation, advanced statistical models, such as Bayesian

networks, offer a robust framework for uncovering complex

relationships among polymorphic loci across multiple genes.

Bayesian networks, a cornerstone of modern interpretable

artificial intelligence, represent conditional relationships through

an acyclic graphical structure and a set of probability tables that

detail variable dependencies. These models have been widely

recognized for their utility in simulating biological systems (28)

and have been applied to signal data analysis (29, 30), chromatin

construction, and interaction modeling (31). The primary

advantage of Bayesian networks over other probabilistic modeling

approaches lies in their flexibility: they do not require predefined

input and output variables and can be constructed even with limited

evidence of associations among the variables of interest (32).

Additionally, their graphical representation enables direct

interpretation of variable relationships, offering conditional (33).

In summary, this study sequenced 27 single nucleotide loci to

investigate polymorphisms associated with breast cancer. Initial

analyses, including chi-square testing and random forest (RF)

modeling, were conducted to identify relevant loci, guided by existing

literature. Modeling analysis loci included rs1042522, rs17884306,

rs1801133, rs1801394, rs1805087, rs56221660, rs7744, rs7851696, and

rs9651118. Subsequently, the study examined the associations between

these loci and breast cancer susceptibility in women, providing new

insights into their potential roles in disease development.
2 Materials and methods

2.1 Materials

This study utilized data from 490 confirmed breast cancer cases,

matched with 490 control samples, aged between 20 and 75 years.

All participants were long-term residents of Yunnan Province,

China, with ancestry spanning at least three generations in the

region. Blood samples (1 mL of fasting whole blood) were collected

using EDTA anticoagulant tubes. Genomic DNA was extracted

using a Promega Whole Blood DNA Extraction Kit. DNA

concentration and quality were assessed using a NanoDrop 2000c

spectrophotometer, ensuring a minimum concentration of 40 ng/

µL. SNPs at loci of interest, including those in MTHFR and other

relevant genes, were detected using high-resolution time-of-flight

mass spectrometry (TOFMS) biochip systems. This study analyzed

the relationship between gene polymorphisms at relevant loci and

breast cancer, with additional emphasis on polymorphic loci in

immune-related genes. Informed consent was obtained from all

participants prior to sample collection and data analysis.
2.2 Methods

Data preprocessing, organization, and analysis were conducted

using R Studio. The Hardy-Weinberg equilibrium was determined
Frontiers in Oncology 03
using the chi-square test. Preliminary exploration of polymorphic

sites associated with relevant enzymes was conducted using either a

univariate chi-square test or Fisher’s exact test, with a P-value of less

than 0.05 considered statistically significant. Polymorphic loci with

feature importance scores exceeding 0.05, as determined by the RF

algorithm, were extracted. In addition, the study also integrated the

breast cancer susceptibility gene loci that have been reported in the

literature to evaluate their high-dimensional interactions and their

contribution to disease risk. In this paper, a Bayesian network model

is adopted to analyze the complex interaction relationship among

polymorphisms of different gene loci. The model is constructed

through the Bayesian Network Toolbox of the MATLAB platform

(FullBNT-1.0.7, RRID: SCR_001622). The adopted Bayesian network

modeling method has the following advantages: Firstly, the

probabilistic graphical model can visually represent the conditional

dependency relationship among various gene loci and quantify its

intensity of effect; Secondly, compared with the data encoding process

required by traditional statistical methods, this method can retain the

original data information more completely. In addition, its modular

architecture inherently supports incremental learning and data

expansion. In view of the limited sample size of the current

research, this paper improves the structure learning algorithm of

Bayesian networks. By proposing a network structure construction

method based on whether Cramer’s V coefficient belongs to strong

correlation and combining expert experience and the K2 algorithm

for structure learning, as shown in Figure 1. It significantly enhanced

the reliability of the model and the credibility of the results under the

condition of small samples. Cramer’s V coefficient is denoted as j.
The formula is shown in Equation 1.

fc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=n

min (k − 1, r − 1)

s
(1)

Here, the Pearson chi-square value,:sample size,:number of

rows in the cross table,:number of columns in the cross label.

In a Bayesian network structure, each node corresponds to a

random variable. Different nodes represent different states of gene

loci in breast cancer patients. Each node is associated with a

conditional probability distribution, quantitatively describing the

probability of occurrence at that node under the parent node.

Directed edges represent causal or dependent relationships, while

edges pointing from a parent node to a child node represent direct

dependencies. After constructing the network structure through

this method, the Bayesian estimation method is adopted for

network parameter learning, and the join tree reasoning method

is used for posterior inference. When training the data, the training

set and the test set are mainly divided in a 7:3 ratio.
3 Results

3.1 Chi-square test results

The 27 genetic polymorphic loci examined in this study were

assessed for Hardy-Weinberg equilibrium, which assumes constant
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allele and genotype frequencies in the absence of migration,

mutation, or selection. All loci were found to conform to the

Hardy-Weinberg equilibrium, confirming their suitability for

subsequent analyses.

Chi-square tests or Fisher’s exact tests were used to evaluate the

distribution of polymorphic loci between breast cancer cases and

controls. The P-values of these analyses are shown in Table 1.

Statistically significant differences were observed between the breast

cancer and control groups for rs1801133 (P = 0.005) and

rs56221660 (P = 0.049), suggesting a potential association

between these SNPs and breast cancer development in women.
3.2 RF results

To identify additional SNPs with potential relevance, an RF

machine learning-based approach was employed. Unlike traditional

one-way statistical analyses, the RF model excels in identifying

critical features through iterative, data-driven computations. Here,

the feature importance of SNPs was calculated by training the RF

model which aggregates the importance of all features associated

with each SNP. The formula used to compute the cumulative

importance of features for each SNP is provided below:

Ii =o
j
xij

where i denotes the index of the SNP, x represents the feature

importance score, and j refers to the features associated with the ith

SNP. Thus, j corresponds to the jth feature derived from the

ith SNP.
Frontiers in Oncology 04
Mean decrease impurity (MDI) based on the machine learning

model RF is used for importance analysis. Specifically, the

importance of features is obtained by calculating the impact of

each feature on the observed impurity of each node of the

classification tree. Larger values indicate that the feature is more

significant. Graph A in Figure 2 shows the feature importance

scores for all 81 features generated from the 27 single nucleotide

sites based on the RF model. The importance of the features

calculated based on the RF model was calculated by summing the

importance of the features generated for each SNP. (Figure 2B)

illustrates the importance ranking of SNPs based on the RF model.

The importance scores ranged from the most important to the least

important in the prediction of female breast cancer prevalence. The

results showed that rs7744 ranked first in the RF model (Figure 2B).

And the A genotype carried on the rs7744 locus had a significantly

increased risk of breast cancer compared with patients carrying the

G or GA genotype (Figure 2A). Similarly, the risk level of the

remaining gene loci can be clearly seen. Here, the main focus is to

extract the features whose sum of feature importance is greater than

0.05 for subsequent analysis. The extracted gene loci are as follows:

rs7744, rs1042522, rs1801133, rs1801394, rs7851696, rs1805087,

rs17884306, rs9651118.
3.3 Bayesian network modeling results

3.3.1 Bayesian network structure learning
To model the genetic associations underlying female breast cancer

prevalence, Bayesian network structure learning was conducted

using SNPs identified through chi-square tests and RF analyses.
FIGURE 1

Screen the Bayesian network structure based on the parent node.
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TABLE 1 Univariate analysis of breast cancer loci.

Genetic locus N (%)
Breast cancer

P-value Genetic locus N (%)
Breast cancer

P-value
Yes No Yes No

rs1042522 0.880 rs1994798 0.375

C 293 (31.8%) 147 (32.1%) 146 (31.6%) A 580 (63%) 296 (64.6%) 284 (61.5%)

CG 439 (47.8%) 215 (46.9%) 224 (48.5%) G 40 (4.4%) 22 (4.8%) 18 (3.9%)

G 188 (20.4%) 96 (21.0%) 92 (19.9%) GA 300 (32.6%) 140 (30.6%) 160 (34.6%)

rs11559040 0.873 rs2066462 0.550

A 11 (1.1%) 6 (1.3%) 5 (1.1%) A 6 (0.6%) 4 (0.9%) 2 (0.4%)

G 725 (78.8%) 363 (79.3%) 362 (78.3%) G 776 (84.4%) 390 (85.2%) 386 (83.5%)

GA 184 (21%) 89 (19.4%) 95 (20.6%) GA 138 (15%) 64 (14.0%) 74 (16.0%)

rs1537514 0.474 rs2066470 0.369

C 6 (0.6%) 4 (0.9%) 2 (0.4%) A 6 (0.6%) 4 (0.9%) 2 (0.4%)

CG 141 (15.5%) 65 (14.2%) 76 (16.4%) AG 146 (15.9%) 65 (14.2%) 81 (17.5%)

G 773 (84.1%) 389 (84.9%) 384 (83.1%) G 768 (83.5%) 389 (84.9%) 379 (82.0%)

rs1537516 0.474 rs2184227 0.452

A 6 (0.6%) 4 (0.9%) 2 (0.4%) C 772 (84%) 388 (84.7%) 384 (83.1%)

G 773 (84.1%) 389 (84.9%) 384 (83.1%) CT 142 (15.4%) 66 (14.4%) 76 (16.4%)

GA 141 (15.3%) 65 (14.2%) 76 (16.4%) T 6 (0.6%) 4 (0.8%) 2 (0.4%)

rs17884306 0.309 rs2274976 0.492

C 771 (83.8%) 387 (84.5%) 384 (83.1%) C 774 (84.2%) 389 (84.9%) 385 (83.3%)

CT 143 (15.5%) 70 (15.3%) 73 (15.8%) CT 140 (15.2%) 65 (14.2%) 75 (16.2%)

T 6 (0.6%) 1 (0.2%) 5 (1.1%) T 6 (0.6%) 4 (0.9%) 2 (0.4%)

rs1800629 0.900 rs3737964 0.842

A 6 (0.6%) 3 (0.7%) 3 (0.6%) C 724 (78.7%) 363 (79.3%) 361 (78.1%)

G 817 (88.8%) 409 (89.3%) 408 (88.3%) T 11 (1.2%) 6 (1.3%) 5 (1.1%)

GA 97 (10.6%) 46 (10.0%) 51 (11.0%) TC 185 (20.1%) 89 (19.4%) 96 (20.8%)

rs1801131 0.760 rs3737965 0.321

G 29 (3.3%) 14 (3.1%) 15 (3.2%) A 6 (0.6%) 4 (0.9%) 2 (0.4%)

GT 283 (30.7%) 136 (29.7%) 147 (31.8%) G 768 (83.5%) 389 (84.9%) 379 (82.0%)

T 608 (66.0%) 308 (67.2%) 300 (64.9%) GA 146 (15.9%) 65 (14.2%) 81 (17.5%)

rs1801133 0.005 rs3737966 0.763

A 42 (4.6%) 18 (3.9%) 24 (5.2%) C 40 (4.4%) 21 (4.6%) 19 (4.1%)

AG 701 (76.2%) 370 (80.8%) 331 (71.7%) CT 291 (31.6%) 140 (30.6%) 151 (32.7%)

G 177 (19.2%) 70 (15.3%) 107 (23.2%) T 589 (64%) 297 (64.8%) 292 (63.2%)

rs1801394 0.327 rs3737967 0.335

A 536 (58.3%) 278 (60.7%) 258 (55.8%) A 7 (0.7%) 5 (1.1%) 2 (0.4%)

AG 327 (35.5%) 153 (33.4%) 174 (37.7%) AG 140 (15.3%) 64 (14.0%) 76 (16.4%)

G 57 (6.2%) 27 (5.9%) 30 (6.5%) G 773 (84%) 389 (84.9%) 384 (83.1%)

(Continued)
F
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The Bayesian network structure was constructed using the Strong

correlation method based on Cramer’s V coefficient (Figure 3), along

with expert domain knowledge, resulting in a structure comprising 10

nodes and 10 directed edges, representing the interrelationships

among breast cancer SNP loci, with different colors representing

different genes (Figure 4). The Bayesian network revealed direct

correlations between several loci, including rs1042522, rs1801133,

rs1801394, rs1805087, rs56221660, rs7744, and rs7851696, and

breast cancer susceptibility. Additionally, the network identified

indirect associations involving rs17884306 and rs9651118,

highlighting their potential involvement in breast cancer

pathogenesis. This network provides a comprehensive visualization

of the genetic architecture underlying breast cancer susceptibility

in women.

3.3.2 Bayesian network parameter learning
To construct an accurate Bayesian network architecture for

female breast cancer, Bayesian estimation was employed to learn the

parameters associated with each network node. The parameter

estimates are summarized in Table 2. For specific genotypic

combinations of loci, the probabilities of breast cancer were

strikingly high. It is important to note that such high-probability
Frontiers in Oncology 06
data represent the highest-risk combinations observed in the

current small sample. For example, when the genotype at loci

rs1042522, rs1801133, rs1801394, rs1805087, rs56221660, rs7744,

and rs7851696 was [CG A A A A A A G], the probability of

developing breast cancer was 99.98%, with a 0.02% chance of

remaining disease-free. Similarly, when the genotype was [CG G

AA A AG], the probability of developing breast cancer was 99.98%.

Different genotype combinations led to varying probabilities of

breast cancer, highlighting the importance of identifying those

combinations with the highest predictive power and conferring

the greatest susceptibility to breast cancer, serving as a foundation

for further analysis.

3.3.3 Posterior probabilistic inference in Bayesian
networks

Posterior probability in Bayesian networks represents the

updated probability of an event after incorporating new evidence.

In this study, posterior probability was used to estimate breast

cancer risk based on specific SNP combinations. The BNT in

MATLAB was employed to perform inference, using the linkage

tree inference engine. The primary evidence variable was set to the

presence or absence of breast cancer. Analysis explored all possible
TABLE 1 Continued

Genetic locus N (%)
Breast cancer

P-value Genetic locus N (%)
Breast cancer

P-value
Yes No Yes No

rs1805087 0.079 rs4846048 0.632

A 736 (80%) 366 (79.9%) 370 (80.1%) A 706 (76.7%) 353 (77.1%) 353 (76.4%)

G 5 (0.5%) 0 (0.0%) 5 (1.1%) AG 201 (21.8%) 97 (21.2%) 104 (22.5%)

GA 179 (19.5%) 92 (20.1%) 87 (18.8%) G 13 (1.5%) 8 (1.8%) 5 (1.1%)

rs4968187 0.916 rs56221660 0.049

C 762 (82.8%) 378 (82.5%) 384 (83.1%) A 753 (81.8%) 387 (84.5%) 366 (79.2%)

T 4 (0.4%) 2 (0.4%) 2 (0.4%) AG 161 (17.6%) 67 (14.6%) 94 (20.4%)

TC 154 (16.8%) 78 (17.0%) 76 (16.4%) G 6 (0.6%) 4 (0.9%) 2 (0.4%)

rs6853 0.823 rs72640221 0.636

A 882 (95.9%) 438 (95.6%) 444 (96.1%) A 7 (0.7%) 4 (0.9%) 3 (0.6%)

AG 37 (4.1%) 19 (4.2%) 18 (3.9%) G 774 (84.2%) 390 (85.2%) 384 (83.1%)

G 1 (1%) 1 (0.2%) 0 (0.0%) GA 139 (15.1%) 64 (14.0%) 75 (16.2%)

rs7744 0.269 rs7851696 0.992

A 378 (41%) 200 (43.7%) 178 (38.5%) G 607 (66.0%) 303 (66.2%) 304 (65.8%)

G 136 (14.8%) 63 (13.8%) 73 (15.8%) GT 279 (30.3%) 138 (30.1%) 141 (30.5%)

GA 406 (44.1%) 195 (42.6%) 211 (45.7%) T 34 (3.7%) 17 (3.7%) 17 (3.7%)

rs9651118 0.535

C 151 (16.4%) 69 (15.1%) 82 (17.8%)

CT 414 (45%) 208 (45.4%) 206 (44.6%)

T 355 (38.6%) 181 (39.5%) 174 (37.7%)
it is indicated that these extreme probabilities reflect characteristics of the sample distribution rather than clinical predictive value.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1560776
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1560776
combinations of genotypes across the SNPs included in the model.

With three potential categories per node and nine loci, there were

39 = 19 683 potential genotype combinations. From these, the

combination with the highest probability of association with breast

cancer was identified (maximum likelihood interpretation). The

optimal combination of genotypes associated with breast cancer

presence was identified as {rs1042522 = C, rs17884306 = C,

rs1801133 = AG, rs1801394 = A, rs1805087 = A, rs56221660 = A,

rs7744 = A, rs7851696 = G, rs9651118 = CT}. Validation of this

optimal combination using test data revealed a marked increase in

the predicted prevalence of breast cancer. The prevalence under the

original data was 48.20%, while the prevalence of the highest-risk

combination observed in this small sample increased to 99.99%

(Table 3). These results demonstrate the enhanced predictive

accuracy achieved by identifying and incorporating high-risk

genotype combinations, underscoring the value of Bayesian

network modeling in elucidating breast cancer susceptibility.

3.3.4 Model performance evaluation
The performance metrics for the Bayesian network model

constructed to predict female breast cancer susceptibility are

presented in Table 4. The accuracy, precision, and recall rates of
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the model for diseased samples were 78.39%, 82.64%, and 72.46%,

respectively, indicating effective recognition of breast cancer cases.

Furthermore, the relatively close values among metrics indicates

well-balanced model performance in data classification, with no

significant bias toward any category, demonstrating its overall

reliability for this dataset.
3.4 External validation of the model

To evaluate the effectiveness of the Bayesian network model,

external validation was conducted using data from 10 case/control

samples from the same hospital. The causal factors of each sample

were input into the model to calculate the probability of breast

cancer occurrence. For illustration, the genotype distribution of one

sample diagnosed with breast cancer is provided: {rs1042522 = C,

rs17884306 = CT, rs1801133 = AG, rs1801394 = AG, rs1805087 =

A, rs56221660 = A, rs7744 = G, rs7851696 = G, rs9651118 = CT}.

These genotypes were set as evidence variables and input into the

Bayesian network model (Figure 5). The test results show that the

model inferred an 80% probability of breast cancer for this patient,

aligning closely with the clinical diagnosis. Similar analyses were
FIGURE 2

Random forest model variable screening.
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performed for the remaining nine samples, and the model

consistently demonstrated a 70% probability of correctly

predicting breast cancer presence or absence. These research

results demonstrate that the relationships among SNPS identified

by Bayesian networks are consistent with the observed results,

supporting the effectiveness of models constructed based on

genotype data in predicting the risk of breast cancer.
4 Discussion

This study identified significant genetic loci associated with

breast cancer development through both traditional statistical

methods and machine learning approaches. Using chi-square

tests, rs1801133 (P = 0.005) and rs56221660 (P = 0.049) were

found to be statistically significant, suggesting their potential

association with breast cancer susceptibility. The RF algorithm

further analyzed 27 genetic loci, identifying eight key loci with

feature importance scores exceeding 0.05, including rs7744,

rs1042522, rs1801133, rs1801394, rs7851696, rs1805087,

rs17884306, and rs9651118, deemed significant contributors to

breast cancer development in women.

A Bayesian network model was subsequently constructed to

investigate the probabilistic relationships between these loci and

breast cancer prevalence. Based on parameter learning, the network
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assessed the probabilities of disease under various genetic

combinations. In the original data, the prevalence and non-

prevalence rates of breast cancer were 51.8% and 48.2%,

respectively. This distribution failed to provide sufficient

discriminative information. However, through Bayesian network

posterior inference, we identified a maximum a posteriori (MAP)

genotype combination: {rs1042522 = C, rs17884306 = C, rs1801133 =

AG, rs1801394 = A, rs1805087 = A, rs56221660 = A, rs7744 = A,

rs7851696 = G, rs9651118 = CT}. When this combination was

incorporated into the model, the predicted prevalence of breast

cancer increased to 99.99%, while the non-prevalence rate

decreased to 0.01%. These results indicate that the risk of breast

cancer increases significantly when the genotypes of key gene loci

undergo specific changes. It should be noted that the results obtained

from this MAP combination are based solely on the tests performed

on the samples in this study. Under this MAP combination, there is

an extremely high impact on the occurrence of breast cancer. This

posterior probability combination is derived from sample-based

search and learning, integrating the maximum impact of each locus

on the development of breast cancer. In the future, if the dataset

changes, this combination can still provide a reference for

understanding the occurrence of breast cancer. This MAP

combination successfully identifies genotype patterns highly

associated with breast cancer, revealing the synergistic effects across

multiple loci. (Table 3). These findings suggest that specific
FIGURE 3

Cramer’s V coefficient heat map.
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combinations of polymorphisms at these loci may have a profound

influence on breast cancer development, highlighting the importance

of multi-locus interactions in disease etiology. The results further

underscore the complex interplay between genetic loci in the

pathogenesis of breast cancer, implicating these specific SNPs as

potential contributors to the underlying mechanisms of the disease.

This study provides a basis for future functional studies to explore the

roles of these loci in breast cancer. Additionally, the identified SNPs

offer potential as molecular markers for early diagnosis and

individualized treatment strategies, paving the way for more precise

clinical interventions.

Model performance was evaluated by dividing the data into

training and testing sets at a 7:3 ratio. The training set was used for

model construction and parameter optimization, while the testing

set was used to evaluate the generalization ability of the model. The

model achieved an accuracy of 78.39%, a precision of 82.64%, and a

recall of 72.46% for diseased samples, indicating its effectiveness in

identifying breast cancer cases. These metrics suggest that the

Bayesian network model is both reliable and generalizable,

providing robust predictive power for breast cancer susceptibility

in unseen data.

This study identified nine loci, including TP53 (rs1042522,

rs17884306), MTHFR (rs1801133, rs56221660, 9651118), MTRR

(rs1801394), MTR-A2756G (rs1805087), MYD88 (rs7744), and

rs7851696, that may contribute to breast cancer susceptibility.

Among these, mutations in TP53 are well-established risk factors

for breast cancer development. As a critical regulator of nucleotide

homeostasis, TP53 plays an important role in maintaining the

nucleotide pool required for DNA synthesis and repair, thereby

preserving genomic stability (34). The folate metabolism-related
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enzymes MTHFR and MTR are central to folate metabolism, and

their enzymatic activities affect DNA methylation and synthesis.

Impaired function of these enzymes can result in poor folate

metabolism, reduced genomic stability (35), and increased

susceptibility to cancer. Mutations in these loci are therefore

closely linked to breast cancer progression. MYD88, a pivotal

mediator in Toll-like receptor (TLRs)-initiated inflammatory

cascades, is preferentially recruited to the Toll/interleukin-1

receptor (TIR) domain, which is conserved among specific TLR

subtypes (36). Upon recruitment, MYD88 orchestrates the

activation of the upstream nuclear factor-kB (NF-kB) kinase

(inhibitor of kappa B kinase, IKK) complex (37), thereby serving

as a central regulatory node in the activation of the NF-kB signaling

pathway.The rs7744 polymorphism, previously identified within

the 3’-untranslated region (3’-UTR) of the MYD88 gene, shows

significant association not only with treatment outcomes in

rheumatoid arthritis (RA) (38) patients receiving tumor necrosis

factor (TNF) inhibitors but also with disease progression in

ulcerative colitis (UC) (39). Moreover, as a critical effector in

inflammatory signaling cascades, aberrant expression or

mutations of MYD88 correlate with poor prognosis in diffuse

large B-cell lymphoma (DLBCL) (40).

Furthermore, MTRR, a key enzyme in cysteine metabolism,

influences the production of hydrogen sulfide (H2S), a critical

mediator in the NF-kB inflammatory pathway, through its effects

on DNA methylation (13). This suggests a potential synergistic

relationship between MYD88 and MTRR in activating the NF-kB
inflammatory pathway, thereby contributing to cancer progression.

Bayesian network modeling is particularly effective when applied

to dichotomous variables, as dichotomy minimizes the number of
FIGURE 4

Bayesian network model of breast cancer susceptibility loci.
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combinations and chances. In this study, the dichotomous

classification—diseased versus non-diseased—allowed us to uncover

a strong association between the combination of nine polymorphic

loci and breast cancer susceptibility. Analysis suggested that enzymes

involved in folate metabolism may synergize with inflammatory

mediators, such as MYD88, to promote tumorigenesis. This

interaction potentially disrupts folate metabolism, thereby impairing

DNA methylation and synthesis, and simultaneously affects

inflammatory pathways through the homocysteine cycle, driving

tumorigenesis and cancer progression. The heterogeneity of breast
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cancer further complicates its genetic and phenotypic characterization,

with distinct molecular subtypes classified based on the expression of

key biomarkers: estrogen receptor (ERa), progesterone receptor (PR),
human epidermal growth factor receptor-2 (HER-2), and proliferating

cell nuclear antigen (Ki-67). The four widely recognized subtypes

include luminal A, luminal B, human epidermal growth factor

receptor-2 (Her-2) overexpression, and basal-like breast cancer

(BLBC). Each subtype has distinct clinical implications and

influences treatment strategies. For example, luminal A tumors

respond well to endocrine therapy, while chemotherapy is often

preferred for luminal B patients. HER-2-positive cases are likely to
TABLE 2 Parameter learning results of patients with or without breast cancer (partial).

Influence variable
Parameter learning results

(breast cancer or not)

rs1042522 rs1801133 rs1801394 rs1805087 rs56221660 rs7744 rs7851696 No Yea

CG A A A A A G 0.0002 0.9998

C AG A A A A G 0.0001 0.9999

CG AG A A A A G 0.2727 0.7273

CG G A A A A G 0.9998 0.0002

G G A A A A G 0.9998 0.0002

CG A AG A A A G 0.9998 0.0002

C AG AG A A A G 0.2500 0.7500

CG AG AG A A A G 0.6667 0.3333

G AG AG A A A G 0.0001 0.9999

C AG A GA A A G 0.2000 0.8000

G AG A GA A A G 0.9998 0.0002

CG G A GA A A G 0.9998 0.0002

CG AG AG GA A A G 0.2000 0.8000

C AG A A AG A G 0.0001 0.9999

CG AG A A AG A G 0.9999 0.0001

CG AG AG A A G G 0.6666 0.3334

G AG AG A A G G 0.6666 0.3334

CG AG A A A GA G 0.5714 0.4286

G AG A A A GA G 0.4000 0.6000

C AG A A A A GT 0.2500 0.7500

C G AG A A G GT 0.6666 0.3334
it is indicated that these extreme probabilities reflect characteristics of the sample distribution rather than clinical predictive value.
TABLE 3 The highest-risk combination observed in the current small
sample.

Distribution of raw
breast cancer values

Distribution of breast cancer
values under optimal

combination

Disease-free 51.80% Disease-free 0.01%

Disease 48.20% Disease 99.99%
TABLE 4 Evaluation of model performance.

Precision Recall F1-score

Disease-free 75.00% 84.44% 79.44%

Disease 82.64% 72.46% 77.22%

Accuracy 78.39%
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benefit from targeted therapies, whereas BLBC remains challenging

due to its lack of validated therapeutic targets and poorer prognosis.

Given these complexities, future research will focus on evaluating

differences in Bayesian network structures and conditional

probabilities across molecular subtypes of breast cancer. This

approach aims to enhance the precision of treatment selection by

tailoring strategies to the unique genetic and molecular characteristics

of each subtype, ultimately improving patient outcomes.

The samples in this study were derived from Southwest China,

primarily individuals who have resided in Yunnan Province for

three or more generations. This population exhibits certain regional

specificities in genetic background and environmental exposure

profiles. Therefore, when extending the research findings to other

regions, their broader applicability could be validated through

multi-center studies incorporating diverse datasets. Regarding the

sample size, although 490 breast cancer patients and 490 control

subjects were included, the current sample size still has room for

expansion in covering all potential genotype combinations (e.g.,

19,683 combinations formed by 9 loci) when analyzing the complex

interactions among multiple gene loci. This may, to some extent,

affect the precision of statistical tests and the robustness of the

results. For external validation, the model was tested using 10

independent samples. Its generalizability awaits further support

from larger-scale independent datasets to more comprehensively

evaluate its applicability across different scenarios. Additionally,

attention should be paid to balancing the complexity of genotype

combinations with the existing sample size. The analysis of

interactions among multiple gene loci in this study involved
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complex probabilistic modeling, and the limited sample size may

introduce potential estimation biases when identifying optimal

genotype combinations. Thus, the strong associations observed in

the training data (e.g., the 99.99% disease probability in the optimal

combination) require further confirmation in larger samples to

clarify their actual clinical relevance, which also provides directions

for optimizing model parameters and enhancing result reliability

and reproducibility.

However, it is undeniable that this study proposed an analytical

framework of “predicting the whole from parts,” starting with

investigating the impact of single gene polymorphisms on

breast cancer probability and gradually extending to the

combined effects of two, three, or more gene polymorphisms.

This approach not only intuitively reflects the influence of

individual gene polymorphisms (through probability changes) but

also clearly demonstrates the association patterns between different

gene polymorphisms. The application of the Bayesian network (BN)

model to assist clinicians in prioritizing disease risk assessment

holds practical value, as it can predict breast cancer diagnostic

probabilities based on partial genotyping results of patients. The

persuasiveness of the model will be further strengthened by

continuously incorporating genetic polymorphism data from

more confirmed breast cancer cases. The modular structure of

the BN is inherently suitable for incremental learning and

expansion, eliminating the need to rebuild the model from

scratch when new data or variables are added—only adjustments

to the network structure and parameters are required. This lays a

methodological foundation for including more samples or gene loci
FIGURE 5

Bayesian network model validation.
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in future studies, which is forward-looking in gene-disease

association research.
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