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Background: Breast cancer remains one of the most prevalent malignant tumors
affecting women globally. Genetic factors are significant contributors to its
pathogenesis. Single nucleotide polymorphisms (SNPs), as a common form of
genetic variation, have garnered considerable attention in recent years. However,
most studies have predominantly focused on associations between individual
loci and breast cancer susceptibility, while the complex interactions among
multiple loci across different genes remain insufficiently explored.

Methods: To analyze high-dimensional multi-locus variables, chi-square test
and random forests were employed. Bayesian networks, a sophisticated
statistical model, were used to investigate SNP interactions across multiple
genes and to construct a comprehensive genetic susceptibility model for
female breast cancer.

Results: The study analyzed 980 samples, comprising 490 breast cancer patients
and 490 controls. Key intergenic genotypes were identified involving SNPs in TP53
(rs1042522), MTHFR (rs1801133), MTHFR (rs56221660), MTRR (rs1801394), MTR-
A2756G (rs1805087), MYD88 (rs7744), and rs7851696. These interactions were
associated with a significant increase in breast cancer prevalence, rising from 48.2%
in the original data to 99% under the largest posterior probability combination.
External validation further demonstrated a breast cancer prevalence of 70%,
underscoring the robustness of the model.
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Conclusions: Interactions among the TP53, MYD88, and folate metabolism-
related genes (MTHFR, MTR, and MTRR) may play a critical role in breast
cancer susceptibility.

breast cancer, SNPs (single nucleotide polymorphism), Bayesian networks (BNs), folate
(folic acid), MyD88, TP53

1 Introduction

Breast cancer poses a major global health challenge, with 2022
data from the International Agency for Research on Cancer (IARC)
reporting 2.3 million new cases, representing 11.6% of all cancer
diagnoses, and 666 000 deaths, accounting for 6.9% of all cancer-
related fatalities. In 2023, the global incidence reached approximately
47.8 per 100 000 women (1). Advances in medical care and increased
emphasis on screening have inadvertently contributed to the observed
rise in breast cancer incidence. Several well-established risk factors
contribute to breast cancer susceptibility, including early menarche,
late menopause, advanced age, frequent childbirth, oral contraceptive
use, obesity, and alcohol consumption (2). Genetic factors are also
increasingly recognized as critical contributors to breast cancer risk.
Mutations in BRCA1 and BRCA2, as well as other genes such as TP53
and PALB2, have been strongly linked to an elevated risk of
developing the disease (3).

Treatment strategies for breast cancer encompass surgery, radiation
therapy, chemotherapy, endocrine therapy, targeted therapy, and
immunotherapy. However, despite advancements, conventional
surgical treatment and radiotherapeutic approaches are associated
with significant recurrence risks and adverse side effects. Precision
medicine approaches, including targeted therapies and
immunotherapy, have demonstrated superior efficacy, offering more
personalized and precise treatment options. Given the diverse and often
uncontrollable nature of breast cancer risk factors, the World Health
Organization (WHO) emphasizes early diagnosis, routine screening,
and comprehensive health management to improve outcomes (1).

With this in mind, we focused on the genetic underpinnings of
female breast cancer by identifying genetic variants associated with
the disease. These variants may influence cancer development, disease
progression, and therapeutic sensitivity, providing critical insights for
the prevention, diagnosis, and treatment of breast cancer in clinical
settings. Among the various forms of genetic variation, single
nucleotide polymorphisms (SNPs) are the most prevalent. These
single-nucleotide variations in DNA sequences among individuals
play a key role in genetic diversity and disease susceptibility (4).

The study of SNPs in relation to breast cancer has primarily
focused on several well-characterized genetic loci. Folic acid (FA) is
an essential B vitamin that must be obtained from dietary sources.
It plays a critical role in cellular processes, and its deficiency is
implicated in various diseases, including hypertension,
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cardiovascular disease, neural tube defects, neonatal megaloblastic
anemia, and malignant tumors (5-11). Enzymes involved in folate
metabolism, such as methylenetetrahydrofolate reductase
(MTHFR), methionine synthase (MTR), and methionine synthase
reductase (MTRR), are of particular interest due to their roles in
oncogenesis and polymorphic loci. These enzymes are integral to
DNA synthesis, repair, and methylation processes (12-15),
disruptions of which can precipitate carcinogenesis.
Polymorphisms in MTHER are hypothesized to influence breast
cancer susceptibility by altering DNA methylation, homocysteine
metabolism, and related pathways. The MTHEFR gene, located on
human chromosome 1 (1p36.3), spans 11 exons and 10 introns,
with a cDNA length of 2 220 bp (16). SNPs such as C677T
(rs1801133) and MTRR A66G (rs1801394) have been shown to
impact enzyme activity and exhibit strong correlations with breast
cancer (17-21). For example, based on MassARRAY and regression
analyses, Tao et al. demonstrated an association between the MTRR
(rs1801394) locus and increased breast cancer risk (22).
Additionally, specific genotypes of these loci have differential
effects on breast cancer risk. The TT genotype of rs1801133 in
MTHEFR significantly increases the risk of breast cancer, whereas the
CC genotype of rs9651118 is associated with reduced disease risk
and improved survival (23). Knockdown of MTR in tumor cells
disrupts folate metabolism, leading to impaired purine synthesis,
nucleotide depletion, and reduced tumor growth in both cell culture
and xenograft models (24). Furthermore, carriers of the MTRR
(A2756G) mutation exhibit an elevated risk of breast cancer (24).
Beyond folate metabolism, other genes, such as myeloid
differentiation factor 88 (MYD88) and TP53, are implicated in breast
cancer pathogenesis. MYD88, a key promoter of inflammation, fosters
an inflammatory microenvironment conducive to carcinogenesis (25).
The TP53 gene, a well-known risk factor for breast cancer, influences
susceptibility through SNPs in intronic and promoter regions, such as
rs1625895 and rs17878362, which alter gene cleavage and
transcriptional regulation, substantially elevating cancer risk (26, 27).
Traditional statistical approaches have been the primary
methods used to explore the relationship between SNPs and
breast cancer. These methods typically assess the significance of
individual loci based on P-values or evaluate interaction effects
between loci to elucidate their combined influence on disease
susceptibility. However, such approaches may only partially
capture the complex interplay of genetic factors contributing to
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breast cancer risk in women, with few studies exploring the
concerted effects of multiple genes in breast cancer. To address
this limitation, advanced statistical models, such as Bayesian
networks, offer a robust framework for uncovering complex
relationships among polymorphic loci across multiple genes.
Bayesian networks, a cornerstone of modern interpretable
artificial intelligence, represent conditional relationships through
an acyclic graphical structure and a set of probability tables that
detail variable dependencies. These models have been widely
recognized for their utility in simulating biological systems (28)
and have been applied to signal data analysis (29, 30), chromatin
construction, and interaction modeling (31). The primary
advantage of Bayesian networks over other probabilistic modeling
approaches lies in their flexibility: they do not require predefined
input and output variables and can be constructed even with limited
evidence of associations among the variables of interest (32).
Additionally, their graphical representation enables direct
interpretation of variable relationships, offering conditional (33).

In summary, this study sequenced 27 single nucleotide loci to
investigate polymorphisms associated with breast cancer. Initial
analyses, including chi-square testing and random forest (RF)
modeling, were conducted to identify relevant loci, guided by existing
literature. Modeling analysis loci included rs1042522, rs17884306,
rs1801133, rs1801394, rs1805087, rs56221660, rs7744, rs7851696, and
1rs9651118. Subsequently, the study examined the associations between
these loci and breast cancer susceptibility in women, providing new
insights into their potential roles in disease development.

2 Materials and methods

2.1 Materials

This study utilized data from 490 confirmed breast cancer cases,
matched with 490 control samples, aged between 20 and 75 years.
All participants were long-term residents of Yunnan Province,
China, with ancestry spanning at least three generations in the
region. Blood samples (1 mL of fasting whole blood) were collected
using EDTA anticoagulant tubes. Genomic DNA was extracted
using a Promega Whole Blood DNA Extraction Kit. DNA
concentration and quality were assessed using a NanoDrop 2000c
spectrophotometer, ensuring a minimum concentration of 40 ng/
uL. SNPs at loci of interest, including those in MTHFR and other
relevant genes, were detected using high-resolution time-of-flight
mass spectrometry (TOFMS) biochip systems. This study analyzed
the relationship between gene polymorphisms at relevant loci and
breast cancer, with additional emphasis on polymorphic loci in
immune-related genes. Informed consent was obtained from all
participants prior to sample collection and data analysis.

2.2 Methods

Data preprocessing, organization, and analysis were conducted
using R Studio. The Hardy-Weinberg equilibrium was determined
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using the chi-square test. Preliminary exploration of polymorphic
sites associated with relevant enzymes was conducted using either a
univariate chi-square test or Fisher’s exact test, with a P-value of less
than 0.05 considered statistically significant. Polymorphic loci with
feature importance scores exceeding 0.05, as determined by the RF
algorithm, were extracted. In addition, the study also integrated the
breast cancer susceptibility gene loci that have been reported in the
literature to evaluate their high-dimensional interactions and their
contribution to disease risk. In this paper, a Bayesian network model
is adopted to analyze the complex interaction relationship among
polymorphisms of different gene loci. The model is constructed
through the Bayesian Network Toolbox of the MATLAB platform
(FullBNT-1.0.7, RRID: SCR_001622). The adopted Bayesian network
modeling method has the following advantages: Firstly, the
probabilistic graphical model can visually represent the conditional
dependency relationship among various gene loci and quantify its
intensity of effect; Secondly, compared with the data encoding process
required by traditional statistical methods, this method can retain the
original data information more completely. In addition, its modular
architecture inherently supports incremental learning and data
expansion. In view of the limited sample size of the current
research, this paper improves the structure learning algorithm of
Bayesian networks. By proposing a network structure construction
method based on whether Cramer’s V coefficient belongs to strong
correlation and combining expert experience and the K2 algorithm
for structure learning, as shown in Figure 1. It significantly enhanced
the reliability of the model and the credibility of the results under the
condition of small samples. Cramer’s V coefficient is denoted as ¢.
The formula is shown in Equation 1.

xX'/n

min(k-1,r-1) M

0. =

Here, the Pearson chi-square value,:sample size,:number of
rows in the cross table,:number of columns in the cross label.

In a Bayesian network structure, each node corresponds to a
random variable. Different nodes represent different states of gene
loci in breast cancer patients. Each node is associated with a
conditional probability distribution, quantitatively describing the
probability of occurrence at that node under the parent node.
Directed edges represent causal or dependent relationships, while
edges pointing from a parent node to a child node represent direct
dependencies. After constructing the network structure through
this method, the Bayesian estimation method is adopted for
network parameter learning, and the join tree reasoning method
is used for posterior inference. When training the data, the training
set and the test set are mainly divided in a 7:3 ratio.

3 Results
3.1 Chi-square test results

The 27 genetic polymorphic loci examined in this study were
assessed for Hardy-Weinberg equilibrium, which assumes constant
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FIGURE 1
Screen the Bayesian network structure based on the parent node

allele and genotype frequencies in the absence of migration,
mutation, or selection. All loci were found to conform to the
Hardy-Weinberg equilibrium, confirming their suitability for
subsequent analyses.

Chi-square tests or Fisher’s exact tests were used to evaluate the
distribution of polymorphic loci between breast cancer cases and
controls. The P-values of these analyses are shown in Table 1.
Statistically significant differences were observed between the breast
cancer and control groups for rs1801133 (P = 0.005) and
rs56221660 (P = 0.049), suggesting a potential association
between these SNPs and breast cancer development in women.

3.2 RF results

To identify additional SNPs with potential relevance, an RF
machine learning-based approach was employed. Unlike traditional
one-way statistical analyses, the RF model excels in identifying
critical features through iterative, data-driven computations. Here,
the feature importance of SNPs was calculated by training the RF
model which aggregates the importance of all features associated
with each SNP. The formula used to compute the cumulative
importance of features for each SNP is provided below:

Ii = Ex,j
J

where i denotes the index of the SNP, x represents the feature
importance score, and j refers to the features associated with the ith
SNP. Thus, j corresponds to the jth feature derived from the
ith SNP.
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Mean decrease impurity (MDI) based on the machine learning
model RF is used for importance analysis. Specifically, the
importance of features is obtained by calculating the impact of
each feature on the observed impurity of each node of the
classification tree. Larger values indicate that the feature is more
significant. Graph A in Figure 2 shows the feature importance
scores for all 81 features generated from the 27 single nucleotide
sites based on the RF model. The importance of the features
calculated based on the RF model was calculated by summing the
importance of the features generated for each SNP. (Figure 2B)
illustrates the importance ranking of SNPs based on the RF model.
The importance scores ranged from the most important to the least
important in the prediction of female breast cancer prevalence. The
results showed that rs7744 ranked first in the RF model (Figure 2B).
And the A genotype carried on the rs7744 locus had a significantly
increased risk of breast cancer compared with patients carrying the
G or GA genotype (Figure 2A). Similarly, the risk level of the
remaining gene loci can be clearly seen. Here, the main focus is to
extract the features whose sum of feature importance is greater than
0.05 for subsequent analysis. The extracted gene loci are as follows:
rs7744, rs1042522, rs1801133, rs1801394, rs7851696, rs1805087,
rs17884306, rs9651118.

3.3 Bayesian network modeling results
3.3.1 Bayesian network structure learning
To model the genetic associations underlying female breast cancer

prevalence, Bayesian network structure learning was conducted
using SNPs identified through chi-square tests and RF analyses.
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TABLE 1 Univariate analysis of breast cancer loci.

Breast cancer Breast cancer
Genetic locus N (%) P-value Genetic locus P-value
Yes [\[e) Yes [\ fo)
151042522 0.880 151994798 0.375
C 293 (31.8%) 147 (32.1%) 146 (31.6%) A 580 (63%) | 296 (64.6%) | 284 (61.5%)
CcG 439 (47.8%) 215 (46.9%) = 224 (48.5%) G 40 (4.4%) 22 (4.8%) 18 (3.9%)
G 188 (20.4%) = 96 (21.0%) 92 (19.9%) GA 300 (32.6%) = 140 (30.6%) | 160 (34.6%)
1511559040 0.873 rs2066462 0.550
A 11 (1.1%) 6 (1.3%) 5 (1.1%) A 6 (0.6%) 4(0.9%) 2 (0.4%)
G 725 (78.8%) = 363 (79.3%) = 362 (78.3%) G 776 (84.4%) = 390 (85.2%) | 386 (83.5%)
GA 184 (21%) 89 (19.4%) 95 (20.6%) GA 138 (15%) 64 (14.0%) = 74 (16.0%)
151537514 0.474 152066470 0.369
C 6 (0.6%) 4 (0.9%) 2 (0.4%) A 6 (0.6%) 4(0.9%) 2 (0.4%)
CcG 141 (15.5%) = 65 (14.2%) 76 (16.4%) AG 146 (15.9%) = 65 (14.2%) | 81 (17.5%)

G 773 (84.1%) = 389 (84.9%) 384 (83.1%) G 768 (83.5%) = 389 (84.9%) | 379 (82.0%)
151537516 0.474 152184227 0452
A 6 (0.6%) 4 (0.9%) 2 (0.4%) C 772 (84%) 388 (84.7%) | 384 (83.1%)

G 773 (84.1%) 389 (84.9%) 384 (83.1%) CT 142 (154%) = 66 (14.4%) | 76 (16.4%)

GA 141 (15.3%) | 65 (14.2%) 76 (16.4%) T 6 (0.6%) 4 (0.8%) 2 (0.4%)
1517884306 0.309 152274976 0.492
C 771 (83.8%) = 387 (84.5%) 384 (83.1%) C 774 (84.2%) = 389 (84.9%) | 385 (83.3%)
cT 143 (15.5%) 70 (153%) 73 (15.8%) cT 140 (152%) 65 (14.2%) 75 (16.2%)
T 6 (0.6%) 1(0.2%) 5 (1.1%) T 6 (0.6%) 4(0.9%) 2 (0.4%)
151800629 0.900 153737964 0.842
A 6 (0.6%) 3(0.7%) 3 (0.6%) C 724 (78.7%) 363 (79.3%) = 361 (78.1%)
G 817 (88.8%) = 409 (89.3%) 408 (88.3%) T 11 (1.2%) 6 (1.3%) 5 (1.1%)
GA 97 (10.6%) 46 (10.0%) 51 (11.0%) TC 185 (20.1%) = 89 (19.4%) | 96 (20.8%)
rs1801131 0.760 1$3737965 0.321
G 29 (3.3%) 14 (3.1%) 15 (3.2%) A 6 (0.6%) 4(0.9%) 2 (0.4%)
GT 283 (30.7%) 136 (29.7%) = 147 (31.8%) G 768 (83.5%) = 389 (84.9%) | 379 (82.0%)
T 608 (66.0%) 308 (67.2%) 300 (64.9%) GA 146 (15.9%) = 65 (14.2%) | 81 (17.5%)
rs1801133 0.005 13737966 0.763
A 42 (4.6%) 18 (3.9%) 24 (5.2%) C 40 (4.4%) 21 (4.6%) 19 (4.1%)
AG 701 (76.2%) 370 (80.8%) = 331 (71.7%) CT 291 (31.6%) | 140 (30.6%) | 151 (32.7%)
G 177 (19.2%) | 70 (15.3%) 107 (23.2%) T 589 (64%) | 297 (64.8%) | 292 (63.2%)
151801394 0.327 153737967 0.335
A 536 (58.3%) 278 (60.7%) = 258 (55.8%) A 7 (0.7%) 5 (1.1%) 2 (0.4%)
AG 327 (35.5%) 153 (334%) 174 (37.7%) AG 140 (15.3%) = 64 (14.0%) | 76 (16.4%)
G 57 (6.2%) 27 (5.9%) 30 (6.5%) G 773 (84%) | 389 (84.9%) | 384 (83.1%)
(Continued)
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TABLE 1 Continued

Breast cancer

10.3389/fonc.2025.1560776

Breast cancer

Genetic locus N (%) P-value  Genetic locus P-value
Yes No Yes \[e}
1s1805087 0.079 rs4846048 0.632
A 736 (80%) 366 (79.9%) 370 (80.1%) A 706 (76.7%) | 353 (77.1%) = 353 (76.4%)
G 5(05%)  0(0.0%) 5 (11%) AG 201 (218%) 97 (21.2%) | 104 (22.5%)
GA 179 (19.5%) 92 (201%) 87 (18.8%) G 13 (15%) | 8 (1.8%) 5 (1.1%)
154968187 0916 1s56221660 0.049
c 762 (82.8%) 378 (82.5%) = 384 (83.1%) A 753 (818%) = 387 (84.5%) = 366 (79.2%)
T 4(04%)  2(04%)  2(04%) AG 161 (17.6%) 67 (14.6%) | 94 (204%)
TC 154 (16.8%) 78 (17.0%) 76 (16.4%) G 6 (0.6%) 4(0.9%) 2 (0.4%)
1s6853 0.823 172640221 0.636
A 882 (95.9%) 438 (95.6%) 444 (96.1%) A 7(0.7%) 4(09%) 3 (0.6%)
AG 37 (41%) 19 (42%) 18 (3.9%) G 774 (84.2%) | 390 (85.2%) 384 (83.1%)
G 1.(1%) 1(02%)  0(0.0%) GA 139 (15.1%) 64 (140%) | 75 (162%)
157744 0.269 17851696 0.992
A 378 (41%) 200 (43.7%) 178 (38.5%) G 607 (66.0%) = 303 (66.2%) = 304 (65.8%)
G 136 (14.8%) 63 (138%) 73 (158%) GT 279 (303%) | 138 (30.1%) | 141 (30.5%)
GA 406 (44.1%) 195 (42.6%) = 211 (45.7%) T 34(G7%)  17(G7%) | 17 (37%)
19651118 0.535
c 151 (164%) 69 (151%) 82 (17.8%)
cr 414 (45%) 208 (45.4%) = 206 (44.6%)
T 355 (38.6%) 181 (39.5%) 174 (37.7%)

it is indicated that these extreme probabilities reflect characteristics of the sample distribution rather than clinical predictive value.

The Bayesian network structure was constructed using the Strong
correlation method based on Cramer’s V coefficient (Figure 3), along
with expert domain knowledge, resulting in a structure comprising 10
nodes and 10 directed edges, representing the interrelationships
among breast cancer SNP loci, with different colors representing
different genes (Figure 4). The Bayesian network revealed direct
correlations between several loci, including rs1042522, rs1801133,
rs1801394, rs1805087, rs56221660, rs7744, and rs7851696, and
breast cancer susceptibility. Additionally, the network identified
indirect associations involving rs17884306 and rs9651118,
highlighting their potential involvement in breast cancer
pathogenesis. This network provides a comprehensive visualization
of the genetic architecture underlying breast cancer susceptibility

in women.

3.3.2 Bayesian network parameter learning

To construct an accurate Bayesian network architecture for
female breast cancer, Bayesian estimation was employed to learn the
parameters associated with each network node. The parameter
estimates are summarized in Table 2. For specific genotypic
combinations of loci, the probabilities of breast cancer were
strikingly high. It is important to note that such high-probability
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data represent the highest-risk combinations observed in the
current small sample. For example, when the genotype at loci
rs1042522, rs1801133, rs1801394, rs1805087, rs56221660, rs7744,
and rs7851696 was [CG A A A A A A GJ, the probability of
developing breast cancer was 99.98%, with a 0.02% chance of
remaining disease-free. Similarly, when the genotype was [CG G
A A A A GJ, the probability of developing breast cancer was 99.98%.
Different genotype combinations led to varying probabilities of
breast cancer, highlighting the importance of identifying those
combinations with the highest predictive power and conferring
the greatest susceptibility to breast cancer, serving as a foundation
for further analysis.

3.3.3 Posterior probabilistic inference in Bayesian
networks

Posterior probability in Bayesian networks represents the
updated probability of an event after incorporating new evidence.
In this study, posterior probability was used to estimate breast
cancer risk based on specific SNP combinations. The BNT in
MATLAB was employed to perform inference, using the linkage
tree inference engine. The primary evidence variable was set to the
presence or absence of breast cancer. Analysis explored all possible
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Random forest model variable screening.

combinations of genotypes across the SNPs included in the model.
With three potential categories per node and nine loci, there were
3° = 19 683 potential genotype combinations. From these, the
combination with the highest probability of association with breast
cancer was identified (maximum likelihood interpretation). The
optimal combination of genotypes associated with breast cancer
presence was identified as {rs1042522 = C, rs17884306 = C,
rs1801133 = AG, rs1801394 = A, rs1805087 = A, rs56221660 = A,
rs7744 = A, rs7851696 = G, rs9651118 = CT}. Validation of this
optimal combination using test data revealed a marked increase in
the predicted prevalence of breast cancer. The prevalence under the
original data was 48.20%, while the prevalence of the highest-risk
combination observed in this small sample increased to 99.99%
(Table 3). These results demonstrate the enhanced predictive
accuracy achieved by identifying and incorporating high-risk
genotype combinations, underscoring the value of Bayesian
network modeling in elucidating breast cancer susceptibility.

3.3.4 Model performance evaluation

The performance metrics for the Bayesian network model
constructed to predict female breast cancer susceptibility are
presented in Table 4. The accuracy, precision, and recall rates of
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the model for diseased samples were 78.39%, 82.64%, and 72.46%,
respectively, indicating effective recognition of breast cancer cases.
Furthermore, the relatively close values among metrics indicates
well-balanced model performance in data classification, with no
significant bias toward any category, demonstrating its overall
reliability for this dataset.

3.4 External validation of the model

To evaluate the effectiveness of the Bayesian network model,
external validation was conducted using data from 10 case/control
samples from the same hospital. The causal factors of each sample
were input into the model to calculate the probability of breast
cancer occurrence. For illustration, the genotype distribution of one
sample diagnosed with breast cancer is provided: {rs1042522 = C,
rs17884306 = CT, rs1801133 = AG, rs1801394 = AG, rs1805087 =
A, 1s56221660 = A, rs7744 = G, rs7851696 = G, rs9651118 = CT}.
These genotypes were set as evidence variables and input into the
Bayesian network model (Figure 5). The test results show that the
model inferred an 80% probability of breast cancer for this patient,
aligning closely with the clinical diagnosis. Similar analyses were
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rs17884306
rs1042522
rs1801394
rs1805087

rs17884306

BN

rs1042522 | 0.23 /

rs1801394 | 0.02 ' 0.08 /

rs1805087 | 0.05 | 0.01 | 0.07 /

rs7851696 | 0.03 | 0.04 | 0.02  0.03

rs7744 1 0.06 | 0.02 | 0.03 | 0.04

rs56221660 | 0.04 | 0.05 | 0.04 | 0.06

rs9651118 | 0.05 A 0.09 | 0.04 | 0.05

rs1801133 | 0.06 | 0.04 | 0.02 | 0.04

FIGURE 3
Cramer’s V coefficient heat map.

performed for the remaining nine samples, and the model
consistently demonstrated a 70% probability of correctly
predicting breast cancer presence or absence. These research
results demonstrate that the relationships among SNPS identified
by Bayesian networks are consistent with the observed results,
supporting the effectiveness of models constructed based on
genotype data in predicting the risk of breast cancer.

4 Discussion

This study identified significant genetic loci associated with
breast cancer development through both traditional statistical
methods and machine learning approaches. Using chi-square
tests, rs1801133 (P = 0.005) and rs56221660 (P = 0.049) were
found to be statistically significant, suggesting their potential
association with breast cancer susceptibility. The RF algorithm
further analyzed 27 genetic loci, identifying eight key loci with
feature importance scores exceeding 0.05, including rs7744,
rs1042522, rs1801133, rs1801394, rs7851696, rs1805087,
rs17884306, and rs9651118, deemed significant contributors to
breast cancer development in women.

A Bayesian network model was subsequently constructed to
investigate the probabilistic relationships between these loci and
breast cancer prevalence. Based on parameter learning, the network
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assessed the probabilities of disease under various genetic
combinations. In the original data, the prevalence and non-
prevalence rates of breast cancer were 51.8% and 48.2%,
respectively. This distribution failed to provide sufficient
discriminative information. However, through Bayesian network
posterior inference, we identified a maximum a posteriori (MAP)
genotype combination: {rs1042522 = C, rs17884306 = C, rs1801133 =
AG, rs1801394 = A, rs1805087 = A, rs56221660 = A, rs7744 = A,
rs7851696 = G, rs9651118 = CT}. When this combination was
incorporated into the model, the predicted prevalence of breast
cancer increased to 99.99%, while the non-prevalence rate
decreased to 0.01%. These results indicate that the risk of breast
cancer increases significantly when the genotypes of key gene loci
undergo specific changes. It should be noted that the results obtained
from this MAP combination are based solely on the tests performed
on the samples in this study. Under this MAP combination, there is
an extremely high impact on the occurrence of breast cancer. This
posterior probability combination is derived from sample-based
search and learning, integrating the maximum impact of each locus
on the development of breast cancer. In the future, if the dataset
changes, this combination can still provide a reference for
understanding the occurrence of breast cancer. This MAP
combination successfully identifies genotype patterns highly
associated with breast cancer, revealing the synergistic effects across
multiple loci. (Table 3). These findings suggest that specific
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FIGURE 4
Bayesian network model of breast cancer susceptibility loci.

combinations of polymorphisms at these loci may have a profound
influence on breast cancer development, highlighting the importance
of multi-locus interactions in disease etiology. The results further
underscore the complex interplay between genetic loci in the
pathogenesis of breast cancer, implicating these specific SNPs as
potential contributors to the underlying mechanisms of the disease.
This study provides a basis for future functional studies to explore the
roles of these loci in breast cancer. Additionally, the identified SNPs
offer potential as molecular markers for early diagnosis and
individualized treatment strategies, paving the way for more precise
clinical interventions.

Model performance was evaluated by dividing the data into
training and testing sets at a 7:3 ratio. The training set was used for
model construction and parameter optimization, while the testing
set was used to evaluate the generalization ability of the model. The
model achieved an accuracy of 78.39%, a precision of 82.64%, and a
recall of 72.46% for diseased samples, indicating its effectiveness in
identifying breast cancer cases. These metrics suggest that the
Bayesian network model is both reliable and generalizable,
providing robust predictive power for breast cancer susceptibility
in unseen data.

This study identified nine loci, including TP53 (rs1042522,
rs17884306), MTHFR (rs1801133, rs56221660, 9651118), MTRR
(rs1801394), MTR-A2756G (rs1805087), MYD88 (rs7744), and
rs7851696, that may contribute to breast cancer susceptibility.
Among these, mutations in TP53 are well-established risk factors
for breast cancer development. As a critical regulator of nucleotide
homeostasis, TP53 plays an important role in maintaining the
nucleotide pool required for DNA synthesis and repair, thereby
preserving genomic stability (34). The folate metabolism-related
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enzymes MTHFR and MTR are central to folate metabolism, and
their enzymatic activities affect DNA methylation and synthesis.
Impaired function of these enzymes can result in poor folate
metabolism, reduced genomic stability (35), and increased
susceptibility to cancer. Mutations in these loci are therefore
closely linked to breast cancer progression. MYDS88, a pivotal
mediator in Toll-like receptor (TLRs)-initiated inflammatory
cascades, is preferentially recruited to the Toll/interleukin-1
receptor (TIR) domain, which is conserved among specific TLR
subtypes (36). Upon recruitment, MYD88 orchestrates the
activation of the upstream nuclear factor-kB (NF-kB) kinase
(inhibitor of kappa B kinase, IKK) complex (37), thereby serving
as a central regulatory node in the activation of the NF-«B signaling
pathway.The rs7744 polymorphism, previously identified within
the 3’-untranslated region (3’-UTR) of the MYDS88 gene, shows
significant association not only with treatment outcomes in
rheumatoid arthritis (RA) (38) patients receiving tumor necrosis
factor (TNF) inhibitors but also with disease progression in
ulcerative colitis (UC) (39). Moreover, as a critical effector in
inflammatory signaling cascades, aberrant expression or
mutations of MYD88 correlate with poor prognosis in diftuse
large B-cell lymphoma (DLBCL) (40).

Furthermore, MTRR, a key enzyme in cysteine metabolism,
influences the production of hydrogen sulfide (H,S), a critical
mediator in the NF-xB inflammatory pathway, through its effects
on DNA methylation (13). This suggests a potential synergistic
relationship between MYD88 and MTRR in activating the NF-kB
inflammatory pathway, thereby contributing to cancer progression.

Bayesian network modeling is particularly effective when applied
to dichotomous variables, as dichotomy minimizes the number of
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TABLE 2 Parameter learning results of patients with or without breast cancer (partial).

Influence variable

Parameter learning results
(breast cancer or not)

rs1042522 rs1801133 rs1801394 rs1805087 rs56221660 rs7744 rs7851696 No Yea
CG A A A A A G 0.0002 0.9998
C AG A A A A G 0.0001 0.9999
CG AG A A A A G 02727 0.7273
CG G A A A A G 0.9998 0.0002
G G A A A A G 0.9998 0.0002
CG A AG A A A G 0.9998 0.0002
C AG AG A A A G 02500 0.7500
CG AG AG A A A G 0.6667 0.3333
G AG AG A A A G 0.0001 0.9999
C AG A GA A A G 0.2000 0.8000
G AG A GA A A G 0.9998 0.0002
CG G A GA A A G 0.9998 0.0002
CG AG AG GA A A G 0.2000 0.8000
C AG A A AG A G 0.0001 0.9999
CG AG A A AG A G 0.9999 0.0001
CG AG AG A A G G 0.6666 03334
G AG AG A A G G 0.6666 03334
CG AG A A A GA G 05714 0.4286
G AG A A A GA G 0.4000 0.6000
C AG A A A A GT 02500 0.7500
C G AG A A G GT 0.6666 03334

it is indicated that these extreme probabilities reflect characteristics of the sample distribution rather than clinical predictive value.

combinations and chances. In this study, the dichotomous
classification—diseased versus non-diseased—allowed us to uncover
a strong association between the combination of nine polymorphic
loci and breast cancer susceptibility. Analysis suggested that enzymes
involved in folate metabolism may synergize with inflammatory
mediators, such as MYD88, to promote tumorigenesis. This
interaction potentially disrupts folate metabolism, thereby impairing
DNA methylation and synthesis, and simultaneously affects
inflammatory pathways through the homocysteine cycle, driving
tumorigenesis and cancer progression. The heterogeneity of breast

TABLE 3 The highest-risk combination observed in the current small
sample.

Distribution of breast cancer

cancer further complicates its genetic and phenotypic characterization,
with distinct molecular subtypes classified based on the expression of
key biomarkers: estrogen receptor (ER0.), progesterone receptor (PR),
human epidermal growth factor receptor-2 (HER-2), and proliferating
cell nuclear antigen (Ki-67). The four widely recognized subtypes
include luminal A, luminal B, human epidermal growth factor
receptor-2 (Her-2) overexpression, and basal-like breast cancer
(BLBC). Each subtype has distinct clinical implications and
influences treatment strategies. For example, luminal A tumors
respond well to endocrine therapy, while chemotherapy is often
preferred for luminal B patients. HER-2-positive cases are likely to

TABLE 4 Evaluation of model performance.

Distribution of raw : Precision Recall Fl-score
values under optimal
breast cancer values e )
combination Disease-free 75.00% 84.44% 79.44%
Disease-free 51.80% Disease-free 0.01% Disease 82.64% 72.46% 77.22%
Disease 48.20% Disease 99.99% ‘ Accuracy 78.39%
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Bayesian network model validation.

benefit from targeted therapies, whereas BLBC remains challenging
due to its lack of validated therapeutic targets and poorer prognosis.
Given these complexities, future research will focus on evaluating
differences in Bayesian network structures and conditional
probabilities across molecular subtypes of breast cancer. This
approach aims to enhance the precision of treatment selection by
tailoring strategies to the unique genetic and molecular characteristics
of each subtype, ultimately improving patient outcomes.

The samples in this study were derived from Southwest China,
primarily individuals who have resided in Yunnan Province for
three or more generations. This population exhibits certain regional
specificities in genetic background and environmental exposure
profiles. Therefore, when extending the research findings to other
regions, their broader applicability could be validated through
multi-center studies incorporating diverse datasets. Regarding the
sample size, although 490 breast cancer patients and 490 control
subjects were included, the current sample size still has room for
expansion in covering all potential genotype combinations (e.g.,
19,683 combinations formed by 9 loci) when analyzing the complex
interactions among multiple gene loci. This may, to some extent,
affect the precision of statistical tests and the robustness of the
results. For external validation, the model was tested using 10
independent samples. Its generalizability awaits further support
from larger-scale independent datasets to more comprehensively
evaluate its applicability across different scenarios. Additionally,
attention should be paid to balancing the complexity of genotype
combinations with the existing sample size. The analysis of
interactions among multiple gene loci in this study involved
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complex probabilistic modeling, and the limited sample size may
introduce potential estimation biases when identifying optimal
genotype combinations. Thus, the strong associations observed in
the training data (e.g., the 99.99% disease probability in the optimal
combination) require further confirmation in larger samples to
clarify their actual clinical relevance, which also provides directions
for optimizing model parameters and enhancing result reliability
and reproducibility.

However, it is undeniable that this study proposed an analytical
framework of “predicting the whole from parts,” starting with
investigating the impact of single gene polymorphisms on
breast cancer probability and gradually extending to the
combined effects of two, three, or more gene polymorphisms.
This approach not only intuitively reflects the influence of
individual gene polymorphisms (through probability changes) but
also clearly demonstrates the association patterns between different
gene polymorphisms. The application of the Bayesian network (BN)
model to assist clinicians in prioritizing disease risk assessment
holds practical value, as it can predict breast cancer diagnostic
probabilities based on partial genotyping results of patients. The
persuasiveness of the model will be further strengthened by
continuously incorporating genetic polymorphism data from
more confirmed breast cancer cases. The modular structure of
the BN is inherently suitable for incremental learning and
expansion, eliminating the need to rebuild the model from
scratch when new data or variables are added—only adjustments
to the network structure and parameters are required. This lays a
methodological foundation for including more samples or gene loci
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in future studies, which is forward-looking in gene-disease
association research.
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