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Purpose: This study aimed to create a nomogram model (NM) that combines

clinical-radiological factors with radiomics features of both intra- and

peritumoral regions extracted from pretherapy dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) images, in order to establish a reliable

method for early prediction of pathological complete response (pCR) to

neoadjuvant chemotherapy (NAC) in patients with breast cancer.

Methods: A total of 214 patients were randomly divided into a training set (n=149)

and a test set (n=65) in a ratio of 7:3. Radiomics features were extracted from

intratumoral region and 2-mm, 4-mm, 6-mm, 8-mm peritumoral regions on

DCE-MRI images, and selected the optimal peritumoral region. The intratumoral

radiomics model (IRM), 2-mm, 4-mm, 6-mm, 8-mm peritumoral radiomics

model (PRM), the combined intra- and the optimal peritumoral radiomics

model (CIPRM) were constructed based on five machine learning algorithms,

and then the radiomics scores (Rad-score) were obtained. Independent risk

factors for clinical-radiological features were obtained by univariate and

multivariate logistic regression analysis, and clinical model (CM) was

constructed. Finally, the CIPRM Rad-score combined with clinical-radiological

factors was used to construct a NM. The performance of different models were

evaluated by receiver operating characteristic curve (ROC) analysis, calibration

curve analysis, and decision curve analysis (DCA).

Results: In our study, the 6-mm peritumoral size was considered to be the

optimal peritumoral region. The CM is constructed based on three independent

risk factors: estrogen receptor (ER), Ki-67, and breast edema score (BES).

Incorporating ER, Ki-67, BES, and CIPRM Rad-score (combined intra- and 6-

mm peritumoral) into the nomogram achieved a reliable predictive performance.

And the area under the curve (AUC), sensitivity, specificity, and accuracy of the

NM was 0.911, 0.848, 0.831, 0.826 for the training set and 0.897, 0.893, 0.784,

0.815 for the test set, respectively.
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Conclusion: The NM has a good value for early prediction of pCR after NAC in

breast cancer patients.
KEYWORDS

breast cancer, neoadjuvant chemotherapy, pathological complete response,
intratumoral, peritumoral, radiomics, nomogram
Introduction

Breast cancer has become one of the most common cancers

worldwide and the leading cause of cancer death in women (1).

According to “Cancer Statistics, 2024” published by the American

Cancer Society, there are expected to be 310,720 new cases and

42,250 deaths from breast cancer in women in the United States in

2024, accounting for 32% and 15% of all new cases and deaths from

cancer in women, respectively (2).Neoadjuvant chemotherapy

(NAC) is a commonly used clinical treatment for early and

locally advanced breast cancer (3). It can reduce the size of

primary tumor and metastatic axillary lymph node (ALN), reduce

the clinical stage, improve the surgical resection rate and breast

preservation rate, obtain the body’s drug sensitivity reaction, and

mediate the immune microenvironment (4, 5). The efficacy

endpoints for NAC include complete loss of tumor cells, partial

regression, no response, or tumor progression during treatment.

Achieving pathologic complete response (pCR) after NAC prolongs

overall survival and disease-free survival in breast cancer patients

(6). Due to the complexity and high heterogeneity of breast cancer,

some patients do not benefit from NAC, in addition, NAC drugs

may also produce certain toxic side effects during treatment (7, 8).

And the clinical need to adjust the treatment regimen in time to

avoid delayed treatment due to disease progression. The

pathological results after surgery are the gold standard to evaluate

the efficacy of NAC, but there is a certain lag in time. Therefore,

early and accurate prediction of the efficacy of NAC in breast cancer

patients is of great significance for clinical development of

individualized treatment and prognosis assessment.

Dynamic contrast-enhanced MRI (DCE-MRI) has high

sensitivity in the diagnosis of breast cancer, which can reflect the

way and degree of tumor enhancement, evaluate the hemodynamic

characteristics of the tumor, and provide guidance for predicting

the efficacy of NAC in breast cancer patients. However, it is easy to

ignore the microscopic information of tumor when evaluating the

efficacy of NAC solely by imaging features, and it is highly

dependent on the technical level and subjective experience of the

radiologist, resulting in low accuracy and specificity.

Radiomics is a new method of image analysis, which can extract

the microscopic features that cannot be observed by the naked eye

and conduct quantitative analysis and model construction,

indirectly reflecting the heterogeneity and biological behavior of

tumors (9–11). Radiomics has been applied to the diagnosis and
02
differentiation of breast cancer, prediction of lymph node

metastasis, molecular subtypes, histological grades, biomarkers

and evaluation of NAC efficacy (12–16).

However, most of the previous studies focused on the

intratumoral region and ignored the microscopic information

contained in the peritumoral region. In recent years, some

scholars have begun to study the value of peritumoral radiomics

features in the diagnosis and treatment of breast cancer, and believe

that the peritumoral radiomics features will affect the prediction

performance of the model (17–20). However, there have been no

studies on the optimal peritumoral region size for using DCE-MRI

radiomics to predict NAC efficacy in breast cancer patients. In this

study, we first aimed to identify the optimal peritumoral region for

predicting pCR status after NAC in breast cancer patients. In

addition, the intratumoral and optimal peritumoral radiomics

features extracted from DCE-MRI images combined with clinical-

radiological factors to build a nomogram model (NM). To

investigate the value of NM in predicting pCR status after NAC

in breast cancer patients.
Materials and methods

Patients

This study was approved by the ethics committee of our

hospital (no. [2023] 441), and the subject’s informed consent was

exempted. A retrospective analysis was performed on 360 patients

who underwent breast MRI examination and NAC in our hospital

from March 2019 to September 2023.

The inclusion criteria for patients were as follows: (1) The breast

mass was confirmed by biopsy as primary invasive breast cancer; (2)

NAC was performed after breast MRI examination; and (3) Surgical

resection was performed after all courses of NAC. The exclusion

criteria for patients were as follows: (1) Clinical, pathological and

imaging data were incomplete; (2) Adjuvant therapy such as surgery

or chemoradiotherapy was performed before MRI examination; (3)

Poor MRI image quality affects the observation of lesions; and (4)

The boundary of the lesion is not clear, and it is difficult to delineate

the region of interest (ROI). Finally, 214 female patients who met

the criteria of this study were included. The training set (n=149) and

the test set (n=65) were randomly divided in a ratio of 7:3. Figure 1

illustrates the patient selection workflow chart.
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MRI examination

All patients underwent MRI examinations were performed

using a 3.0-T MRI scanner (Philips Achieva) with a dedicated

breast coil (7-element SENSE breast coil).

All patients were placed in a prone position with both breasts

naturally hanging down in the coil. The MRI acquisition sequence

includes T1-weighted imaging (T1WI), fat-suppressed T2 weighted

imaging (FS-T2WI), diffusion-weighted imaging (DWI), pre-

contrast-enhancement T1WI, and DCE-MRI. Pre-contrast-

enhancement T1WI was obtained before the contrast agent was

injected. Then contrast agent GD-DTPA (Beilu Pharmaceutical,

Beijing, China) was injected intravenously at a dose of 0.2 mmol/kg

and at an injection rate of 2 ml/s, followed by 20 ml of normal saline

at the same rate. A total of six phases of images were collected, and

the collection time of each phase was 60s. Detailed MRI parameters

are shown in Supplementary Table S1.
Clinical-radiological features

Clinicopathological data included age, estrogen receptor (ER),

progesterone receptor (PR), human epidermal growth factor

receptor-2 (HER-2), Ki-67, molecular subtypes, neutrophil

lymphocyte ratio (NLR), menopausal status, and NAC regimen.

NAC treatment cycles and regimens are based on National

Comprehensive Cancer Network (NCCN) guidelines (21), where

patients typically receive 6-8 cycles of NAC, followed by surgical

resection 2-3 weeks after completion of NAC. The NAC regimens

mainly include three types: (1) taxane-based; (2) anthracycline-

based, and (3) anthracycline-and taxane-based. In addition, patients
Frontiers in Oncology 03
with positive HER-2 may be treated with trastuzumab

or pertuzumab.

By two radiologists (with 8 and 10 years of experience in breast

radiology, respectively) who were blinded to clinicopathology of the

patients, according to the 5th edition of the American College of

Radiology’s Breast Imaging Reporting and Data System (BI-RADS),

to analyze the characteristics of breast tumors on MRI images. In

the event of disagreement, a third radiologist with 20 years of

experience in breast radiology further analyzed the MRI images and

made a final assessment.

The radiological features included: (1) background

parenchymal enhancement (BPE); (2) tumor size (the maximum

diameter of the tumor as observed on the DCE-T1WI image); (3)

tumor shape; (4) tumor margin; (5) T2 intratumoral hyperintense;

(6) lesion type, distinguished as mass or non-mass enhancement

(NME); (7) time-signal intensity curve (TIC); (8) apparent diffusion

coefficient (ADC); (9) breast edema score (BES), according to

Harada et al. ‘s study (22), we evaluated breast edema on T2WI

images and defined it as BES, which was divided into 1-4 points

(BES1: no edema; BES2: peritumoral edema; BES3: prepectoral

edema; BES4: subcutaneous edema) (10). short diameter of ALN;

and (11) number of lesions. For patients with multiple lesions, only

the largest lesions were evaluated for the study.
Pathological evaluation

Immunohistochemical (IHC) were performed on specimens

obtained after each patient’s needle biopsy to determine the status

of ER, PR, HER-2, and Ki-67. When at least 1% of carcinoma nuclei

show ER or PR positive staining, this indicates a positive status for
FIGURE 1

Workflow chart of the patients included in this study.
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ER or PR, respectively (23). The expression status of HER-2 can be

determined according to the IHC score. An IHC score of 3+ is

defined as a positive HER-2 status, an IHC score of 0 or 1+ is

defined as a negative HER-2 status. An IHC score of 2+ requires

further by fluorescence in situ hybridization (FISH) to confirm the

diagnosis, a positive result from FISH testing is defined as a positive

HER-2 status (24). When the proliferation index of Ki-67 is equal to

or more than 14%, it is considered to be high expression, and when

it is lower than 14%, it is considered to be low expression (25).

According to the expression status of ER, PR, HER-2 and Ki-67,

breast cancer patients were divided into four molecular subtypes:

Luminal A (ER+/PR+, HER-2-, and low expression of Ki-67),

Luminal B (ER+/PR+, high expression of Ki-67 and/or HER-2 +),

HER-2 overexpression (ER-, PR- and HER-2 +), and Triple-

negative (ER-, PR-, and HER-2 -) (26). The postoperative

pathological specimens were evaluated using the Miller-Payne

grading system (27): grade 1, no change or some alteration to

individual tumor cells, but no reduction in overall cellularity; grade

2, a minor loss of tumor cells but overall high cellularity (up to 30%

loss of cellularity); grade 3, within 30 to 90% reduction in cancer

cellularity; grade 4, a marked disappearance of tumor cells such that

only small clusters or widely dispersed individual tumor cells

remained (more than 90% loss of cellularity); and grade 5, no

malignant cells identifiable in sections from the site of the tumor, or

ductal carcinoma in situ might be present. Patients with Miller-

Payne grade 5 were categorized achieving a pCR, and patients with

grades 1-4 as achieving a non-pCR.
Frontiers in Oncology 04
Image acquisition and segmentation

Since the contrast of signal intensity between breast cancer

lesions and glandular background reaches its highest peak in the 60-

120s after the injection of contrast agent, the lesion enhancement is

the most obvious in this period, which contains more abundant

tumor information. Therefore, we chose the second phase of the

DCE-MRI sequence for the delineation of region of interest (ROI).

Image segmentation was performed on the Darwin Intelligent

Research Platform (Beijing Yizhun Medical AI, Beijing, China).

The intratumoral ROI was segmented by two radiologists with 5

(radiologist 1) and 7 years (radiologist 2) of experience in breast

radiology, respectively. They were blinded to the patients’

clinicopathological and radiological information. The two

radiologists unified the delineation standard, and manually

delineated layer by layer along the boundary of the lesion on the

second phase of axial DCE-MRI images. Two weeks later, 10% of

the patients were randomly selected and the segmentation process

was repeated independently by radiologist 1 and radiologist 2, and

the inter-/intraclass correlation coefficient (ICC) was calculated to

evaluate the reproducibility of manual segmentation. The regions

surrounding the tumor (i.e., 2-,4-,6- and 8-mm radius) were defined

as the peritumoral regions in our study. The corresponding

peritumoral ROIs were obtained by automatically expanding the

intratumoral ROIs by 2-mm, 4-mm, 6-mm and 8-mm. Schematic

illustration of intratumoral and peritumoral ROIs segmentation are

shown in Figure 2. If the contour of the peritumoral region extends
FIGURE 2

Schematic illustration of intratumoral and peritumoral ROI segmentation. The subject, a 49-year-old female diagnosed with invasive carcinoma in
the right breast, exhibited non-pCR following NAC. (A) Maximal cross-sectional of tumor as observed on the second phase DCE-MRI image.
(B-E) The red area is the intratumoral ROI, and the corresponding peritumoral ROIs were obtained by intratumoral ROI (red) automatic expansions
by 2-mm (yellow), 4-mm (blue), 6-mm (purple) and 8-mm (green). (F) The 3D visualization intratumoral ROI with layer-by-layer delineation.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1561599
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1561599
beyond the parenchyma of the breast, manual adjustments were

made to the ROI to exclude these excess parts. Finally, the three

dimensional (3D) ROIs of the intratumoral and 2-,4-,6- and 8-mm

peritumoral regions were obtained.
Radiomics feature extraction

The radiomics features of six different 3D-ROIs for each

patient were extracted from the Darwin Intelligent research

platform, including intratumoral, 2-, 4-, 6-, 8-mm peritumoral

regions, intratumoral and optimal peritumoral regions. To further

amplify the abundance of features, a variety of filters are used in

our study, including exponential, logarithm, Laplacian of

Gaussian (LoG), gradient, Local Binary Pattern 3D (LBP-3D),

and wavelet filter. Finally, radiomics features were extracted from

the original images and the images after various filters. The

extracted radiomics features were normalized, and preprocessed

to between (0,1) by using the maximum minimum value

normalization method. The ICCs were calculated to quantify the

consistency between the radiomics features extracted by two

radiologists, retaining the radiomics features with ICCs > 0.75.

Then we use the “Select K Best” method and select the f_calssif

function to reduce the dimension of the features, and retaining the

radiomics features with the sample variance F-values ranked in the

top K%. Finally, using the least absolute shrinkage and selection

operator (LASSO) logistic regression to reduce the dimensions of

the remaining features, the optimal radiomics features for

predicting pCR were finally selected.
Frontiers in Oncology 05
Model construction and validation

The intratumoral radiomics model (IRM) and the 2-, 4-, 6- and

8-mm peritumoral radiomics model (PRM) were established based

on five machine learning algorithms, and the corresponding

radiomics score (Rad-score) was obtained according to the

coefficient weighting of the selected optimal radiomics features in

the respective models. Five machine learning algorithms include

logistic regression (LR), random forest (RF), support vector

machine (SVM), k nearest neighbors (KNN), and extreme

gradient boosting (XGBoost), and compare the predictive

performance of different machine learning algorithms. The area

under the curve (AUC) of the receiver operating characteristic

(ROC) was used to determine the optimal peritumoral region size

for predicting pCR. Then based on the intratumoral and optimal

peritumoral Rad-score, the combined intra- and peritumoral

radiomics model (CIPRM) was established, and the confusion

matrix was drawn to describe the performance of the model. In

the training set, the clinical-radiological features highly correlated

with pCR were selected as independent risk factors by uni- and

multi-variate logistic regressions, and the clinical model (CM) was

constructed. Finally, the CIPRM Rad-score combined with clinical-

radiological factors was used to construct a nomogram model

(NM).The ROC curves were drawn to evaluate the predictive

performance of each model. DeLong test was used to compare the

differences between the ROC curves of various models. The stability

of the model was evaluated by tenfold cross-validation. The

calibration curve and decision curve analysis (DCA) were used to

evaluate the consistency and clinical practicability of the model. The

workflow of radiomics analysis is shown in Figure 3.
FIGURE 3

The workflow for the radiomics analysis.
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TABLE 1 Clinical-radiological baseline features of breast cancer in the training and test sets.

Characteristics All Training set (n=149) All Test set (n=65) P-value

R(n=37) pCR(n=28) P-value

12.28 54.32 ± 6.92 0.087 0.261

0.002 0.269

29.7) 19 (67.9)

70.3) 9 (32.1)

0.006 0.567

48.6) 23 (82.1)

51.4) 5 (17.9)

0.040 0.425

54.1) 8 (28.6)

45.9) 20 (71.4)

.5-60.0) 55.0 (40.0-70.0) 0.043 0.210

0.194 0.082

0.8) 1 (3.6)

51.4) 9 (32.1)

32.4) 14 (50.0)

5.4) 4 (14.3)

42-2.70) 1.79 (1.50-2.50) 0.791 0.162

0.058 0.811

59.5) 10 (35.7)

40.5) 18 (64.3)

0.462 0.435

2.7) 2 (7.1)

37.8) 7 (25.0)

59.5) 19 (67.9)

0.101 0.852

3.5) 9 (32.1)
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0
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non−pCR(n=83) pCR(n=66) P-value non−pC

Age (years) 50.17 ± 10.57 50.51 ± 10.77 49.76 ± 10.37 0.669 51.94 ± 10.46 50.14

ER 0.003

Negative 81 (54.4) 36 (43.4) 45 (68.2) 30 (46.2) 11 (

Positive 68 (45.6) 47 (56.6) 21 (31.8) 35 (53.8) 26 (

PR 0.001

Negative 100 (67.1) 46 (55.4) 54 (81.8) 41 (63.1) 18 (

Positive 49 (32.9) 37 (44.6) 12 (18.2) 24 (36.9) 19 (

HER-2 0.037

Negative 73 (49.0) 47 (56.6) 26 (39.4) 28 (43.1) 20 (

Positive 76 (51.0) 36 (43.4) 40 (60.6) 37 (56.9) 17 (

Ki-67(%) 40.0 (22.5-60.0) 30.0 (20.0-50.0) 50.0 (37.5-60.0) 0.000 40.0 (30.0-60.0) 30.0 (2

Molecular subtype 0.023

Luminal A 20 (13.4) 16 (19.3) 4 (6.1) 5 (7.7) 4 (

Luminal B 52 (34.9) 32 (38.6) 20 (30.3) 28 (43.1) 19 (

HER-2 overexpression 46 (30.9) 19 (22.9) 27 (40.9) 26 (40.0) 12 (

Triple negative 31 (20.8) 16 (19.3) 15 (22.7) 6 (9.2) 2 (

NLR 1.77 (1.35-2.17) 1.70 (1.33-2.10) 1.86 (1.39-2.21) 0.164 1.81 (1.45-2.60) 1.83 (1

Menopausal Status 0.583

Premenopausal 76 (51.0) 44 (53.0) 32 (48.5) 32 (49.2) 22 (

Postmenopausal 73 (49.0) 39 (47.0) 34 (51.5) 33 (50.8) 15 (

NAC regimen 0.010

Taxane-based 3 (2.0) 1 (1.2) 2 (3.0) 3 (4.6) 1 (

Anthracycline-based 57 (38.3) 40 (48.2) 17 (25.8) 21 (32.3) 14 (

Anthracycline-and Taxane-based 89 (59.7) 42 (50.6) 47 (71.2) 41 (63.1) 22 (

BPE 0.940

Minimal 29 (19.5) 16 (19.3) 13 (19.7) 14 (21.5) 5 (
±

2

1

.

1
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TABLE 1 Continued

Characteristics All Training set (n=149) All Test set (n=65) P-value

R(n=37) pCR(n=28) P-value

56.8) 8 (28.6)

1.6) 9 (32.1)

8.1) 2 (7.1)

.0-51.0) 33.5 (25.5-47.5) 0.301 0.219

0.127 0.997

8.9) 10 (35.7)

81.1) 18 (64.3)

0.950 0.810

4.3) 7 (25.0)

75.7) 21 (75.0)

0.452 0.962

51.4) 17 (60.7)

48.6) 11 (39.3)

0.209 0.992

78.4) 26 (92.9)

1.6) 2 (7.1)

0.249 0.851

6.2) 1 (3.6)

29.7) 8 (28.6)

54.1) 19 (67.9)

.11) 1.01 (0.87-1.17) 0.107 0.123

0.044 0.144

8.9) 12 (42.9)

8.9) 8 (28.6)

8.9) 1 (3.6)

43.2) 7 (25.0)

(Continued)
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non−pCR(n=83) pCR(n=66) P-value non−pC

Mild 76 (51.0) 41 (49.4) 35 (53.0) 29 (44.6) 21 (

Moderate 33 (22.1) 20 (24.1) 13 (19.7) 17 (26.2) 8 (

Marked 11 (7.4) 6 (7.2) 5 (7.6) 5 (7.7) 3 (

Tumor size (mm) 34.0 (26.0-45.0) 35.0 (28.0-47.0) 32.0 (23.0-42.3) 0.020 36.0 (27.5-51.0) 37.0 (2

Shape 0.032

Regular 39 (26.2) 16 (19.3) 23 (34.8) 17 (26.2) 7 (

Irregular 110 (73.8) 67 (80.7) 43 (65.2) 48 (73.8) 30 (

Margin 0.076

Circumscribed 39 (26.2) 17 (20.5) 22 (33.3) 16 (24.6) 9 (

Not circumscribed 110 (73.8) 66 (79.5) 44 (66.7) 49 (75.4) 28 (

T2-intratumoral hyperintense 0.915

no 82 (55.0) 46 (55.4) 36 (54.5) 36 (55.4) 19 (

yes 67 (45.0) 37 (44.6) 30 (45.5) 29 (44.6) 18 (

Lesion type 0.018

Mass 126 (84.6) 65 (78.3) 61 (92.4) 55 (84.6) 29 (

NME 23 (15.4) 18 (21.7) 5 (7.6) 10 (15.4) 8 (

TIC 0.895

I 17 (11.4) 10 (12.0) 7 (10.6) 7 (10.8) 6 (

II 38 (25.5) 22 (26.5) 16 (24.2) 19 (29.2) 11 (

III 94 (63.1) 51 (61.4) 43 (65.2) 39 (60.0) 20 (

ADC (*10-3mm2/s) 0.96 (0.77-1.04) 0.92 (0.74-1.02) 0.98 (0.78-1.05) 0.077 0.95 (0.83-1.11) 0.90 (0.80-1

BES 0.024

1 30 (20.1) 13 (15.7) 17 (25.8) 19 (29.2) 7 (

2 41 (27.5) 22 (26.5) 19 (28.8) 15 (23.1) 7 (

3 35 (23.5) 16 (19.3) 19 (28.8) 8 (12.3) 7 (

4 43 (28.9) 32 (38.6) 11 (16.7) 23 (35.4) 16 (
2

8

1

2

2

1

1

1

1
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Statistical analysis

All statistical analyses were conducted using SPSS 26.0 software

(SPSS, Chicago, IL), Medcalc software (Version 19.1.3), and R

software (Version 4.4.1).

Kolmogorov-Smirnov was used to test the normality of the

measurement data.The measurement data conforming to the

normal distribution were represented with (mean ± standard

deviation) and independent sample t-test was used. The

measurement data that did not conform to normal distribution

were represented by median (lower quartile-upper quartile) and

Mann-Whitney U test was used. Counting data were expressed as

frequency (constituent ratio), and using c2 test, continuity

correction test or Fisher exact probability method. Significant

clinicopathological indicators and radiological features were

screened by uni- and multi-variate logistic regressions. The ROC

curves were plotted by Medcalc 19.1.3 software, and AUC,

sensitivity, specificity and accuracy were calculated to evaluate

the prediction performance of different models. Use R 4.4.1

software to draw nomogram, calibration curves and decision

curves. When P < 0.05, the difference was considered

statistically significant.
Results

Clinical-radiological features and
construction of CM

In our study, 94 cases of the 214 patients achieved pCR,

accounting for 43.9% (94/214), including 66 cases in the training

set and 28 cases in the test set. 120 patients were non-pCR,

accounting for 56.1% (120/214), including 83 cases in the

training set and 37 cases in the test set. The clinical-radiological

baseline features of breast cancer in the training and test sets are

shown in Table 1.There were no significant differences in clinical-

radiological features between the training set and the test

set (p>0.05).

The univariate logistic regression analysis was performed on the

data in the training set, and there were statistically significant

differences in ER, PR, HER-2, Ki-67, molecular subtype, NAC

regimen, tumor size, shape, lesion type and BES between non-

pCR and pCR groups (p<0.05). The multivariate logistic regression

analysis showed that ER (95% confidence interval [CI]:0.003-0.804;

P=0.035), Ki-67 (95%CI: 1.011-1.059; P=0.004) and BES (P=0.043)

were independent risk factors for pCR status, as shown in Table 2

and Supplementary Figure S1. These three independent predictors

were used to construct a CM.
Optimal peritumoral region

In this study, we compared the predictive performance of pCR

status based on radiomics features of four different peritumoral
T
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regions (2-, 4-, 6-, and 8-mm) (Supplementary Table S2). The

results showed that 6-mm PRM had the highest maximum AUC

(0.794 and 0.779) in both the training set and the test set. Therefore,

we selected 6-mm as the optimal peritumoral region to predict pCR

status for subsequent studies.
Frontiers in Oncology 09
Radiomics feature selection and
construction of radiomics models

A total of 1781, 1781 and 3562 radiomics features were

extracted from each patient’s intratumoral region, 6-mm
TABLE 2 Uni- and multivariate logistic regression analysis of pCR status in breast cancer in the training set.

Characteristics Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age 0.993 (0.963-1.024) 0.667

ER Negative Reference

Positive 0.357 (0.182-0.703) 0.003 0.049 (0.003-0.804) 0.035

PR Negative Reference

Positive 0.276 (0.129-0.591) 0.001 0.631 (0.176-2.268) 0.481

HER-2 Negative Reference

Positive 2.009 (1.041-3.876) 0.038 1.968 (0.337-11.495) 0.452

Ki-67(%) 1.035 (1.017-1.053) 0.000 1.035 (1.011-1.059) 0.004

Molecular subtype 0.030 0.344

Luminal A Reference

Luminal B 2.500 (0.731-8.552) 0.144 1.996 (0.215-18.541) 0.544

HER-2 overexpression 5.684 (1.640-19.700) 0.006 0.166 (0.007-3.688) 0.256

Triple negative 3.750 (1.019-13.795) 0.047 0.133 (0.008-2.262) 0.163

NLR 1.099 (0.771-1.565) 0.602

Menopausal Status Premenopausal Reference

Postmenopausal 1.199 (0.628-2.290) 0.583

NAC regimen 0.020 0.213

Taxane-based Reference

Anthracycline-based 0.213 (0.018-2.504) 0.218 0.083 (0.005-1.338) 0.079

Anthracycline-and
Taxane-based

0.560 (0.049-6.396) 0.640 0.113 (0.006-1.961) 0.134

BPE 0.935

Minimal Reference

Mild 1.051 (0.445-2.482) 0.910

Moderate 0.800 (0.291-2.200) 0.665

Marked 1.026 (0.254-4.136) 0.972

Tumor size 0.973 (0.949-0.997) 0.029 0.988 (0.952-1.026) 0.538

Shape Regular Reference

Irregular 0.446 (0.212-0.940) 0.034 0.478 (0.185-1.234) 0.127

Margin Circumscribed Reference

Not circumscribed 0.515 (0.246-1.079) 0.079

T2-intratumoral hyperintense no Reference

yes 1.036 (0.541-1.984) 0.915

(Continued)
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peritumoral region, and intratumoral + 6-mm peritumoral region,

respectively. The features of ICCs > 0.75 were retained, and the

features dimensionality were reduced by screening threshold

percentage and f_classif function. Finally, after LASSO regression,
Frontiers in Oncology 10
a total of 10, 11 and 10 optimal radiomics features highly correlated

with pCR status were obtained. The IRM, 6-mm PRM and CIPRM

were constructed, and calculate the Rad-Score. Supplementary

Table S3 illustrates the radiomics features and their respective
TABLE 2 Continued

Characteristics Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Lesion type Mass Reference

NME 0.296 (0.104-0.846) 0.023 0.687 (0.158-2.991) 0.617

TIC 0.896

I Reference

II 1.039 (0.325-3.317) 0.949

III 1.204 (0.422-3.434) 0.728

ADC 4.044 (0.736-22.232) 0.108

BES 0.029 0.043

1 Reference

2 0.660 (0.256-1.704) 0.391 0.384 (0.119-1.239) 0.109

3 0.908 (0.340-2.424) 0.847 0.871 (0.230-3.298) 0.839

4 0.263 (0.097-0.711) 0.009 0.213 (0.060-0.759) 0.017

Short diameter of ALN <10mm Reference

≥10mm 1.867 (0.751-4.646) 0.179

Number of lesions Single Reference

Multiple 0.816 (0.384-1.734) 0.596
pCR, pathological complete response; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2; NLR, neutrophil lymphocyte ratio; NAC,
neoadjuvant chemotherapy; BPE, background parenchymal enhancement; NME, non-mass enhancement; TIC, time-signal intensity curve; ADC, apparent diffusion coefficient; BES, breast
edema score; ALN, axillary lymph node; OR, odds ratio; 95% CI, 95% confidence interval.
FIGURE 4

The nomogram was developed based on ER, Ki-67, BES and CIPRM Rad-score.
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coefficients of the three radiomics models. Among the three

radiomics models, CIPRM had a maximum AUC of 0.851 and

0.840 in the training and test set, respectively, and its predictive

performance was better than IRM and 6-mm PRM (Supplementary

Table S2). According to the confusion matrix results, the sensitivity,

specificity, and accuracy of the CIPRM were 0.788, 0.771 and 0.779

in the training set, and 0.750, 0.757 and 0.754 in the test set,

respectively (Supplementary Figure S2). The Rad-Score of CIPRM

is as follows:

Rad-Score=+2.339×wavelet-LHH_gldm_LargeDependence

LowGrayLevelEmphasis+ 2.184×exponential_firstorder_Kurtosis

+1.763×gradient_glszm_SmallAreaLowGrayLevelEmphasis

+1.751×wavelet-HLL_glcm_ClusterTendency-1.520×wavelet-
Frontiers in Oncology 11
HHL_glcm_Idmn-1.439×wavelet-LHH_firstorder_Kurtosis

+1.205×wavelet-HHH_glcm_MCC+1.112×wavelet-HLH_gldm_

LargeDependenceHighGrayLevelEmphasis+0.702×logarithm_

glcm_Imc2-0.631×wavelet-LLH_ngtdm_Busyness-1.834

The comparison of prediction performance of different machine

learning algorithms is shown in Supplementary Table S2. In the

CIPRM, the AUC of the five machine learning algorithms in the

training set ranged from 0.755 to 0.851, and the AUC in the test set

ranged from 0.704 to 0.840. Compared with other machine learning

algorithms, SVM obtained the largest AUC values in both the

training set (0.851) and the test set (0.840), and the difference of

AUC values in these two datasets was small, indicating that SVM

had the best and most stable performance.
FIGURE 5

ROC curves of five models in the training set (A) and test sets (B). IRM, intratumoral radiomics model; PRM, 6-mm peritumoral radiomics model;
CIPRM, combined intra- and 6-mm peritumoral radiomics model; CM, clinical-radiological model; NM, nomogram model.
TABLE 3 Performance of five models in the training and test sets.

Model Group AUC (95%CI) Sensitivity Specificity Accuracy

IRM
Training set 0.795 (0.721-0.856) 0.591 0.904 0.738

Test set 0.776 (0.656-0.870) 0.786 0.703 0.677

6-mm PRM
Training set 0.794 (0.721-0.856) 0.545 0.916 0.705

Test set 0.779 (0.659-0.872) 0.50 0.973 0.662

CIPRM
Training set 0.851 (0.783-0.904) 0.788 0.771 0.779

Test set 0.840 (0.728-0.919) 0.75 0.757 0.754

CM
Training set 0.764 (0.687-0.829) 0.847 0.627 0.705

Test set 0.778 (0.657-0.871) 0.892 0.541 0.662

NM
Training set 0.911 (0.854-0.952) 0.848 0.831 0.826

Test set 0.897 (0.796-0.958) 0.893 0.784 0.815
IRM, intratumoral radiomics model; PRM, peritumoral radiomics model; CIPRM, combined intra- and 6-mm peritumoral radiomics model; CM, clinical-radiological model; NM, nomogram
model; AUC, area under the curve; 95% CI, 95% confidence interval.
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Development and validation of NM

The CIPRM Rad-score combined with clinical-radiological

factors (ER, Ki-67, and BES) was used to construct a NM. The

nomogram shows that the CIPRM Rad-score has the greatest

weight in the construction of the model, followed by Ki-67

(Figure 4). We finally constructed five models for predicting pCR

states, including IRM, 6-mm PRM, CIPRM, CM and NM. Figure 5

shows the ROC curves of these five models in the training set and

the test set. ROC curve showed that the AUCs of the NM in the

training set and the test set were 0.911and 0.897 respectively, which

were higher than 0.795 and 0.776 for the IRM, 0.794 and 0.779 for

the 6-mm PRM, 0.851 and 0.840 for the CIPRM, and 0.764 and

0.778 for the CM (Figure 5; Table 3).

DeLong test showed that there were statistically significant

differences between the NM and the other four models in the

training set (p<0.05), and the NM had better predictive

performance (Table 4). The 10-fold cross-validation shows that

the NM exhibits excellent stability (Supplementary Figure S3). The

calibration curve shows that the trend of the predicted curve of the
Frontiers in Oncology 12
pCR status by the NM is basically consistent with the actual curve

(Figure 6). DCA shows that the NM has the greatest clinical net

benefit in predicting pCR status after NAC in breast cancer

patients (Figure 7).
Discussion

In this study, we discussed the value of intratumoral combined

peritumoral radiomics model based on pretherapy DCE-MRI

images for early prediction of pCR. On this basis, we added

clinical-radiological factors to construct a NM. The NM has

better predictive performance, and has the potential to become a

tool for early prediction of the post-NAC pCR status of breast

cancer patients, contributing to the clinical formulation of precise

treatment strategies, and helping patients avoid unnecessary

surgery or reduce the toxic side effects of chemotherapy drugs.

Several clinical-radiological factors were significantly correlated

with pCR, including Ki-67, ER and BES, indicating their potential

value in predicting pCR status. This study found that patients with

high expression of Ki-67 were more likely to achieve pCR, which is

consistent with Kim et al. (28). The high expression of Ki-67

indicates that tumor cells are proliferating more actively, and

chemotherapy drugs have strong lethality to cells with active

proliferation. Therefore, patients with high expression of Ki-67

are more sensitive to chemotherapy drugs. This study showed that

ER negative is an independent predictor of pCR, mainly because ER

negative patients are more aggressive, have higher proliferation

index and malignancy degree, are more sensitive to chemotherapy.

Therefore, ER negative patients are more likely to obtain pCR than

ER positive patients (29).BES is a key factor affecting the prognosis

of breast cancer, which may be related to lymphovascular invasion

(LVI) (30). Peritumoral edema is the mildest form of edema,

prepectoral edema often indicates significant LVI, and

subcutaneous edema often indicates more extensive LVI. This

study found that BES was an independent predictor of pCR, and

the incidence of BES was negatively correlated with that of pCR.

Patients with no edema were more likely to achieve pCR than

patients with peritumoral edema, prepectoral edema, or

subcutaneous edema. This may be because LVI will make the

tumor develop a certain resistance to chemotherapy drugs, thus

affecting the efficacy of NAC, resulting in difficult to achieve

pCR (31).

The peritumoral region often contains important biological

information and is closely related to the development, metastasis

and prognosis of the tumor. Xu et al. (32) extracted the intratumoral

and 4-mm peritumoral regions radiomics features from digital

breast tomosynthesis (DBT) to predict the LVI status of breast

cancer patients, and found that the combined intratumoral and

peritumoral radiomics models produced higher AUC. Zhang et al.

(33) extracted the 2-mm, 4-mm, 6-mm, 8-mm peritumoral regions

radiomics features from DCE-MRI images to predict the molecular

subtypes of invasive ductal carcinoma. It is found that the optimal

peritumoral region size is different for different prediction tasks. In
TABLE 4 DeLong test for the comparison of ROC curves between
different models in the training and test sets.

Models Group Z statistic P-value

CM vs IRM
Training set 0.580 P = 0.562

Test set 0.018 P = 0.985

CM vs PRM
Training set 0.550 P = 0.583

Test set 0.019 P = 0.984

CM vs CIPRM
Training set 1.745 P = 0.081

Test set 0.839 P = 0.401

CM vs NM
Training set 4.355 P < 0.001

Test set 2.506 P = 0.012

IRM vs PRM
Training set 0.004 P = 0.997

Test set 0.041 P = 0.967

IRM vs CIPRM
Training set 1.229 P = 0.219

Test set 1.088 P = 0.276

IRM vs NM
Training set 2.693 P = 0.007

Test set 2.042 P = 0.041

PRM vs CIPRM
Training set 1.231 P = 0.218

Test set 0.924 P = 0.356

PRM vs NM
Training set 2.691 P = 0.007

Test set 1.813 P = 0.069

CIPRM vs NM
Training set 2.718 P = 0.006

Test set 1.546 P = 0.122
CM, clinical-radiological model; IRM, intratumoral radiomics model; PRM, 6-mm
peritumoral radiomics model; CIPRM, combined intra- and 6-mm peritumoral radiomics
model; NM, nomogram model; ROC, receiver operating characteristic.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1561599
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1561599
recent years, there have been more and more studies on the

prediction of pCR after NAC in breast cancer patients (34–36), but

there are few studies on the optimal peritumoral region size. In the

existing studies to predict pCR, different scholars set the size of the

peritumoral region differently. Li et al. set 10-mm around the tumor

as the peritumoral region (37), while Braman et al. set 2.5-5 mm

around the tumor as the peritumoral region (38). These studies did

not explore the optimal peritumoral region size. Mao et al. (39)

extracted the intratumoral and 5-mm,10-mm peritumoral regions

radiomics features from contrast-enhanced spectral mammography

(CESM) to predict the effect of the NAC of breast cancers. The results

showed that 5-mm around the tumor was the optimal peritumoral

region. The combined intratumoral and 5-mm peritumoral

radiomics model achieved a maximum AUC of 0.85 (95% CI, 0.72-

0.98) in the test set. In this study, the radiomics features of 2-mm, 4-

mm, 6-mm, 8-mm peritumoral regions were extracted from

pretherapy DCE-MRI images to predict the pCR status of breast

cancer patients after NAC, and the results showed that the 6-mm

around the tumor was the optimal peritumoral region, the maximum

AUC of the combined intratumoral and 6-mm peritumoral
Frontiers in Oncology 13
radiomics model in the training set and test set were 0.851 and

0.840, respectively, showing high predictive performance. Compared

with previous research results, the model established in our study

significantly improves the prediction performance, which may be

related to the size of the selected peritumoral region. The peritumoral

region reflects stromal involvement, immune infiltration, and

angiogenesis, which are critical for neoadjuvant chemotherapy

response. A 6-mm region may optimally capture these dynamics,

as smaller regions (2-4 mm) might miss extended stromal

interactions, while larger regions (8-mm) could introduce noise

from normal tissues. Different peritumoral region sizes contain

different tumor microenvironments, so we should determine the

optimal peritumoral region size according to the actual prediction

task, so as to improve the prediction performance of the model and

obtain more valuable information.

In this study, five kinds ofmachine learning algorithmswere used to

establish the radiomics model. Among these radiomics models, CIPRM

has the best predictive performance. In the CIPRM, SVM showed the

best and stable performance. The SVM is often used to solve

classification problems, which can deal with high-dimensional data
FIGURE 6

Calibration curves of the nomogram model in the training (A) and test sets (B).
FIGURE 7

Decision curves of five models in the training set (A) and test sets (B).IRM, intratumoral radiomics model; PRM, 6-mm peritumoral radiomics model;
CIPRM, combined intra- and 6-mm peritumoral radiomics model; CM, clinical-radiological model; NM, nomogram model.
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sets and nonlinear relations between variables well, and is not easy to

overfit, and has strong robustness and generalization. The CIPRM was

established by SVM algorithm, and 10 radiomics features were

extracted. The radiomics features were extracted from images after

wavelet transform account for 70.0%(7/10), which may be due to the

existence of pCR-related fine features in images after wavelet transform,

whose details and complexity are higher than those of original images.

Among the 10 radiomics features, there are 8 texture features and 2 first-

order statistics. Texture features accounted for 80.0% (8/10), including 4

GLCM, 2 GLDM, 1 NGTDM and 1 GLSZM. Texture features can

reflect the heterogeneity and complexity of breast cancer, and can

indirectly predict the invasion ability, malignancy degree and prognosis

of the tumor. The 10 radiomics features include 5 intratumoral and 5

peritumoral features. The coefficient of intratumoral feature (wavelet-

LHH_gldm_LargeDependenceLowGrayLevelEmphasis) was the largest

and positively correlated with the pCR rate, which was consistent with

the results of Mao et al. (39). The coefficient of peritumoral feature

(exponential_firstorder_Kurtosis) was second, which also reflects the

importance of peritumoral radiomics features and can provide more

supplementary information about the tumor microenvironment.

This study finally constructed five models for predicting pCR

status after NAC in breast cancer patients, including IRM, 6-mm

PRM, CIPRM, CM and NM. Among the five models, the NM has the

best predictive performance. The AUC, sensitivity, specificity and

accuracy of the NM was 0.911, 0.848, 0.831 and 0.826 in the training

set, respectively, and 0.897, 0.893, 0.784 and 0.815 in the test set,

respectively, which was superior to the single CM and three radiomics

models. The CIPRM based on intratumoral and 6-mm peritumoral

regions also showed better predictive performance, with the training

set and test set AUC of 0.851 and 0.840, respectively, which was

superior to the IRM, 6-mm PRM and CM. Different from Mao et al.

(39), this study was based on DCE-MRI radiomics and clinical-

radiological features to build a NM, which further improved the

predictive performance of pCR. The nomogram shows that the

CIPRM Rad-score has the greatest weight in the construction of the

model, which reflects the importance of radiomics and can dig out

more pathophysiological information of tumors.

This study has some limitations. First, it was a retrospective,

single-center study that lacked external validation. The limited

sample size raises concerns about potential overfitting risks. In

future work, we will adopt multi-center and large-sample data to

validate the model in order to further mitigate overfitting risks.

Secondly, the evaluation of MRI radiological features may be

influenced by the subjective factors of the radiologist. Finally, this

study only constructed the model based on five machine learning

algorithms. In our follow-up study, we plan to evaluate several deep

learning architectures including: artificial neural networks (ANN),

3D convolutional neural networks (3D-CNN) for volumetric feature

extraction, Hybrid radiomics-deep learning fusion models, Vision

transformers (ViT) adapted for DCE-MRI analysis, etc. We will

compare the performance between the NM and the deep learning-

based model. In the future, we will utilize some XAI techniques such

as Shapley Additive explanations (SHAP) or Local interpretable
Frontiers in Oncology 14
model-agnostic explanations (LIME) to enhance the explainability

of both the machine learning- and deep learning-based models,

thereby improving the clinical applicability of the models.

In summary, the NM established by combining intratumoral

and peritumoral radiomics features and clinical-radiological factors

has high performance, and can predict the pCR status of breast

cancer patients after NAC in an early stage, providing an important

information for clinical selection of appropriate treatment plan,

timely adjustment of treatment strategy and prognosis assessment.
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