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A multimodal nomogram for 
benign-malignant discrimination 
of lung-RADS ≥4A nodules: 
integration of oxygen enhanced 
zero echo time MRI, CT 
radiomics, and clinical factors 
Tiancai Yan1, Ling Liu1, Yuxin Li1, Chunhui Qin1, 
Haonan Guan2 and Tong Zhang1* 

1Department of Radiology, The Fourth Hospital of Harbin Medical University, Harbin, China, 
2GE Healthcare, MR Research China, Beijing, China 
Background and objective: Lung-RADS ≥4A nodules require urgent 
intervention. Low-dose CT (LDCT), the primary screening tool, involves 
cumulative radiation exposure—critical for patients with serial scans. Oxygen-

enhanced zero-echo time MRI (OE-ZTE-MRI) shows potential for lung nodule 
evaluation. However, its additive value when combined with CT radiomics and 
clinical factors for Lung-RADS ≥4A nodules remains unproven. This study aimed 
to develop a preoperative prediction model integrating OE-ZTE-MRI/CT 
radiomics and clinical factors for benign-malignant discrimination of Lung-
RADS  ≥4A  nodules  and  compare  i ts  performance  against  single-
modality models. 

Methods: 99 nodules from 84 prospectively enrolled patients undergoing both 
LDCT and OE-ZTE-MRI were included. Nodule boundaries were manually 
contoured as regions of interest (ROIs) on both modalities. Six machine 
learning classifiers were applied to radiomic features (extracted from LDCT and 
OE-ZTE-MRI) and clinical parameters (age, smoking history, nodule diameter, 
calcification, etc.). Model performance was evaluated using receiver operating 
characteristic (ROC) curves with area under the curve (AUC), complemented by 
decision curve analysis (DCA). Univariate and multivariate logistic regression 
identified independent predictors, which were incorporated into a final 
nomogram to visualize clinical-radiomic prediction. 

Results: MRI model had a similar diagnostic performance to CT model (MRI vs. 
CT: training cohort AUC: 0.854 vs 0.907; testing cohort AUC: 0.769 vs 0.798). 
Multi-radiomics model achieved the highest diagnostic efficiency (train cohort 
AUC:0.923; testing cohort AUC: 0.813). Multivariate Logistic regression showed 
that nodule diameter (p=0.005) and calcification (p=0.029) were important 
factors affecting the benign and malignant nodules. The nomogram 
constructed by 3 models(CT/OE-ZTE-MRI/Clinical factors) achieved the best 
preoperative prediction performance for benign and malignant nodules (training 
cohort: AUC 0.941; testing cohort AUC:0.838). 
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Conclusion: The nomogram combining OE-ZTE-MRI/CT radiomics and clinical 
factors (nodule diameter, calcification) improves preoperative discrimination of 
Lung-RADS ≥4A nodules (AUC=0.838), outperforming single-modality models. 
This tool enables evidence-based triage, potentially reducing unnecessary 
invasive procedures. 
KEYWORDS 
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Introduction 

Lung cancer has become the leading cause of cancer-related 
deaths worldwide (1). Making clinical decisions for lung nodules of 
different risk levels as early as possible is an important means of 
preventing and treating cancer (2, 3). According to the Lung 
Imaging Reporting and Data System (Lung-RADS), solid nodules 
larger than 8mm or some part-solid nodules are defined as high-risk 
nodules (4)of 4A and above, requiring LDCT scans every three 
months or timely clinical intervention. However, continuous LDCT 
scans may increase radiation accumulation, leading to the 
malignancy of certain nodules. Pulmonary MRI scans have many 
advantages, including no ionizing radiation (5, 6), suitability for 
follow-up (7), and low noise (8). 

Compared to traditional MRI imaging, UTE and ZTE (9, 10) aim  
to eliminate artifacts as much as possible with TE less than 1ms or even 
shorter, quickly converting quantitative signal parameters into easily 
distinguishable images (8, 9). A recent study demonstrated that ZTE 
sequences provide superior signal-to-noise ratio (SNR) and contrast
to-noise ratio (CNR) compared to UTE for pulmonary nodule 
detection (8). In addition, some reports (10, 11)have demonstrated 
that the use of ZTE-MRI has similar diagnostic performance to CT in 
Lung-RADS grading or lung density. Radiomics—systematically 
extracting quantitative imaging features from lesion and perilesional 
regions using automated, high-throughput computational algorithms 
—enables non-invasive characterization by correlating these features 
with clinical/pathological outcomes to identify optimal biomarkers for 
lesion evaluation (12). The combination of UTE or ZTE in Oxygen 
Enhancement (OE) technology successfully extracted and compared 
radiomics features from lung OE-UTE-MRI images and CT images 
(13). Some scholars have combined OE-UTE-MRI with quantitative 
MRI sequences and successfully identified the invasiveness of certain 
lung cancers (14). 

In recent years, researchers have combined relevant radiomic 
parameters from CT and MRI to successfully predict postoperative 
adjuvant treatment patterns in gastric cancer (15). However, at the 
present stage, there are few studies combining OE-ZTE-MRI with 
CT. Meanwhile, there is an urgent need to find a method to 
combine multimodal radiomics with clinical parameters to 
accurately predict the benignancy or malignancy of high-risk 
nodules before surgery. 
02 
Therefore, this study is to construct a multimodel using CT and 
OE-ZTE-MRI radiomics features with clinical factors to predict the 
benign and malignant nodules before surgery and improve the 
preoperative prediction accuracy of lung nodules. Additionally, this 
study compares the performance of the multimodal radiomics 
model with the single radiomics model in preoperative prediction. 
Materials and methods 

This is a prospective study, and the hospital’s Ethics Review 
Committee approved all procedures. The study adheres to the 
principle of complete confidentiality of subject information, and 
all researchers have full control over the provided radiological data. 

The principles of ≪Declaration of Helsinki≫ conducting the 
study, and patients had full informed consent rights. From November 
2023 to December 2024, patients diagnosed with “lung nodules” in 
the thoracic surgery department of our hospital were consecutively 
collected. These patients underwent chest CT and chest OE-ZTE
MRI examinations in our hospital and were preparing for surgical 
treatment. The inclusion criteria were: 1. Age between 40–80 years 
old; 2. Confirmed as high-risk nodules by multidisciplinary (MDT) 
consultation (satisfying any one of the following: Lung-RADS≥4A 
with solid component >8mm or solid component >6mm in part-solid 
nodules, lobulation, spiculation, or pleural traction); 3. Underwent 
treatment (surgical or experimental anti-inflammatory) and obtained 
paraffin pathological results postoperatively. The exclusion criteria 
were: 1. MRI absolute contraindications (cardiac pacemakers, etc.); 2. 
Nodule diameter < 10mm; 3. Received treatment affecting nodule size 
before surgery (anti-inflammatory, radiotherapy, chemotherapy, 
etc.); 4. Pregnancy, lactation;5. Poor image quality, not 
encompassing the entire diseased area. Huang et al.’s (16) result

showed that UTE sequences achieve 100% detection sensitivity for 
pulmonary nodules ≥10 mm. This study excluded nodules <10 mm 
in diameter to ensure complete OE-ZTE-MRI visualization and 
accurate same-session CT co-registration for all enrolled lesions. 
According to the expert consensus in some Asian countries, it is 
recommended to conduct lung cancer screening for people over 40 
years old with high-risk factors (17). And to comprehensively 
consider factors such as the physical functions of the elderly 
population, we have set the upper age limit at 80 years old. For 
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some patients, there were multiple nodules in their lungs. These 
patients could obtain pathological results separately through surgical 
resection or CT-guided puncture. Each nodule’s pathological result 
was considered an independent diagnostic result. Based on the 
complete pathological results of this study, the outcome events 
were divided into benign and malignant groups. Figure 1 illustrates 
the patient selection process and exclusion criteria. The dataset of this 
study was randomly divided into training and test sets in a 7:3 ratio. 

All patient information and scan data from the Picture 
Archiving and Communication System (PACS) were anonymized 
to obtain the final imaging results and saved accordingly. Clinical 
information of patients was collected through the electronic medical 
record system, including: 1) Age; 2) Gender; 3) Maximum nodule 
diameter; 4) Body Mass Index (BMI); 5) Hypertension; 6) Diabetes; 
7) Coronary Heart Disease (CHD); 8) Smoking history (18–21). All 
relevant demographic data and related information are summarized 
in Table 1. The nodules were independently evaluated by two 
radiologists to ensure accuracy. All nodules were jointly evaluated 
by two radiologists with extensive experience to have at least one of 
lobulation, spiculation, pleural traction, or nodule composition (i.e., 
Lung-RADS≥4A), and were included in this study after screening. 
MRI scanning protocol 

All patient MRI scans were performed using a 3-T MRI device 
(Signa Premier, GE Healthcare) with a 32-channel spine coil and a 
16-channel abdominal coil. The scanning parameters were as 
follows: repetition time/echo time: 770.4 ms/0.02 ms; field of 
view: 420 × 420 mm²; slice thickness: 2 mm; flip angle: 2°; voxel 
size:1.4×1.4×2.0; bandwidth: 45.46 kHz; flip angle: 2°; number of 
slices: 80-120 (depending on patient height). 
Frontiers in Oncology 03 
The average acquisition time using OE-ZTE-MRI technology 
was 290 seconds (range: 285–407 s). Before starting the MRI scan, 
patients were manually instructed to inhale oxygen for two minutes. 
Subsequently, patients breathed nominally 100% oxygen (i.e., OE
ZTE-MRI sequence). The total MRI scan time did not exceed 
7 minutes. 
CT scanning protocol 

All patients underwent CT scans using 256-slice or higher CT 
scanners to obtain images and were diagnosed with “lung nodules” 
by two radiologists. During the scan, patients were scanned from 
the thoracic inlet, starting at the suprasternal notch, to the 
costophrenic angle. The scanning parameters were as follows: 
field of view: 256×256 mm² or 332×332 mm²; tube current: 
automatic; tube voltage: automatic (using automatic exposure 
control, depending on the patient’s weight). Images were 
reconstructed using standard mode and a slice thickness of 1-1.25 
mm, and only preoperative images were used for image analysis. All 
CT results are plain scans, and contrast agents were not used. 
Feature extraction, selection, model 
construction, and statistical analysis 

This study selected axial chest CT and OE-ZTE-MRI for feature 
extraction. We only chose T↓2-weighted images from the OE-ZTE
MRI sequence to compare with CT images. This choice was based 
on the findings of Ohno et al (22). 

The DICOM medical digital images from CT and OE-ZTE-MRI 
were imported into the open-source software ITK-snap, and ROIs 
FIGURE 1 

Flow chart of patient enrollment in this study. 
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were delineated layer by layer using manual or semi-automatic 
methods. The tumor margins were delineated on CT images with a 
window width of 1600 HU and a window level of -600 HU and 
manually delineated layer by layer on OE-ZTE-MRI images with 
appropriate contrast. A radiologist with 20 years of experience in 
chest imaging diagnosis will carefully consider the relationship 
Frontiers in Oncology 04
between the nodule and blood vessels or bronchi. According to 
the standardized CT imaging protocol, the radiologist will 
distinguish the nodule from the surrounding normal tissues. 
Meanwhile, under different imaging modalities, the radiologist 
will segment the pulmonary nodules based on factors such as the 
density of the tumor or the signal intensity on MRI images to ensure 
TABLE 1 Clinical features of the patients. 

Variables Train cohort benign Train cohort malignant Test cohort benign Test cohort malignant 

Age, years, mean±SD 53.68±13.59 62.10±9.84 60.60±11.02 64.13±10.94 

Diameter, mm, mean±SD 14.18±8.95 27.49±21.27 17.47±9.48 33.67±22.97 

BMI, kg/m2, mean±SD 24.09±2.42 22.45±2.71 23.19±2.86 24.41±3.72 

CT Value, HU, mean±SD -88.73±336.58 -227.71±309.60 -57.49±159.46 -140.88±267.65 

Sex 

Female, n (%) 16 (57.14) 24 (58.54) 7 (46.67) 9 (60.00) 

Male, n (%) 12 (42.86) 17 (41.46) 8 (53.33) 6 (40.00) 

Density 

SN, n (%) 17 (60.71) 22 (53.66) 12 (80.00) 6 (40.00) 

PSN, n (%) 7 (25.00) 9 (21.95) 2 (13.33) 8 (53.33) 

GGN, n (%) 4 (14.29) 10 (24.39) 1 (6.67) 1 (6.67) 

Location 

LAL, n (%) 9 (32.14) 14 (34.15) 2 (13.33) 1 (6.67) 

LUL, n (%) 6 (21.43) 4 (9.76) 3 (20.00) 3 (20.00) 

RAL, n (%) 5 (17.86) 14 (34.15) 6 (40.00) 6 (40.00) 

RML, n (%) 3 (10.71) 1 (2.44) 2 (13.33) 1 (6.67) 

RUL, n (%) 5 (17.86) 8 (19.51) 2 (13.33) 4 (26.67) 

Calcification 

None, n (%) 22 (78.57) 40 (97.56) 13 (86.67) 13 (86.67) 

Yes, n (%) 6 (21.43) 1 (2.44) 2 (13.33) 2 (13.33) 

Hypertension 

None, n (%) 20 (71.43) 25 (60.98) 9 (60.00) 9 (60.00) 

Yes, n (%) 8 (28.57) 16 (39.02) 6 (40.00) 6 (40.00) 

Diabetes 

None, n (%) 26 (92.86) 37 (90.24) 11 (73.33) 13 (86.67) 

Yes, n (%) 2 (7.14) 4 (9.76) 4 (26.67) 2 (13.33) 

Coronary_Heart_Disease 

None, n (%) 23 (82.14) 33 (80.49) 13 (86.67) 11 (73.33) 

Yes, n (%) 5 (17.86) 8 (19.51) 2 (13.33) 4 (26.67) 

Smoking 

None, n (%) 16 (57.14) 26 (63.41) 7 (46.67) 12 (80.00) 

Yes, n (%) 12 (42.86) 15 (36.59) 8 (53.33) 3 (20.00) 
 

Values are mean ± SD, median ± 25th and 75th percentile, or n (%). P values signify statistical significance and reflect the differences between the Train and Text groups. SD, standard deviation; 
BMI, body mass index; SN, Solid Nodule; PSN, Part Solid Nodule; GGN, Gurond Glass Nodule; LAL, Left Anterior Lung; LUL, Left Under Lung; RAL, Right Anterior Lung; RML, Right Middle 
Lung; RUL, Right Under Lung; CHD, Coronary Heart Disease. 
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the rigor of nodule segmentation. Image segmentation was 
independently performed by two experienced radiologists who 
were blinded to the patients’ histopathology. 

Since CT and OE-ZTE-MRI are different scanners with different 
data acquisition protocols, the data from these sequences usually 
have heterogeneous voxel spacing. It is necessary to preprocess 
these images. In this heterogeneous voxel spacing, we referred to the 
suggestions given in previous literature (23, 24). Spatial 
normalization was used to reduce the impact of voxel spacing 
variations, and fixed-resolution resampling was used to address 
the above issues. All images were resampled to a voxel size of 1×1×1 
mm3 to standardize voxel spacing and standardized using z-score 
normalization (zero-mean normalization). 
 

Feature selection 

The open-source installer named ‘PyRadiomics’ was used on 
Python to extract signal intensity features and texture features from 
the raw images. This software allows the resampling of both sets of 
sequence images to a voxel size of 1×1×1 mm. All the calculation 
formulas  and  the  pipel ine  can  be  found  at  https : / /  
pyradiomics.readthedocs.io/en/latest/.iomic features. Z-score 
normalization was employed to address the issue of varying scales 
in manual radiomic features. 

We performed a Mann-Whitney U test and feature screening for 
all radiomic features. Only the radiomic features with p < 0.05 were  
kept (230 CT features, 51 OE-ZTE-MRI features, and 281 CT-MRI 
features). For features with high repeatability, Pearson’s rank

correlation coefficient was also used to calculate the correlation 
between features, and one of the features with a correlation 
coefficient greater than 0.9 between any two features is retained. 
After this, 67 CT features, 28 OE-ZTE-MRI features, and 50 CT-MRI 
features were kept. A Least Absolute Shrinkage and Selection 
Operator (LASSO) regression model was used for model 
construction on the discovery dataset. Depending on the tuning 
weight l, LASSO shrinks all regression coefficients toward zero and 
sets the coefficients of many irrelevant features to zero. To find an 
optimal l, a 10-fold cross-validation with the minimum standard was 
used, where the final value of l produced the minimum cross-
validation error. The regression model was fitted using the retained 
non-zero coefficient features and combined into a model. The Python 
scikit-learn package was used for LASSO regression modeling. 
Radiomics model construction 

After LASSO feature selection, the final features were input into 
a Support Vector Machine (SVM) to construct the risk model. The 
following classifiers were used for machine learning, and a 5-fold 
cross-validation was employed to obtain the final radiomics model. 
Six machine learning classifiers with AUC > 0.69 were selected in 
descending order for this study. The ROC curve was plotted to 
evaluate the diagnostic performance of the prediction model, and 
the corresponding AUC value, sensitivity (SEN), specificity (SPE), 
Frontiers in Oncology 05 
positive predictive value (PPV), and negative predictive value 
(NPV) were analyzed. Decision curve analysis (DCA) was plotted 
to evaluate clinical effectiveness. 
Clinical model construction 

Features for establishing the clinical model were selected 
through baseline demographic statistics. The same machine-

learning models were used in the construction of the clinical 
model. A 5-fold cross-validation and test cohort were set up for 
fair comparison. Only the statistics screened by univariate and 
multivariate logistic regression models were finally included in the 
construction of the final model. Ultimately, the nomogram was 
constructed and compared with other models. 
Statistical analysis 

Statistical analysis of radiomics was performed using Python 
and SPSS software packages. Shapiro-Wilk test was used to evaluate 
the normality of continuous data. Normally distributed continuous 
variables were expressed as mean ± standard deviation, while non-
normally distributed variables were expressed as median and 
interquartile range. Categorical variables were analyzed using the 
chi-square test or Fisher’s test and expressed as absolute values 
(percentages). Paired AUC comparisons between classifiers were 
performed using DeLong’s test. Multivariate logistic regression 
analysis was used to determine statistically significant imaging 
parameters (two-tailed p < 0.05 was considered statistically 
significant) for inclusion in the multimodel. Area Under Curve 
(AUC) and accuracy (ACC) were calculated, along with their 95% 
confidence intervals. SEN, SPE, negative NPV, and PPV were also 
calculated. Hosmer-Lemeshow test was used to assess the goodness 
of fit. p < 0.05 was considered statistically significant. 
Results 

Baseline demographic characteristics 

A total of 84 patients with 99 nodules clinically diagnosed with 
“pulmonary lesions” were included in this study. The average age of 
the patients was 59.80 ± 11.86 years, and Table 1 shows other 
demographic data. Our statistical results showed no significant 
differences in high-risk factors such as age and gender between 
the two groups (p > 0.05). Among them, 41 nodules were benign, 
and 58 nodules were malignant. The majority of malignant nodules 
were adenocarcinomas (n=39,n=39.3%), squamous carcinomas 
(n=3,3.0%), and small-cell carcinomas (n=5,5.0%), and some of 
the malignant nodules were inoperable and were referred to 
conservative treatment (n=11,11.1%). Among benign nodules, 
there were some nodules with a clinical decision of benign and 
loss of pathological findings (n=17,17.1%), inflammatory nodules 
that shrank or disappeared after treatment (n=6,6%), alveolar 
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epithelial hyperplasia (n=7,7%), misshapen tumors (n=4;4%), larger 
tuberculous  foci  (n=2,2%),  benign  mediastinal  tumors  
(neurosphincteric tumors n=1;1% and benign cystic thymic 
adenoma n=1; 1%), adenomatoid hyperplasia (n=1,1%), 
mesenchymal tumors (n=1,1%) and sclerosing anaplastic 
tumors (n=1,1%). 

Figure 2 shows the workflow of this study. A total of 2394 
radiomics features (1197 per sequence, with the multi-radiomics 
model screening features from both sequences together) were 
extracted from CT and OE-ZTE-MRI images. The best features 
were input into the SVM model. The optimal model consisted of the 
following six models: 1. NativeBayes; 2. KNN; 3. Decision Tree; 4. 
LightGBM; 5. AdaBoost; 6. MLP. After three rounds of screening, 
16 CT features, 5 OE-ZTE-MRI features, and 12 CT-MRI features 
were finally included in the analysis (Figure 3). 
 

Analysis of single and multi-radiomics 
model 

The selected radiomics features were used to construct six 
machine-learning models with the most suitable algorithms. In the 
three study cohorts, the AUC values of the training sets for the CT, 
OE-ZTE-MRI, and multi-radiomics(CT-MRI) model were 0.907 
(95% CI: 0.837-0.977), 0.854 (95% CI: 0.761-0.946), and 0.923 
(95% CI: 0.865-0.982), respectively. The AUC values of the test sets 
were 0.798 (95% CI: 0.634-0.962), 0.769 (95% CI: 0.587-0.951), and 
0.813 (95% CI: 0.645-0.982), respectively, as shown in Table 2. 
DeLong test showed that the performance of the multi-radiomics 
model was significantly better than that of the single radiomics 
models (multi-radiomics vs CT: training cohort p=0.045; testing 
cohort p=0.032)(multi-radiomics vs MRI: training cohort p<0.001; 
testing cohort p<0.001) in terms of ACC, SEN, SPE, PPV, and NPV 
values. Although multi-radiomics model(training set AUC:0.923; 
testing set AUC: 0.813)had better predictive performance, MRI 
model also demonstrated diagnostic capabilities similar to the CT 
model (MRI vs.CT: training cohort AUC: 0.854 vs 0.907; testing 
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cohort AUC: 0.769 vs 0.798). In this study, each radiomics model was 
also evaluated using DCA. DCA analysis for the test and training 
cohorts of each radiomics model is shown in Figure 4. 
Analysis of multi-radiomics model and 
clinical model 

To intuitively and effectively evaluate the incremental 
prognostic value of the radiomics model for clinical factors, we 
constructed a combined model on the test dataset. This multi-

model method integrates the multi-radiomics model and clinical 
factors based on univariate and multivariate logistic regression 
analyses. The construction process of the clinical model is 
essentially the same as that of the radiomics model. According to 
the results shown in Table 3, the univariate logistic regression 
consists of 12 parameters. Multivariate logistic regression 
ultimately showed significant differences (p < 0.05) in calcification 
shown by CT (OR: 0.667, 95% CI: 0.493-0.902, p=0.029) and larger 
nodule diameter (OR: 1.009, 95% CI: 1.004-1.013, p=0.005) between 
the two cohorts. This indicates that the risk of nodule malignancy is 
influenced by the nodule diameter and the presence of calcification 
within the nodule. Therefore, the selected clinical feature model 
consists of these two factors. 
Analysis of multi-model 

A combined model was constructed by integrating all radiomics 
models with clinical models (training cohort: AUC=0.941; testing 
cohort: AUC=0.838) (Figure 5). DeLong test showed that the multi-

model outperforms the multi-radiomics model and the single 
clinical feature model(multi-model vs clinical: training cohort 
p<0.001; testing cohort p=0.001) (multi-model vs multi-radiomics 
model: training cohort p=0.035; testing cohort p=0.046). Hosmer-

Lemeshow test indicated that the model had a good fit for

predicting malignancy in both the training and testing cohorts 
FIGURE 2 

Workflow of radiomic analysis in the study. Radiologists segmented nodules, and LASSO selected features based on which the prediction model, 
MSE, and weight were built. Finally, the Combined Model, Calibration, and nomogram were built. Example figures (A, C) are CT images of the benign 
and malignant groups, respectively, while figures (B, D) are OE-ZTE-MRI images of the benign and malignant groups, respectively. 
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(training cohort p=0.261; testing cohort p=0.163), with no 
significant difference between the predicted and actual values. The 
DCA results are shown in Figure 6. Compared to clinical models, 
the nomogram (Figure 7) and the example of the nomogram 
(Figure 8) provided higher net benefits, demonstrating greater 
potential valuation in clinical decision-making. 
Frontiers in Oncology 07 
Discussion 

In this study, to preoperatively diagnose the malignancy of 
pulmonary nodules higher than Lung-RADS 4A, we developed and 
validated a new model. Based on this model, we generated a nomogram 
that can assist in clinical decision-making. This predictive model 
FIGURE 3 

Retained radiomics features and their corresponding coefficients in different models after regression analysis by LASSO. (A) OE-ZTE-MRI model,(B) CT 
model, (C) CT-MRI model. 
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includes statistically significant clinical features, CT, and OE-ZTE-MRI 
radiomics features. Through comparison, we found that the multi-

model constructed from clinical features and the CT-MRI model has 
greater advantages in preoperative diagnosis of the malignancy of such 
pulmonary nodules. 

Gas MRI  technology  has been widely used in preclinical research. 
Currently, the commonly used gas contrast (25–27) agents,  Helium-3  
(3He) and Xenon-129 (129Xe), are difficult to prepare (28). Oxygen, 
due to its safety, may become the superior method for routine clinical 
operations using oxygen-enhanced MRI imaging schemes (29). Ohno 
et al. explored the feasibility of OE-MRI imaging in diagnosing lung 
diseases in clinical settings and compared the images of lung cancer 
patients with different tests, showing changes in regional oxygen 
concentration and lung function (22). 

In recent decades, radiomics has rapidly developed, enabling the 
quantitative analysis of thousands of radiomics features. This helps 
assess lung tumors’ invasiveness and treatment response and assists 
in the preoperative differentiation of benign and malignant 
pulmonary nodules (30). Liu’s study (31) indicated that a 
combined model using radiomics and CT imaging features can 
differentiate between benign and malignant subcentimeter (≤10 
mm) solid nodules (training cohort AUC: 0.942; testing cohort 
AUC: 0.930), which is almost consistent with the results obtained 
in this study using CT radiomics parameters alone (training cohort 
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AUC: 0.907; testing cohort AUC: 0.798). However, their study did not 
target patients with non-solid nodules, which may have led to 
deviations in the AUC values in the test cohort. Additionally, it 
only differentiated between benign and malignant nodules without 
incorporating any clinical or imaging parameters. Huang’s results

(32) showed that using a deep learning-enhanced radiomics model 
can successfully predict benign and malignant ground-glass nodules 
(GGNs), achieving the highest model performance in external 
validation. However, this study only targeted GGNs detected by 
CT, without including solid components, and was conducted in a 
single institution without external validation. 

With the advent of UTE and ZTE technologies, it has become 
possible to use semi-automatic or manual delineation of tumor entities 
and extract their radiomics features. Wang (33) delineated 
multiparametric MRI sequences to extract radiomics features, 
successfully assessing the heterogeneity of lung tumors about nodule 
size. This study did not use UTE or ZTE sequences and did not further 
discuss benign nodules. UTE-MRI or ZTE-MRI, as described by the 
Fleischner Society (7), can be used as a supplementary sequence to 
help evaluate lung nodule imaging or perform feature extraction. 
Using ZTE is better than UTE, as validated by Bae’s (8) study.

Compared to UTE, ZTE is superior in depicting normal lung 
structures. The shorter TE in ZTE may result in less signal loss at 
the nodule site, which is crucial for enhancing image clarity. 
TABLE 2 CT, OE-ZTE-MRI and CT-MRI histology-based machine learning modeling analysis. 

Cohort Model AUC AUC 95%CI Acc Acc 95%CI Sen Spe PPV NPV 

Train CT_MRI 0.923 0.8651 - 0.9816 0.841 0.7367 - 0.9155 0.78 0.929 0.941 0.743 

Test CT_MRI 0.813 0.6452 - 0.9815 0.767 0.4247 - 0.7753 0.8 0.733 0.75 0.786 

Train CT 0.907 0.8370 - 0.9766 0.841 0.7367 - 0.9155 0.756 0.964 0.969 0.73 

CTest CT 0.798 0.6339 - 0.9617 0.733 0.4980 - 0.8354 0.6 0.867 0.818 0.684 

Train OE_ZTE_MRI 0.854 0.7609 - 0.9464 0.826 0.6853 - 0.8799 0.78 0.893 0.914 0.735 

Test OE_ZTE_MRI 0.769 0.5869 - 0.9509 0.767 0.4247 - 0.7753 0.733 0.8 0.786 0.75 
 
fr
95%CI, 95 percent confidence interval. 
FIGURE 4
 

Decision Curve Analysis of MRI radiomic models. CT radiomic models and CT_MRI model for predicting Benign and Malicious in (A) training and (B) testing.
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It is well known that CT and MRI are two technologies with 
completely different acquisition principles. Although GGNs and PGNs 
are less clear on MRI images (34), the cross-modal model of CT and 
OE-ZTE-MRI still achieved results similar to those of Lee (13), and 
higher than those reported by Wielputz (35). We speculate that during 
the patient  selection process, the  sizes of PGNs and  GGNs were both  
over 10 mm, with nodule characteristics dominated by ground-glass 
components, and pathological results confirmed that almost all were 
malignant. Additionally, we found that radiomics features stable across 
modalities are not rare, and previous studies have demonstrated that 
some multimodal models can be applied in clinical practice (36). 
However, based on previous conclusions, we selected the most suitable 
texture features (13, 23)and constructed the optimal multimodal 
radiomics model. This has been validated in preclinical efficacy 
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evaluations, such as a study on the correlation between multimodal 
radiomics and pathology of thermal ablation lesions in rabbit lung VX2 
tumor models (37); it has also been supported in clinical practice by a 
machine learning-based study using multimodal radiomic texture 
features to predict lung cancer (38). 

There are some limitations to this study. First, each subject had to 
undergo complete CT scans, and OE-ZTE-MRI examinations. Some 
elderly patients with underlying diseases (unable to lie down for long 
periods) could not tolerate all the examinations well, leading to a smaller 
sample size that may be accompanied by unpredictable selection bias. 
Second, the single-center, small-sample design of this study may 
compromise model generalizability, necessitating further multicenter 
external validation—preferably across heterogeneous cohorts and cross-
modality verification (e.g., PET-CT)—to confirm robustness against 
TABLE 3 A univariate and multivariate logistic regression analysis for clinical factors. 

Univariate Regression Multivariate Regression 

Variable OR (95%Cl) p_value OR (95%Cl) p_value 

Calcification 0.605 (0.441-0.829) 0.01 0.667 (0.493-0.902) 0.029 

Smoking 0.938 (0.765-1.151) 0.606 

BMI 0.947 (0.914-0.981) 0.012 0.971 (0.939-1.003) 0.135 

Sex 0.986 (0.806-1.208) 0.91 

CT_Value 1.000 (0.999-1.000) 0.082 

Location 1.003 (0.937-1.074) 0.941 

Diameter 1.010 (1.004-1.015) 0.003 1.009 (1.004-1.013) 0.005 

Age 1.014 (1.006-1.022) 0.004 1.008 (1.001-1.016) 0.07 

CHD 1.026 (0.795-1.326) 0.865 

Density 1.067 (0.942-1.209) 0.388 

Diabetes 1.083 (0.760-1.543) 0.71 

Hypertension 1.118 (0.907-1.377) 0.378 
 

OR (95%CI), Odds Ratio (95% Confidence Interval). 
FIGURE 5 

ROC curves of 5 models in the (A) training and (B) testing. 
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FIGURE 6 

Decision Curve Analysis of 5 models for predicting Benign and Malicious in (A) training and (B) testing. 
FIGURE 7 

Nomogram of Combined Model. The sum of all factors equals the total points.CT_MRI: CT &OE-ZTE-MRI. Combined Model: CT sequences, OE
ZTE-MRI sequences, calcification and age. Among them, the nodule diameter is based on a zero baseline of 10mm. 
FIGURE 8 

An example of a Nomogram of Combined Model. The CT-MR model predicted a 40% probability of malignancy in a patient with a pulmonary lesion. 
The nodule has no calcification and a diameter of approximately 40mm. After analysis using the nomogram, the malignancy rate for this patient 
increased to about 70%. 
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equipment parameters, reader expertise, and regional population 
differences. Finally, this model may not be suitable for patients with 
larger nodules, as large masses (such as massive hilar tumors with 
obstructive pneumonia) are often accompanied by emaciation or severe 
underlying diseases. These patients are often inoperable, and the 
probability of malignancy is almost 100%. Therefore, early detection 
and multidisciplinary team collaboration are crucial for developing 
appropriate treatment plans. 
Conclusion 

This study constructed a multi-model by integrating clinical factors, 
CT, and OE-ZTE-MRI radiomics features. This model can be used to 
predict the malignancy of high-risk nodules preoperatively, thereby 
improving the accuracy of pulmonary nodule prediction. DeLong test 
showed that in preoperative prediction of the malignancy of high-risk 
pulmonary nodules, multi-model>multi-radiomics model>single model. 
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