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Colorectal cancer (CRC) is ranked as the third most prevalent malignancy and is a

leading cause of cancer-related mortality globally, significantly affecting the

health and longevity of middle-aged individuals and the elderly. The primary

risk factors for CRC are mainly due to unhealthy dietary habits and lifestyle

choices, and they have been shown to profoundly influence the composition of

the gut microbiota. Given that dietary patterns are critical determinants of gut

microbial diversity, a compelling association exists between gut microbiota and

the pathogenesis of CRC. Recent research has increasingly focused on the

intricate interplay between gut microbiota and CRC, exploring its role in

disease initiation, progression, and the modulation of host immune responses.

Investigations have demonstrated that certain specific microbial communities

can promote inflammation, disrupt metabolic pathways, and produce

carcinogenic compounds, thereby contributing to the development of CRC.

Conversely, a diverse and balanced gut microbiome may confer protective

effects against cancer through mechanisms such as the production of short-

chain fatty acids and the enhancement of intestinal barrier integrity. This article

provides a comprehensive overview of the characteristics of the gut microbial

community and its complex relationship with CRC. It highlights potential

mechanisms through which gut microbiota may influence CRC pathogenesis,

including chronic inflammation, toxins, metabolites, epigenetic dysregulation,

and immune regulatory dysfunction. Additionally, this review summarizes

innovative strategies for CRC prevention and treatment, emphasizing the

therapeutic potential of probiotics and natural plant extracts. By elucidating

these connections, this work aims to enhance the understanding of the gut

microbiome’s role in CRC.
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1 Introduction

Colorectal cancer (CRC), originating from the mucosal cells of

the colon and rectum, is one of the most prevalent malignancies of

the digestive system, predominantly affecting individuals aged 50

and older (1, 2). Recent epidemiological data indicate a concerning

increase in both the morbidity and mortality rates associated with

CRC (3). Globally, CRC is ranked as the third most common

cancer, with over 1.93 million new cases and approximately 935,000

deaths reported in 2020, accounting for about 10% of all cancer

incidences and 9.4% of cancer-related deaths, making it the third

leading cause of death in both male and female groups (4–6). The

number of new CRC cases worldwide may rise to 2.5 million by

2035, surpassing liver and stomach cancers (7). CRC typically

exhibits a slow growth pattern, progressing gradually from small,

inconspicuous adenomas to malignant tumors over several years,

with potential for metastasis to the whole body (8). In its early

stages, CRC is often asymptomatic; however, advanced cases may

present with symptoms such as abdominal pain, changes in bowel

habits, hematochezia, and intestinal obstruction (9, 10).

The etiology of CRC involves both genetic and environmental

factors. While genetic factors, such as germline mutations, account

for a small proportion of cases, most instances are sporadic,

suggesting a complex interaction between genetics and

environmental influences in CRC development (11, 12). Key risk

factors include unhealthy lifestyle choices and dietary habits, such

as smoking, excessive alcohol consumption, physical inactivity,

obesity, high intake of red and processed meats, and low

consumption of fiber-rich foods (13). In particular, dietary habits

are significantly associated with the incidence of CRC (14). Notably,

dietary patterns considerably influence the composition of gut

microbiota (15, 16), which has been increasingly recognized for

its roles in the pathogenesis and progression of CRC (17–20).

Trillions of microorganisms in the human gut form a complex

microecosystem that regulates interactions between the host and

the environment. This ecosystem plays a crucial role in digestion,

metabolism, nutrient absorption, immune regulation, and pathogen

defense, significantly impacting overall health and disease states

(21–23). The normal gut microbiota maintains the homeostasis of

the intestinal environment, thereby protecting the structure and

function of mucosal epithelial cells (24). Conversely, dysbiosis in

gut microbiota can lead to a reduction in beneficial microorganisms

and an increase in pathogenic microbes, subsequently altering the

intestinal microenvironment. Consequently, this alteration may

activate inflammatory responses, produce toxic metabolites,

induce gene mutations, and damage the intestinal epithelial

barrier (25, 26). Numerous studies have demonstrated that both

structural changes and functional disorders of gut microbiota are

closely related to the development of CRC (27–30).

Compared with healthy individuals, patients with CRC exhibit

dysbiosis characterized by a decrease in the abundance of bacteria

with potential protective effects and an increase in pathogenic

bacteria (18, 24, 31). In the context of gut microbiota dysbiosis,

pathogenic bacteria replace non-harmful symbiotic bacteria,

triggering host inflammation, promoting cellular proliferation,
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which influence the development of CRC (24, 32). In addition to

bacteria, fungal pathogens are also reported to trigger the process of

colorectal carcinogenesis (33).

Moreover, the gut microbiota has a dual role in CRC. It may

promote both the initiation and progression of the disease through

various mechanisms. At the same time, it can also exert inhibitory

effects on tumor activity (34). For instance, enterotoxigenic

Bacteroides fragilis can induce inflammatory diarrhea and

promote CRC progression through the secretion of Bacteroides

fragilis toxin (BFT) (35). In contrast, Lactobacillus can reduce the

risk of CRC by secreting short-chain fatty acids (SCFAs) and other

metabolites (36). Candida albicans can trigger the upregulation of

glycolytic levels in macrophages, leading to the secretion of IL-7 and

ultimately promoting the production of IL-22 by innate lymphoid

cells type 3 (ILC3). This cascade effect enhances the proliferation of

intestinal epithelial cells and contributes to the development of

colitis-associated colon cancer (CAC) (37, 38). However, certain

commensal fungal species possess anti-inflammatory properties

and the ability to modulate the immune response (39). For

example, Saccharomyces cerevisiae can mitigate AOM/DSS-

induced CRC by modulating the intestinal microbiota and

lowering the levels of pro-inflammatory mediators (40).

Additionally, improving gut microbiota composition can increase

the proportion of beneficial microorganisms, thereby effectively

retarding the progression of CRC (41).

This article aims to summarize the latest advancements in this

field. It will elucidate the relationship between gut microbiota and

CRC, as well as the potential mechanisms involved. The goal is to

provide valuable targets for the prevention and treatment of CRC in

clinical practice.
2 Characteristics of the human gut
microbiota

The human gut is home to a vast array of microorganisms,

including bacteria, archaea, viruses, fungi, and protists, characterized

by their dense distribution and active metabolism. Collectively, these

organisms form a complex and diverse microecosystem that plays a

crucial role in various physiological and pathological processes (42,

43). Bacteria constitute the most abundant group of microbes in the

intestines, numbering approximately 10^13, which is estimated to be

ten times the total number of host cells. The total genomic content of

bacteria exceeds that of the host by more than 100-fold, which has led

to its classification as the second-largest gene pool in the human body

(44, 45). In healthy adults, the dominant intestinal flora include

Firmicutes and Bacteroidetes, which together account for 90% of the

gut microbial community. Most of these dominant groups of bacteria

are anaerobic, including genera such as Bacteroides, Bifidobacterium,

Eubacterium, Fusobacterium, and Peptostreptococcus (46, 47). In

addition, fungi, along with other intestinal microorganisms, are

important components of the human gut microbiota that

contribute significantly to maintaining gut health and regulating

intestinal inflammation (48). Although fungi account for a smaller
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proportion of the microbiota than bacteria in terms of number, they

are significantly larger in size. As a result, they occupy a substantial

proportion of the biomass (49). In the human gut, Ascomycota and

Basidiomycota are two dominant phyla of fungi (50). In terms of

genera, the community is mostly made up of Aspergillus,

Candida, Debaryomyces, Malassezia, Penicillium, Pichia, and

Saccharomyces (51).

The gut microbiota is dynamic rather than static; its

composition is primarily influenced by the mode of delivery at

birth and subsequently shaped alongside external environmental

factors and behavioral habits, including diet, physical activity,

medication use, and psychological stress. Through continuous

selection and adaptation in conjunction with the host, the

microbiota establishes a stable interdependent state while

maintaining dynamic responses to variations in external

conditions (52, 53). The harmonious interplay between a healthy

intestinal microbial structure, an intact mucosal barrier, and a fully

developed immune system is essential for sustaining the dynamic

equilibrium of the gut microecosystem. When exposed to

adverse external factors, the composition and abundance of

microorganisms can change, particularly resulting in dysbiosis

characterized by changes in bacterial species, which can

significantly impact various aspects of human health (54).
3 The potential pro-carcinogenic
mechanisms of gut microbiota in CRC

Dysbiosis of the human gut microbiota is closely associated with

CRC. Patients with CRC typically exhibit signs of dysbiosis in their

gut microbiota, which is characterized by decreased bacterial

abundance and diversity in both intestinal mucosa and fecal

samples compared to those from healthy individuals (55, 56).

Specific pathogenic bacterial species in the gut exhibit a significant

increase, such as Fusobacterium nucleatum, enterotoxigenic

Bacteroides fragilis, Escherichia coli, Enterococcus faecalis,

Streptococcus gallolyticus, and Salmonella enterica (57–59).

Generally, the ratio of Basidiomycota to Ascomycota is often

regarded as an index that reflects fungal dysbiosis in an ecosystem

(60–62). Compared with healthy subjects, patients with CRC exhibit

an increased Basidiomycota: Ascomycota ratio and alterations in the

gut fungal microbiota. The fungal class Malasseziomycetes

is enriched, while the classes Pneumocystidomycetes and

Saccharomycetes are depleted in CRC. Six fungal genera are

enriched, including Malassezia, Moniliophthora, Rhodotorula,

Acremonium, Thielaviopsis, and Pisolithus (63). In a meta-analysis

involving data from eight cohorts, researchers identified six fungal

species that were consistently enriched in fecal samples of CRC,

including Aspergillus rambellii, Cordyceps sp.RAO-2017, Erysiphe

pulchra, Moniliophthora perniciosa, Sphaerulina musiva, and

Phytophthora capsici. Incidentally, the enteric fungi and bacteria

demonstrated transkingdom interactions in the progression of

CRC, with Aspergillus rambellii exhibiting a strong association with

the CRC-enriched bacterium Fusobacterium nucleatum. Aspergillus

rambellii was found to promote CRC cell proliferation in vitro and to
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Candida albicans is one of the most studied fungi in relation to

human health, with evidence indicating a significantly increasing

trend in the feces of patients with CRC (65). To date, a growing body

of research has demonstrated that these microorganisms can promote

the initiation and progression of CRC through various mechanisms,

including the following.
3.1 Chronic inflammation and oxidative
stress

Chronic inflammation can be initiated by biological, chemical,

and physical factors and is associated with an increased risk of various

human malignancies (66). It is estimated that approximately 20% of

tumors are preceded by chronic inflammation (67). During

carcinogenesis, inflammation can release cytokines, generate free

radicals, damage DNA, promote cell proliferation, and induce

angiogenesis, ultimately facilitating tumor progression (68).

Inflammation serves as a critical environmental trigger

influencing the composition of the microbiota, and chronic

inflammation is recognized as a significant marker of colorectal

carcinogenesis (69). Dysbiosis of the gut microbiota can lead to

dysfunction of the intestinal mucosal barrier, allowing harmful

substances and toxins to infiltrate intestinal tissues, thereby

triggering inflammatory responses that promote tumorigenesis

and further create a favorable environment for tumor growth and

metastasis (28).

Chronic inflammation stimulates tumor growth and development

through key cytokines, such as nuclear factor kappa-B (NF-kB) and
signal transducer and activator of transcription 3 (STAT3) (70). These

factors enhance the production of additional pro-tumor cytokines and

chemokines, leading to leukocyte recruitment, inducing cell

proliferation, angiogenesis, lymphangiogenesis, and tumor cell

invasion (71). Inflammatory cytokines and chemokines can attract

immature myeloid cells or pro-inflammatory helper T cells, mediating

angiogenic factors and tissue remodeling enzymes, and suppressing

anti-tumor T cell responses, thereby influencing tumor progression

(72). Moreover, chronic inflammation can induce tissue damage and

oxidative stress (OS), leading to progressive accumulation of DNA

damage in epithelial cells, ultimately resulting in the malignant

transformation of intestinal epithelial cells (68).

Dysbiosis of the gut microbiota can trigger inflammatory

responses that promote carcinogenic pathways, with key

cytokines primarily including IL-1b, IL-6, IL-17, IL-22, IL-23, and
TNF-a (73–78). When gut microbiota dysbiosis occurs, the

proliferation of pathogenic bacteria increases endotoxins and

other Gram-negative bacterial components. This activates the

systemic inflammatory cascades, resulting in elevated secretion of

IL-6, TNF-a, and other pro-inflammatory cytokines, thereby

triggering an inflammatory response (68). IL-6 stimulates the

STAT3 signaling pathway, inducing the expression of anti-

apoptotic factors Bcl-xL and Bcl-2, resulting in the aberrant

accumulation of T cells in the intestinal mucosa, further

exacerbating the inflammatory response and accelerating the
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progression of adenomas to CRC (79). Moreover, gut microbiota

may activate Toll-like receptors (TLRs), leading to increased

expression of IL-1b and TNF-a while promoting the production

of COX-2. These cytokines mediate the synthesis of prostaglandin

E2, enhancing the inflammatory response and promoting

carcinogenesis (68). Myeloid differentiation factor 88 (MyD88) is

a critical adaptor molecule in the TLRs signaling pathway. MyD88

mediates the production of inflammatory cytokines such as IL-23

and IL-6, inducing differentiation of Th17 immune cells,

upregulating IL-17 and IL-22, and ultimately promoting tumor

cell proliferation by activating signaling pathways, including NF-kB
and STAT3 (80–82). Additionally, Table 1 provides details about

specific pathogenic bacteria in the gut that mediate the

production of pro-inflammatory cytokines, subsequently

triggering inflammation (83–94).

OS is widely acknowledged to refer to the imbalance between

reactive oxygen species (ROS) and reactive nitrogen species (RNS)

within cells, typically manifested by the production of ROS and RNS

exceeding the clearance capacity of the antioxidant system, thus

contributing to cellular damage and the development of various

diseases. The interaction between intestinal epithelial cells and

specific pathogenic bacteria can stimulate the production of ROS.

For instance, Enterococcus faecalis can induce macrophages to

generate ROS, leading to superoxide formation and DNA damage

in epithelial cells. This process, mediated by the NF-kB signaling

pathway, orchestrates inflammation and interferes with the

progression of CRC (95). The potential inflammatory mechanisms

of pathogenic bacteria in CRC are illustrated in Figure 1.

In addition, intestinal fungi may also be involved in the

occurrence and development of CRC through inflammatory

pathways. Researchers have observed that high concentrations of

Candida in gastrointestinal tumors can promote its colonization

through inflammatory responses, while Candida itself can sustain

an inflammatory environment linked to the activation of
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inflammatory factor IL-1 and neutropenia (96). Candida albicans

is one of the most common opportunistic fungal pathogens (97). It

may facilitate cancer development through multiple mechanisms,

including the disruption of the mucosal epithelium, the elicitation

of chronic inflammation, and the induction of Th17 immune

responses (98). Intestinal epithelial cells express dectin-1, a

molecule associated with the antifungal responses of myeloid cells

and intestinal inflammation. Intestinal epithelial cells may

recognize the activation of the Wnt pathway by Candida albicans

through dectin-1 to facilitate the development of CRC (99).

Additionally, Candida tropicalis can promote CRC by activating

the NLRP3 inflammasome through glycogen metabolism-

dependent glycolysis and the JAK/STAT1 signaling pathways

(100). Candida is suspected to participate in the progression of

CRC by inducing inflammation.
3.2 Toxins derived from gut microbiota

In the context of gut dysbiosis, various pathogenic bacteria in

the gut can secrete a range of toxins. These toxins not only induce

DNA damage in host cells, leading to mutations or deletions in

oncogenes and tumor suppressor genes, but also modulate host

signaling pathways, thereby promoting the onset and progression of

CRC directly or indirectly (57). Fusobacterium nucleatum produces

multiple virulence factors, among which Fusobacterium adhesion

protein A (FadA) binds to E-cadherin on intestinal epithelial cells,

activating the Wnt/b-catenin signaling pathway. This activation

results in the nuclear translocation of b-catenin, leading to the

overexpression of inflammatory and oncogenic genes, such as C-

MYC and CCND1, driving malignant cell proliferation and tumor

formation (57, 101). Additionally, Fusobacterium autotransporter

protein 2 (Fap2), another adhesin produced by Fusobacterium
TABLE 1 Specific pathogenic bacteria in the gut triggering inflammation through pro-inflammatory cytokines.

Author Year Experimental subjects Pathogenic bacteria Pro-inflammatory cytokines

Duizer, C., et al. (83) 2025 HT-29 cells Fusobacterium nucleatum CXCL8 (IL-8)

Yu, Y., et al. (84) 2025 HT-29 cells Fusobacterium nucleatum IL-8

Bostanghadiri, N., et al. (85) 2023 human Fusobacterium nucleatum IL-6 and TNF-a

Martin-Gallausiaux, C., et al. (86) 2024 HCT116 and HT-29 cells Fusobacterium nucleatum IL-8

Zhang, L., et al. (87) 2023 HCT116 and HT-29 cells Enterococcus faecalis IL-8

Cavallucci, V., et al. (88) 2022 CSC-P cells Fusobacterium nucleatum CXCL-1 and IL-8

Yin, H., et al. (89) 2022 mice Fusobacterium nucleatum IFN-g, TNF-a, IL-6, IL-12, IL-17A,
CXCL1, IL-9, MCP-1 and Eotaxin

Purcell, R. V., et al. (90) 2022 HCT116 and HT-29 cells Bacteroides fragilis IL-8

Cuellar-Gómez, H., et al. (91) 2022 human Fusobacterium nucleatum IL-23 and IL-17

Kim, Y. J., et al. (92) 2021 mice Fusobacterium nucleatum IL-1b and TNF-a

Xie, X., et al. (93) 2021 SW620 and HT-29 cells Bacteroides fragilis CCL3

Ma, C. T., et al. (94) 2018 NCM460 cells Fusobacterium nucleatum IL-6 and IL-1b
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nucleatum, binds to the inhibitory immune receptor TIGIT (T cell

immunoreceptor with Ig and ITIM domains), which diminishes the

activity of natural killer cells (NK cells) and T cells. Such a reduction

in immune activity subsequently inhibits immune responses,

promotes immune cell apoptosis, and facilitates the evasion of

cancer cells from immune surveillance (102).

BFT, a 21 kDa zinc-dependent metalloproteinase toxin

produced by enterotoxigenic Bacteroides fragilis, interacts with

receptors on colonic epithelial cells, thereby compromising

intestinal epithelial barrier function. It activates the Wnt/b-
catenin and NF-kB signaling pathways, resulting in increased cell

proliferation, DNA damage, and the release of inflammatory

mediators, especially IL-17 (103). BFT also influences immune

cells by activating the TLRs signaling pathway, which upregulates

IL-6 and TNF-a, further leading to the activation of STAT3 and

NF-kB, thereby inhibiting anti-tumor immunity and promoting

tumorigenesis (68).

Moreover, Escherichia coli strains containing the polyketide

synthetase genes produce specific toxins such as colibactin that

induce DNA alkylation and DNA adduct formation, leading to

genotoxicity. Such alterations lead to DNA double-strand breaks and

cell cycle arrest at the G2/M phase, resulting in chromosomal

abnormalities. Subsequently, incomplete DNA repair may promote

tumorigenesis (104, 105). Enterococcus faecalis produces

metalloproteinases, such as gelatinase, which can directly
Frontiers in Oncology 05
compromise the intestinal epithelial barrier and trigger inflammation

(106). The typhoid toxin (TT) secreted by Salmonella enterica shares

similarities with the toxins of Escherichia coli, exhibiting genotoxicity

that induces DNA damage responses, resulting in cell cycle arrest at the

G1 or G2 phase, thereby triggering cellular senescence or apoptosis

(107). Furthermore, Salmonella Anti-Virulence Agent A (AvrA), an

effector secreted by Salmonella enterica, inhibits the activity of E3

ubiquitin ligases. This inhibition interferes with protein ubiquitination

and modulates the host immune response, which leads to reduced

cellular apoptosis and promotes intestinal cell proliferation, ultimately

contributing to increased tumorigenesis. Additionally, AvrA activates

the Wnt/b-catenin and STAT3 signaling pathways, further facilitating

colorectal carcinogenesis (108). The underlying mechanisms discussed

above are described in detail in Figure 2.
3.3 Metabolites derived from gut
microbiota

The gut microbiota plays a crucial role in host’s digestion and

nutrient absorption by anaerobically fermenting indigestible food

substrates into various metabolites. These metabolites interact with

the epithelial cells in the intestinal mucosa, modulating immune

responses and potentially contributing to the onset and progression

of intestinal diseases (109). Dysbiosis of the gut microbiota can lead
FIGURE 1

Potential tumorigenic mechanisms of intestinal microbiota dysbiosis in colorectal cancer involve chronic inflammation and oxidative stress. PGE2,
prostaglandin E2. By Figdraw.
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to alterations in microbiota-derived metabolite levels, significantly

influencing the development of CRC (110). Certain metabolites are

recognized for their distinct carcinogenic properties, primarily as

nitrogen compounds, hydrogen sulfide, and secondary bile

acids (SBAs).

Research has shown that fermentation of aromatic amino acids

by gut bacteria produces a range of toxic metabolites, such as

ammonia, amines, and sulfides, which may contribute to the onset

and progression of CRC by inducing chronic inflammation and

causing DNA damage in tissue (111). Specific nitrogen-containing

compounds, particularly nitrites, have been shown to elevate cancer

risk by inducing DNA alkylation (112). Ammonia is also considered

a potential carcinogen at low concentrations, with existing animal

model studies demonstrating its association with intestinal mucosal

damage and CRC development (113). Polyamines exhibit toxicity at

elevated levels and are associated with OS and various diseases,

including cancer. OS induced by polyamine catabolism is a key

mechanism underlying their toxicity (114).

Specific pathogenic bacteria such as Shigella flexneri,

Streptococcus pneumoniae, Helicobacter pylori, and Salmonella

enterica serotype Typhi utilize polyamines to enhance virulence

(115). Ornithine decarboxylase is a critical enzyme that is involved

in the polyamine biosynthetic pathway, with expression

significantly elevated in CRC tumor tissues compared to adjacent

normal mucosa, suggesting that increased polyamines may
Frontiers in Oncology 06
contribute to CRC pathogenesis (116). Furthermore, polyamines

are integral in carcinogenic signal transduction; elevated levels of

spermidine and spermine can lead to the upregulation of b-catenin
expression, promoting tumor cell proliferation, invasion, and

metastasis. This mechanism has been corroborated by studies in

various cancers, including CRC (117).

Sulfate-reducing bacteria, such as Desulfovibrio, Desulfobacter,

and Clostridium, colonize the human gut and produce endogenous

hydrogen sulfide through the metabolism of both inorganic and

organic sulfur compounds (118). Hydrogen sulfide can generate

polysulfide via a series of mitochondrial enzyme-catalyzed

reactions, which not only inhibits butyrate oxidation and

compromises colonic mucosal barrier integrity, but also induces

DNA damage mediated by ROS, thereby promoting tumor

progression (119). Existing studies suggest that sulfides are

involved in post-translational modifications, activating the RAS-

RAF-MEK-ERK signaling pathway through the thiolation of MEK1,

which consequently regulates DNA damage repair mechanisms and

influences tumor growth. Additionally, hyper-sulfation of NF-kB
may enhance the expression of metastasis-related genes, activate the

NF-kB/IL-1 signaling pathway, and promote tumor progression

and metastasis through vascular endothelial growth factor (VEGF)

activation (120).

Moreover, the gut microbiota plays a pivotal role in the

metabolism of bile acids, converting primary bile acids (PBAs)
FIGURE 2

Toxins produced by gut microbiota may significantly contribute to the pathogenesis of colorectal cancer. E3s, E3 ubiquitin ligases. By Figdraw.
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derived from the liver into SBAs, mainly consisting of deoxycholic

acid (DCA) and lithocholic acid (LCA). Alterations in bile acid

metabolism and composition are closely associated with CRC (121).

Bile acids exhibit a bidirectional regulatory effect on human

physiology. At physiological concentrations, SBAs can exert

immunomodulatory and anti-inflammatory effects, contributing

to the suppression of inflammatory bowel diseases. However,

elevated concentrations of SBAs may compromise intestinal

epithelial integrity, inducing excessive proliferation of

undifferentiated cells, and increasing the risk of precancerous

conditions (122). Recent studies have indicated that the

malignant transformation of colorectal adenomas may be closely

linked to the interaction between bile acids and gut microbiota.

DCA and LCA may promote CRC development by modulating the

NF-kB and JAK2/STAT3 signaling pathways (123). Additionally,

DCA can activate the Wnt signaling pathway, triggering

inflammatory responses and promoting cellular proliferation,

both of which are critically significant in CRC pathogenesis and

progression. Furthermore, DCA influences tumor growth by

facilitating the release of b-catenin, which accumulates in the

cytoplasm before translocating to the nucleus, where it activates

transcription factors, including T-cell factor and lymphoid

enhancer factor, thereby exerting oncogenic effects (124).

Metabolites derived from the gut microbiota that are linked to

CRC are shown in Figure 3.
3.4 Epigenetic dysregulation

CRC is characterized by distinct molecular alterations that can

be broadly classified into two primary categories: the first involves

mutations that enhance the activity of oncogenes, while the second

pertains to mutations leading to the loss of function of tumor

suppressor genes. The pathogenesis and progression of CRC are

driven by a variety of genetic alterations, notably including

chromosomal instability (CIN), microsatellite instability (MSI),

the CpG island methylator phenotype (CIMP), and various

epigenetic modifications. The mechanisms underlying these

epigenetic alterations encompass DNA methylation, histone

modifications, and regulation by microRNAs (123).

Approximately 65%-70% of sporadic CRC cases exhibit CIN,

characterized by mutations in oncogenes (such as KRAS and BRAF)

and tumor suppressor genes (like APC and TP53), as well as

chromosomal aberrations, including the deletion of chromosome

18q. In contrast, only around 15% of sporadic CRC cases displayMSI,

primarily because of defects in genes encoding DNAmismatch repair

proteins, including MLH1, MSH2, MSH6, and PMS2. These defects

result in a markedly increased mutation rate within colonic mucosal

cells (125). CIMP is closely associated with hypermethylation of the

promoter regions of tumor suppressor genes, which manifests as

aberrant methylation across multiple CpG sites within the tumor

genome. Initially identified in CRC patients, CIMP is considered a

distinctive mechanism contributing to the pathogenesis and

progression of this malignancy. A hallmark of CIMP is the
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significantly elevated frequency of methylation in promoter regions,

which leads to the silencing of tumor suppressor genes (123, 126).

DNA methylation frequently occurs in the promoter regions of

tumor suppressor genes, potentially resulting in their silencing and

facilitating cancer progression. Emerging research suggests that gut

microbiota play a pivotal role in this process by influencing host

metabolism, immune responses, and gene expression, which may

indirectly affect DNA methylation status and that are thus

associated with the onset and progression of cancer (127). For

instance, Fusobacterium nucleatum has been shown to inhibit T

cell-mediated immune responses and modulate genetic mutations

in key oncogenes and tumor suppressor genes, including BRAF,

KRAS, TP53, CHD7, and CHD8. These mutations may induce

cancer-associated methylation phenotypes such as CIMP and

increase MSI, ultimately contributing to CRC progression (128).

Furthermore, recent studies have reported that in CIMP-positive

CRC, Fusobacterium nucleatum can induce hypermethylation in

the promoter regions of tumor suppressor genes such as MTSS1,

PKD1, PTPRT, MLH1, CDKN2A, and EYA4, leading to their

silencing. This process is thought to be closely linked to the

release of hydrogen sulfide, inflammatory cytokines, ROS, and the

recruitment of DNA methyltransferases (123).

Hungatella hathewayi, a Gram-negative, anaerobic, spiral-shaped

bacterium, has also been implicated in the hypermethylation of genes

such as SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and

APC. The recruitment of DNA methyltransferases may represent a

mechanism through which this microorganism induces methylation

(58). Additionally, Streptococcus gallolyticus has been associated with

the hypermethylation of critical tumor suppressor genes, specifically

MLH1 and APC (129). Furthermore, Parvimonas micra is an oral

pathobiont implicated in CRC. It may induce chronic inflammatory

responses and dysregulation of host immune responses. These effects

can potentially lead to hypermethylation of essential tumor

suppressor genes, including SCIN, HACE1, TSPAN13, FBXO32,

IGFBP7, SIX1, and CXXC5 (130). Moreover, certain oral

pathogenic bacteria, particularly Gram-negative species, are capable

of producing lipopolysaccharides (LPS). Studies have shown that LPS

can activate various signaling pathways, including TGF-b and Wnt/

b-catenin, by binding to receptors on the surface of host cells. The

regulation of these signaling pathways may influence the expression

or activity of DNA methylation-related enzymes, thereby indirectly

altering DNA methylation patterns (131).
3.5 Immune regulatory dysfunction

The gut microbiota play a pivotal role in shaping the immune

microenvironment by interacting with the gut immune system,

influencing the development and differentiation of immune cells,

and modulating signaling pathways that regulate immune functions

(132). Most cancers, including CRC, originate from prolonged

precancerous lesions, with the host immune system acting as a

crucial factor in maintaining the stability of these lesions.

Precancerous lesions can evade host immune surveillance through

various mechanisms, which directly or indirectly induce immune
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suppression, thereby facilitating the progression from precancerosis

to malignancy (68).

The transition from colorectal adenoma to CRC typically

involves three immune stages: elimination, equilibrium, and

escape. During the immune elimination phase, precancerous

lesions can potentially be eliminated by immune responses,

leading to early apoptosis or abnormal differentiation of affected

cells. In the immune equilibrium phase, a minority of precancerous

lesions evade immune elimination through diverse mechanisms,

allowing them to persist. Finally, in the immune escape phase,

precancerous cells acquire the ability to evade immune surveillance.

This renders them resistant to immune attacks and allows for

unrestrained growth, ultimately resulting in malignant tumor

development (133).

The intestinal immune environment comprises a diverse array

of lymphocytes and myeloid-derived immune cells, which are

essential for maintaining local immune balance within the gut

and systemic immune homeostasis (134). Dysbiosis of the gut

microbiota can disrupt immune homeostasis, potentially leading

to the direct or indirect suppression of immune cell functions. This

disruption facilitates immune evasion by tumor cells and

contributes to the development of CRC (135).

Fusobacterium nucleatum can promote CRC progression and

metastasis by inhibiting the antitumor immune responses of NK

cells and T cells (68). Fusobacterium nucleatum may induce the

tumor-derived chemokine CXCL1, which recruits myeloid-derived
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suppressor cells (MDSCs), thereby reducing T cell abundance in the

tumor microenvironment and inhibiting antitumor immunity (135,

136). Additionally, succinate produced by Fusobacterium

nucleatum may inhibit the cyclic GMP-AMP synthase (cGAS)

and interferon (IFN) signaling pathway, resulting in decreased

levels of the chemokines CCL5 and CXCL10 within the tumor

microenvironment. This suppression limits the migration of

cytotoxic T lymphocytes to the tumor site and impairs their

antitumor function (137).

Moreover, intercellular adhesion molecule 1 (ICAM-1), a

member of the immunoglobulin superfamily, facilitates the

adhesion of tumor cells to endothelial cells, promoting tumor

metastasis. Fusobacterium nucleatum can activate the NF-kB
pathway by interacting with the pattern recognition receptor

ALPK1 on host cells, which leads to the upregulation of ICAM-1

expression. This process enhances the adhesion of cancer cells to

endothelial cells, thereby mediating CRC metastasis (135).

Enterococcus faecalis can activate mucosal macrophages,

promoting inflammatory responses and inducing a bystander

effect. TNF-a secreted by macrophages plays a pivotal role in this

process, stimulating the proliferation of colonic epithelial cells

through the anti-apoptotic effects of the axon guidance factor

netrin-1. When untransformed epithelial cells are exposed to

polarized macrophages, this interaction may lead to CIN, thereby

increasing the risk of carcinogenesis (68). The possible mechanisms

outlined above are visually represented in Figure 4.
FIGURE 3

Potential mechanisms through which metabolites derived from gut microbiota may promote the development of colorectal cancer. By Figdraw.
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Furthermore, specific species of fungi also exacerbate the severity

of CRC by regulating tumor immunity. For instance, Candida

tropicalis has been shown to enhance the immunosuppressive

capabilities of MDSCs through the Syk-PKM2-HIF-1a-glycolysis
signaling pathway, thereby facilitating the progression of CRC

(138). Additionally, it elevates the secretion of IL-1b from MDSCs

by activating the NLRP3 inflammasome. The subsequent increase in

IL-1b levels further amplifies the immunosuppressive functionality of

MDSCs, resulting in the inhibition of antitumor immunity and

consequently promoting the development of CRC associated with

Candida tropicalis (139).
4 The potential anticancer
mechanisms of gut microbiota in CRC

The human gut microbiota encompasses not only pathogenic

bacteria but also a diverse array of beneficial symbiotic organisms,

including Lactobacillus, Bifidobacterium, and Akkermansia (123).

These beneficial bacteria are integral to maintaining intestinal

health, facilitating digestion, and enhancing immune function. A

relevant study indicated that the abundance of Lactobacillus

acidophilus in fecal samples from patients with CRC was

significantly diminished compared with healthy individuals,

highlighting that it may have a protective role in the pathogenesis
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and progression of CRC (140). Lactobacillus acidophilus enhances

the expression of intestinal mucosal tight junction proteins, thereby

improving intestinal barrier function, resisting pathogenic bacteria,

and inhibiting inflammatory response (141–143). Additionally,

Lactococcus lactis in the gut may play a role in preventing

microbiota dysbiosis, stimulating host immune defense

mechanisms, and enhancing the expression of IL-18. This cascade

of effects contributes to its anti-inflammatory and anti-tumor

properties while inhibiting the proliferation of CRC cells (144).

Interferon-inducible protein 10 (IP-10), also known as CXCL10,

is a chemokine induced by IFN-g that plays a pivotal role in immune

regulation and inflammatory responses. Lactobacillus species have

been demonstrated to secrete lactosepins to degrade this chemokine,

thereby attenuating the inflammatory response (128). Both

Lactobacillus and Bifidobacterium can metabolize linoleic acid,

alleviating inflammation through the inhibition of macrophage

activation and the modulation of peroxisome proliferator-activated

receptor-gamma (PPAR-g) expression (128). Furthermore, they

promote the renewal of intestinal epithelial cells, reduce the

accumulation of Th17 cells, modulate the expression of major

histocompatibility complex class II (MHC II) on dendritic cells,

enhance the recruitment and activity of NK cells and cytotoxic T

cells, and mitigate DNA damage induced by OS. Collectively, these

actions contribute to the inhibition of tumor occurrence and

progression (57).
FIGURE 4

Gut microbiota promotes the progression of colorectal cancer through immune regulatory dysfunction. By Figdraw.
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The non-enterotoxigenic Bacteroides fragilis may enhance

intestinal immunity through its immunogenic capsular components,

thereby inhibiting chronic colitis and CRC, contrasting with the

carcinogenic properties of the enterotoxigenic Bacteroides fragilis

(145). Moreover, mucin 2 (MUC2), a glycoprotein-rich mucin

predominantly secreted by goblet cells, provides adhesion sites for

antimicrobial proteins and commensal microbiota within the intestinal

lumen. This mucin plays a critical role in defending against the

invasion of pathogenic bacteria and harmful substances.

Akkermansia muciniphila has been shown to exert a protective effect

by strengthening the integrity of the intestinal mucosal layer and

restoring normal levels of MUC2, thereby inhibiting the

development and progression of CRC (146).

Not all metabolites produced by the gut microbiota promote

carcinogenesis; rather, certain metabolites exhibit anti-inflammatory

and anticancer properties, which help to promote intestinal health

and inhibit tumorigenesis. SCFAs, metabolic byproducts generated

through the fermentation of dietary fiber by gut anaerobic

microorganisms, primarily include acetate, propionate, and

butyrate. These SCFAs serve as the primary energy source for

colonic epithelial cells and play a crucial regulatory role in local

immune responses (117). Key bacterial genera involved in the

production of SCFAs include Bifidobacterium, Faecalibacterium,

and Ruminococcus, and these are vital for maintaining gut

health (123).

SCFAs are instrumental in preserving intestinal mucosal barrier

function by promoting mucus production and the expression of the

tight junction proteins. Furthermore, they enhance microbial

diversity, thereby supporting the overall health of the gut

microbiota (147). SCFAs exert anti-inflammatory effects by

binding to G protein-coupled receptor 43 (GPR43) on immune

cells, such as macrophages, thereby contributing to the maintenance

of homeostasis between intestinal immunity and inflammatory

responses (117). A substantial body of evidence has demonstrated

the anticancer properties of SCFAs, particularly butyrate (128).

Butyrate enhances the expression of the tight junction proteins

in intestinal epithelial cells, thereby improving intestinal barrier

function. It exerts anti-inflammatory and antitumor effects through

mechanisms involving the regulation of cellular metabolism,

immune responses, and epigenetic modulation (128, 148).

Notably, Clostridium butyricum, a well-known butyrate-producing

probiotic, effectively modulates the composition of gut microbiota,

decreases pathogenic bacteria in the intestine, and reduces the levels

of pro-inflammatory cytokines such as IL-1b, IL-6, and TNF-a
(149). Clostridium butyricum significantly inhibits signaling

pathways, for example, MYD88, NF-kB, and Wnt/b-catenin,
consequently preventing the development of colorectal

inflammation-associated CRC (150, 151).

Butyrate interacts with G protein-coupled receptor 109A

(GPR109A), leading to the downregulation of anti-apoptotic

proteins such as Bcl-2 and Bcl-xL, and cyclin D1 in CRC cells,

while simultaneously upregulating apoptotic receptor signaling

pathways, which enhances apoptosis in CRC cells. Additionally,

butyrate mitigates tumor-associated inflammatory responses by

inhibiting the NF-kB signaling pathway (123). It may also inhibit
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the AKT signaling pathway through GPR109A activation, thereby

reducing the aerobic glycolysis necessary for CRC cell survival and

ultimately impeding the proliferation of cancer cells (152).

Moreover, butyrate has been shown to inhibit several oncogenic

signaling pathways, such as mitogen-activated protein kinase 1

(MAPK1) and small mothers against decapentaplegic homolog 3

(SMAD3), that are closely associated with the pathogenesis and

progression of CRC by regulating cellular proliferation and

apoptosis (153). Furthermore, butyrate induces the expansion of

regulatory T cells (Treg cells), modulating local immune responses

and inhibiting colonic inflammation, thereby reducing the risk of

colonic carcinogenesis (154). The anticancer properties of butyrate

may also be demonstrated by its ability to regulate the methylation

status of the promoters of the tumor suppressor gene ABCA1 and

the oncogene EGR3, both implicated in cancer development.

Notably, butyrate’s regulatory effect exhibits a dose-dependent

relationship (155).

Additionally, B vitamins can be obtained through dietary intake

and by gut microbiota metabolism, potentially exerting a preventive

effect against the risk of CRC. A relevant study indicated that

vitamin B3 interacted with G protein-coupled receptors (GPRs) and

prostaglandin receptors to inhibit inflammatory and carcinogenic

processes. By activating the GPR109A signaling pathway, vitamin

B3 enhanced the anti-inflammatory effects in colonic macrophages

and dendritic cells, subsequently activating Treg cells, thereby

suppressing tumor initiation and progression (123). The potential

anticancer mechanisms of gut microbiota are succinctly

summarized in Figure 5.
5 Gut microbiota modulation: a
promising strategy for CRC prevention
and treatment

To date, a considerable amount of evidence has indicated that the

modulation of gut microbiota plays a crucial role in effectively

preventing and treating CRC (156–159). A variety of strategies can

be employed to achieve this modulation, including dietary

interventions that promote a diverse and balanced microbial

ecosystem, probiotic supplementation that introduces beneficial live

microorganisms, the application of natural plant extracts known for

their bioactive compounds that exhibit anti-cancer properties, and

fecal microbiota transplantation. These approaches can improve gut

health, leading to a reduction in CRC incidence and better outcomes

for patients following cancer treatment.
5.1 Prevention of CRC through modulation
of the gut microbiota

Dietary patterns play a critical role in shaping the gut

microecosystem and are closely associated with gastrointestinal

diseases. A pertinent study demonstrated that a high-fiber diet

can significantly reduce susceptibility to CRC (160). Specifically,

adherence to a whole grain diet had been associated with a
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decreased risk of CRC; an increase of 90 grams of whole grains

consumed daily correlated with a 17% reduction in CRC incidence

(161). Dietary fiber enhances the abundance of bacteria responsible

for the production of SCFAs, alters microbial community

composition, and increases levels of protective metabolites. These

effects collectively improve intestinal mucosal barrier function and

inhibit specific carcinogenic pathways, thereby attenuating the

incidence and progression of CRC (162). A diet rich in whole

grains and dietary fiber was also associated with a lower risk of

Fusobacterium nucleatum-associated CRC, suggesting a potential

anti-cancer effect through the inhibition of the abundance of

pathogenic bacteria (163).

The mechanisms by which dietary fiber contributes to CRC

prevention are likely multifaceted. Firstly, increased fiber intake

enhances intestinal motility, thereby shortening transit time and

reducing the duration of contact between carcinogens and the

colonic mucosa. Secondly, increased fecal bulk dilutes the

concentration of carcinogens within the gut, further mitigating

their potential harm. Additionally, the fermentation of dietary

fiber boosts the production of SCFAs, particularly butyrate, while

simultaneously inhibiting the synthesis of SBAs. Moreover, dietary

fiber may lower colonic pH, suppressing the proliferation of

pathogenic bacteria while promoting the growth of beneficial

microbiota, ultimately reducing CRC risk (116).

Furthermore, whole milk and other dairy products are rich in

calcium and various micronutrients. A relevant study identified a

significant inverse relationship between calcium intake and the risk of
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colorectal adenomas, suggesting that adequate calcium consumption

may contribute to a reduction in the incidence of colorectal

precursors (164). A low-calcium diet may lead to dysbiosis of the

gut microbiota, whereas high calcium supplementation can restore

the ecological balance of the gut microbiome and increase the

abundance of beneficial strains such as Lactobacillus reuteri,

Lactobacillus plantarum, Lactobacillus bulgaricus, and Streptococcus

thermophilus, thereby enhancing potential anti-tumor activity (122).

Calcium may bind to SBAs in the intestine, thereby reducing the

carcinogenic exposure of epithelial cells to these substances,

inhibiting cell proliferation and inducing apoptosis, which leads to

tumor suppression (123).
5.2 Treatment of CRC through modulation
of the gut microbiota

Existing evidence supports that dietary interventions focused on

fiber intake may provide substantial benefits and contribute to

prolonged survival in patients with CRC (165). Moreover, higher

calcium intake has been found to be positively correlated with

improved survival rates, suggesting that increased calcium

consumption is associated with better overall survival and

disease-free survival rates (166). Furthermore, probiotic

supplementation, aiming to enhance the abundance of beneficial

strains and improve gut microbiota composition, may play a

significant role in inhibiting the development of CRC.
FIGURE 5

Possible anticancer mechanisms of gut microbiota in colorectal Cancer. TJ proteins, tight junction proteins. By Figdraw.
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Probiotic consumption has been linked to the regulation of gut

microbiota, alleviation of chronic inflammation, enhancement of

anticancer metabolites, and modulation of immunity, thereby

potentially exerting anti-tumor effects (167, 168). As a promising

adjunctive therapy, probiotics offer multiple benefits, including a

decreased incidence of anastomotic leakage, shortened

gastrointestinal recovery time, and reduced chemotherapy-related

side effects. These advantages ultimately lower the risk of

complications and enhance surgical success rates (169, 170).

Moreover, probiotics significantly reduce the incidence of surgical

site infections and shortens the duration of hospital stays.

Interventions utilizing multiple strains of probiotics are more

effective in decreasing postoperative infections compared to those

employing a single strain (171). During the perioperative period, the

usage of probiotics maintains intestinal mucosal integrity, reduces

bacterial translocation, and promotes a more favorable balance

between beneficial and pathogenic microorganisms (172).

Furthermore, certain flavonoids and bioactive polyphenols

derived from natural plants, such as quercetin, luteolin,

anthocyanins, apigenin, curcumin, and resveratrol, exhibit

significant anti-inflammatory, antioxidant, antibacterial, and

immunomodulatory properties. These natural extracts can

modulate gut microbiota composition, promoting the growth of

beneficial bacteria and maintaining intestinal health. Their

anticancer mechanisms include the reduction of cell proliferation,

induction of apoptosis, inhibition of angiogenesis, and delay of

tumor metastasis. Additionally, these agents may serve as

preventive measures against CRC and enhance chemotherapeutic

efficacy or mitigate side effects (116, 123, 173, 174).

In addition, fecal microbiota transplantation involves transferring

intestinal microbiota from a healthy donor to the gastrointestinal

tract of a recipient, aiming to restore microbial diversity and

reconstruct microbial structure for therapeutic outcomes in

gastrointestinal diseases (75). Fecal microbiota transplantation is a

critical intervention for reestablishing intestinal microbiota

homeostasis and has demonstrated significant therapeutic efficacy.

Notably, a related study indicated that the combined use of fecal

microbiota transplantation with programmed cell death protein 1

(PD-1) inhibitors may yield synergistic effects, enhancing the efficacy

of anticancer therapies and improving survival rates among CRC

patients (175). Moreover, Fecal microbiota transplantation has been

shown to inhibit the development of CRC by reversing gut microbial

dysbiosis, alleviating excessive intestinal inflammation, and

strengthening anti-cancer immune responses (176). It may become

a cornerstone of CRC treatment, emphasizing the urgent need for

ongoing research and clinical validation.

6 Conclusions and future directions

In summary, the gut microbiota is intricately linked to CRC,

significantly influencing its initiation and progression. The role of the

gut microbiota in CRC is multifaceted, as it can both promote and

inhibit tumor development. Tumor promotion may occur through

various mechanisms, including chronic inflammation, the

production of toxins and metabolites by gut microbiota, epigenetic
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dysregulation, and immune regulatory dysfunction. Conversely,

tumor inhibition may result from the activity of beneficial

microorganisms that produce protective substances, such as SCFAs,

and enhance intestinal barrier integrity. Despite substantial

advancements in current research, the complex underlying

mechanisms remain incompletely elucidated, highlighting the need

for further investigation to unravel these intricacies.

Moreover, strategies to modulate gut microbiota, such as

probiotic supplementation and natural plant extracts, hold

significant promise as novel therapeutic approaches for CRC.

However, translating these strategies into established clinical

treatments requires extensive foundational research and rigorous

clinical trials. Such efforts are crucial for the effective

implementation of these anticancer therapies. Consequently, this

area is poised to be a focal point for ongoing and future research.

These efforts have the potential to drive innovation and significantly

improve CRC treatment strategies.
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Crosstalk between body microbiota and the regulation of immunity. J Immunol Res.
(2022) 2022:6274265. doi: 10.1155/2022/6274265

133. Cui G. Immune battle at the premalignant stage of colorectal cancer: focus on immune
cell compositions, functions and cytokine products. Am J Cancer Res. (2020) 10:1308–20.

134. Brown EM, Sadarangani M, Finlay BB. The role of the immune system in
governing host-microbe interactions in the intestine. Nat Immunol. (2013) 14:660–7.
doi: 10.1038/ni.2611

135. Yu S, Wang S, Xiong B, Peng C. Gut microbiota: key facilitator in metastasis of
colorectal cancer. Front Oncol. (2023) 13:1270991. doi: 10.3389/fonc.2023.1270991

136. Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. Bioinorganic hybrid
bacteriophage for modulation of intestinal microbiota to remodel tumor-immune
microenvironment against colorectal cancer. Sci Adv. (2020) 6:eaba1590. doi: 10.1126/
sciadv.aba1590

137. Jiang SS, Xie YL, Xiao XY, Kang ZR, Lin XL, Zhang L, et al. Fusobacterium
nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal
cancer. Cell Host Microbe. (2023) 31:781–797.e9. doi: 10.1016/j.chom.2023.04.010

138. Zhang Z, Zheng Y, Chen Y, Yin Y, Chen Y, Chen Q, et al. Gut fungi enhances
immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-
dependent glycolysis to promote colorectal tumorigenesis. Exp Hematol Oncol. (2022)
11:88. doi: 10.1186/s40164-022-00334-6

139. Zhang Z, Chen Y, Pan X, Li P, Ren Z, Wang X, et al. IL-1b mediates Candida
tropicalis-induced immunosuppressive function of MDSCs to foster colorectal cancer.
Cell Commun Signal. (2024) 22:408. doi: 10.1186/s12964-024-01771-y

140. Zinatizadeh N, Khalili F, Fallah P, Farid M, Geravand M, Yaslianifard S.
Potential preventive effect of lactobacillus acidophilus and lactobacillus plantarum in
patients with polyps or colorectal cancer. Arq Gastroenterol. (2018) 55:407–11.
doi: 10.1590/S0004-2803.201800000-87

141. Li H, Ma X, Shang Z, Liu X, Qiao J. Lactobacillus acidophilus alleviate
Salmonella enterica Serovar Typhimurium-induced murine inflammatory/oxidative
responses via the p62-Keap1-Nrf2 signaling pathway and cecal microbiota. Front
Microbiol. (2025) 15:1483705. doi: 10.3389/fmicb.2024.1483705

142. Junaid M, Lu H, Din AU, Yu B, Liu Y, Li Y, et al. Deciphering Microbiome,
Transcriptome, and Metabolic Interactions in the Presence of Probiotic Lactobacillus
acidophilus against Salmonella Typhimurium in a Murine Model. Antibiotics. (2024)
13:352. doi: 10.3390/antibiotics13040352

143. Hu T, Wang H, Xiang C, Mu J, Zhao X. Preventive effect of lactobacillus
acidophilus XY27 on DSS-induced ulcerative colitis in mice. Drug Des Devel Ther.
(2020) 14:5645–57. doi: 10.2147/DDDT.S284422
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173. Pérez-Valero Á., Magadán-Corpas P, Ye S, Serna-Diestro J, Sordon S, Huszcza
E, et al. Antitumor effect and gut microbiota modulation by quercetin, luteolin, and
xanthohumol in a rat model for colorectal cancer prevention. Nutrients. (2024)
16:1161. doi: 10.3390/nu16081161

174. Prakash V, Bose C, Sunilkumar D, Cherian RM, Thomas SS, Nair BG.
Resveratrol as a promising nutraceutical: implications in gut microbiota modulation,
inflammatory disorders, and colorectal cancer. Int J Mol Sci. (2024) 25:3370.
doi: 10.3390/ijms25063370

175. Huang J, Zheng X, Kang W, Hao H, Mao Y, Zhang H, et al. Metagenomic and
metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and
anti-PD-1 therapy on treating colorectal cancer. Front Immunol. (2022) 13:874922.
doi: 10.3389/fimmu.2022.874922

176. Yu H, Li XX, Han X, Chen BX, Zhang XH, Gao S, et al. Fecal microbiota
transplantation inhibits colorectal cancer progression: Reversing intestinal microbial
dysbiosis to enhance anti-cancer immune responses. Front Microbiol. (2023)
14:1126808. doi: 10.3389/fmicb.2023.1126808
frontiersin.org

https://doi.org/10.3390/ijms21093385
https://doi.org/10.3390/ijms21093385
https://doi.org/10.1159/000508328
https://doi.org/10.1159/000508328
https://doi.org/10.3389/fonc.2021.626349
https://doi.org/10.1016/j.intimp.2020.106862
https://doi.org/10.21037/atm-22-1670
https://doi.org/10.1016/j.canlet.2019.11.019
https://doi.org/10.3389/fmolb.2021.634874
https://doi.org/10.1093/advances/nmx009
https://doi.org/10.1016/j.immuni.2013.12.007
https://doi.org/10.1016/j.immuni.2013.12.007
https://doi.org/10.1002/mnfr.202200028
https://doi.org/10.1016/j.nut.2023.111980
https://doi.org/10.1111/1751-2980.13247
https://doi.org/10.3390/ph15030262
https://doi.org/10.3390/ph15030262
https://doi.org/10.3390/jcm13216578
https://doi.org/10.1371/journal.pone.0039361
https://doi.org/10.3390/biomedicines11123196
https://doi.org/10.3390/biology12010021
https://doi.org/10.1001/jamaoncol.2016.6374
https://doi.org/10.1001/jamaoncol.2016.6374
https://doi.org/10.1002/ijc.29164
https://doi.org/10.1001/jamaoncol.2017.3684
https://doi.org/10.1001/jamaoncol.2017.3684
https://doi.org/10.1158/1078-0432.CCR-18-2965
https://doi.org/10.1128/msystems.01567-24
https://doi.org/10.1128/msystems.01567-24
https://doi.org/10.5114/pg.2024.136228
https://doi.org/10.3390/cancers16122236
https://doi.org/10.3390/cancers16122236
https://doi.org/10.1093/nutrit/nuab006
https://doi.org/10.1111/iwj.14603
https://doi.org/10.3390/nu13051451
https://doi.org/10.3390/nu16081161
https://doi.org/10.3390/ijms25063370
https://doi.org/10.3389/fimmu.2022.874922
https://doi.org/10.3389/fmicb.2023.1126808
https://doi.org/10.3389/fonc.2025.1563886
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	The power of microbes: the key role of gut microbiota in the initiation and progression of colorectal cancer
	1 Introduction
	2 Characteristics of the human gut microbiota
	3 The potential pro-carcinogenic mechanisms of gut microbiota in CRC
	3.1 Chronic inflammation and oxidative stress
	3.2 Toxins derived from gut microbiota
	3.3 Metabolites derived from gut microbiota
	3.4 Epigenetic dysregulation
	3.5 Immune regulatory dysfunction

	4 The potential anticancer mechanisms of gut microbiota in CRC
	5 Gut microbiota modulation: a promising strategy for CRC prevention and treatment
	5.1 Prevention of CRC through modulation of the gut microbiota
	5.2 Treatment of CRC through modulation of the gut microbiota

	6 Conclusions and future directions
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


