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Background and objectives: This paper introduces a novel lightweight MM-

3DUNet (Multi-task Mobile 3D UNet) network designed for efficient and accurate

segmentation of breast cancer tumors masses from MRI images, which leverages

depth-wise separable convolutions, channel expansion units, and auxiliary

classification tasks to enhance feature representation and computational efficiency.

Methods: We propose a 3D depth-wise separable convolution, and construct

channel expansional convolution (CEC) unit and inverted residual block (IRB) to

reduce the parameter count and computational load, making the network more

suitable for use in resource-constrained environments. In addition, an auxiliary

classification task (ACT) is introduced in the proposed architecture to provide

additional supervisory signals for the main task of segmentation. The network

architecture features a contracting path for downsampling and an expanding

path for precise localization, enhanced by skip connections that integrate multi-

level semantic information.

Results: The network was evaluated using a dataset of Dynamic Contrast

Enhanced MRI (DCE-MRI) breast cancer images, and the results show that

compared to the classical 3DU-Net, MM-3DUNet could significantly reduce

model parameters by 63.16% and computational demands by 80.90%, while

increasing segmentation accuracy by 1.30% in IoU (Intersection over Union).
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Conclusions: MM-3DUNet offers a substantial reduction in computational

requirements of breast cancer mass segmentation network. This network not

only enhances diagnostic precision but also supports deployment in diverse

clinical settings, potentially improving early detection and treatment outcomes

for breast cancer patients.
KEYWORDS

multi-task mobile 3D UNet, dynamic contrast enhanced MRI, breast cancer images
segmentation, resource-constrained environments, convolutional neural networks
1 Introduction

Breast cancer has become the most common type of malignant

tumor among women worldwide and remains a leading cause of

cancer-related deaths among females (1). Surveys indicate that

approximately 40,000 women die from breast cancer each year

globally (2). Traditional breast cancer screening methods primarily

rely on mammography, but they have limitations, particularly for

dense breast tissue types more common in Asian populations. In

recent years, advancements in magnetic resonance imaging (MRI)

technology and techniques have propelled multimodal MRI scans

to become the most sensitive imaging method for detecting breast

cancer (3–5). This approach, demonstrating exceptional potential in

the diagnosis of breast cancer, preoperative planning, and prognosis

assessment, provides detailed anatomical images and accurately

represents soft tissue structures (6). Among these modalities,

Dynamic Contrast Enhanced MRI (DCE-MRI) plays a crucial

role in the detection and diagnosis of breast cancer lesions (7).

DCE-MRI sequences help identify significantly enhanced lesions

and understand their size, signal, and morphological characteristics.

These characteristics not only facilitate qualitative diagnosis based

on lesion morphology and enhancement patterns, but also enable

comparison between lesions before and after chemotherapy to

evaluate treatment effectiveness (8, 9).

Traditional pathological tissue identification of breast cancer

based on MRI imaging typically relies on the visual observation and

subjective experience of physicians. However, However, the

heterogeneity and atypical manifestations of breast cancer tumors,

coupled with variations in physicians’ professional backgrounds,

operational procedures, and working environments, pose a risk of

misdiagnosis or overlooked cases. To address this, Computer-Aided

Diagnosis (CAD) technology has emerged as a pivotal research area,

augmenting doctors’ abilities in interpreting breast cancer

pathological images (10). By enhancing diagnostic accuracy and

consistency, while mitigating physicians’ workload and boosting

efficiency, CAD technology significantly contributes to improved

outcomes (11). One of hallmark features of breast cancer is the

presence of a lump, underscoring the importance of accurately and

efficiently detecting their size, shape, and margins in dense breast

tissue. This has become a crucial challenge in CAD technology for
02
breast cancer diagnosis (6). In recent years, the rapid developments

of deep learning and computer vision technologies have led to

significant achievements in Convolutional Neural Networks

(CNNs) for semantic segmentation of breast cancer tumors (12,

13). By harnessing semantic features within images, CNNs merge

pixels belonging to the same target class to create masks that

highlight areas of interest, ultimately segmenting images into

visually distinct regions with specific characteristics (14, 15). Deep

learning algorithms leverage complex feature vector space

computation framework and deeper computational layers to learn

semantic features at various levels from intricate scene images

without relying on manual feature extraction, thereby achieving

more accurate end-to-end image semantic segmentation (16). The

UNet network, characterized by its symmetrical encoder-decoder

architecture with skip connections, demonstrates remarkable speed

and accuracy in semantic segmentation, even when trained with

limited datasets. Owing to its robust design and broad applicability,

UNet has emerged as the preferred foundational framework for

medical image segmentation models (17).

In the initial exploration of applying deep learning technologies

to MRI image segmentation tasks, researchers attempted to

decompose MRI images into multiple two-dimensional slices and

subsequently applied 2D CNNs for semantic segmentation of these

slices. The segmented results of each slice were then aggregated to

produce the final segmentation output. For instance, Rachmadi

et al. (18) employed transfer learning techniques to train UNet and

UResNet networks, achieving commendable performance in the

segmentation of brain tumor MRI images. Xiang et al. (19)

proposed a 2D Dense-UNet network specifically designed for

reconstructing high-quality MRI image sequences. 20) based on

various 2D deep neural network (DNN) architectures,

demonstrated the enhancement of brain tumor image

segmentation through the use of multi-scale convolutions and

cascaded structures.

Although 2D CNNs have achieved some success in MRI image

segmentation, they often fail to consider the spatial continuity

between slices, leading to the loss of crucial three-dimensional

context information and relatively lower segmentation precision.

Consequently, researchers have explored the integration of 3D

CNN architectures that effectively capture spatial information in
frontiersin.org

https://doi.org/10.3389/fonc.2025.1563959
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1563959
MRI image segmentation. Dong et al., introduced a symmetrically

structured 3DUNet model that excelled in segmenting breast cancer

tumor MRI images (21). Inspired by the 2D structure of UNet.

Milletari et al. (22) developed VNet, a 3D CNN that enhanced three-

dimensional image segmentation accuracy through improvements in

network sampling layers and loss functions. Islam et al. (23) fused

channel and spatial attention mechanisms with the 3D UNet

architecture to create an MRI image segmentation model that

surpassed previous efforts in terms of performance. Subsequently,

numerous researchers proposed diverse modifications to the 3D

UNet by incorporating intricate network architectures, dimension

fusion strategies, and rich auxiliary modules, which significantly

improved medical image segmentation accuracy but also increasing

model complexity and computational demands (24). While these

enhancements are beneficial, they come at the expense of increased

parameter count and training costs which pose challenges for

practical deployments, particularly in resource-constrained settings

such as mobile health devices and edge computing platforms. Thus,

there is a pressing need for lightweight strategies that strike a balance

between accuracy and efficiency to meet diverse medical image

segmentation needs.

This paper introduces a novel 3D U-Net architecture, termed

MM-3DUNet, tailored specifically for the seamless and efficient

segmentation of intricate breast cancer tumors in clinical settings.

Built upon continuous three-dimensional DCE-MRI images, MM-

3DUNet offers a lightweight solution for semantic segmentation. At

its core, the network employs 3D separable convolutions, which

serve as the backbone for enhancing feature representation during

information propagation. It incorporates innovative design

elements such as channel expansion convolution unit and

inverted residual blocks, further bolstering its feature extraction

capabilities. By adeptly processing breast MRI data, MM-3DUNet
Frontiers in Oncology 03
achieves precise and accurate segmentation of complex breast

cancer tumors, demonstrating its potential to streamline clinical

workflows and improve diagnostic accuracy.
2 Methods

The classical 3DU-Net captures rich contextual information in

three-dimensional space, enabling precise segmentation of complex

tumors from consecutive breast cancer MRI images. However, its

practical application is hindered by substantial model parameter

size, high computational demand, and significant memory

consumption, which limits its deployment in resource-

constrained environments. Therefore, this paper introduces a

lightweight semantic segmentation MM-3DUNet network based

on 3D separable convolutions. This network enhances feature

expression during information flow through channel expansion

convolution unit and inverted residual blocks. Additionally,

auxiliary classification task provides valuable supervisory signals

for the primary task of breast cancer tumor segmentation. MM-

3DUNet maintains segmentation accuracy while significantly

reducing model parameters and computational load.
2.1 The network architecture of
MM-3DUNet

The architecture of MM-3DUNet (Multi-task Mobile 3D UNet)

is depicted in Figure 1. Similar to the classical 3DU-Net, MM-

3DUNet consists of a progressively contracting downsampling

pathway and a symmetrically expanding upsampling pathway,

constituting the encoder and decoder of the network, respectively.
FIGURE 1

The network architecture of MM-3DUNet.
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The encoder extracts multi-level semantic features from the input

image and compresses the feature map dimensions through four

successive computational modules, each containing two repeated unit

of feature extraction. Each unit comprises two convolutions with

kernel size of 1×1×1 and one depth-wise separable convolution,

followed by activation functions. A max pooling layer at the end of

the second feature extraction unit reduces the feature map size. Each

computational module doubles the number of image channels while

halving their dimensions. Conversely, the decoder restores both

feature map size and localizes critical information to generate a

target image of the same size as the original image. It similarly

consists of computational modules with two repeated feature

recovery unit, where each unit concludes with a transpose

convolution to expand feature map size. After feature recovery,

each module halves the number of image channels while doubling

their dimensions again. Skip connections between corresponding

layers in both encoder and decoder facilitate integration between

low-level and high-level semantic information effectively. The

network concludes with a 1×1×1 convolution to reduce the final

feature map’s channel count to the number of labels, subsequently,
Frontiers in Oncology 04
predictions are transformed into probability values ranging from 0 to

1 using sigmoid function activation. Additionally, an auxiliary

classification task at the end of encoder differentiates between

normal and lesion areas using a classifier composed of a 3×3

convolution layer followed by max pooling layer and linear

activation layer.
2.2 3D depth-wise separable convolution

Inspired by the concept of depth-wise separable convolutions in

the Xception model (25), this paper proposes a 3D depth-wise

separable convolution to replace the conventional 3D convolutions

in the classic 3DU-Net. This replacement effectively reduces the

parameter count and computational complexity of the model. The

proposed 3D depth-wise separable convolution is divided into two

primary steps: 3D depth-wise convolution and 3D pointwise

convolution. Unlike standard 3D convolutions that combine all input

channels with each convolution kernel, convolution operations are

performed independently on each input channel in 3D depth-wise
FIGURE 2

Schematic diagram of the computation process for 3D depth-wise separable convolutions: (a) 3D depth convolution; (b) 3D pointwise convolution.
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convolution. This process is illustrated in Figure 2a. Assuming the

input feature map has Cin channels with dimensions D0×H0×W0

(where D0, H0, and W0 represent the depth, height, and width of the

input features, respectively), Cin kernels of size KD×KH×KW are used to

separately convolve with each channel, resulting in an output feature

map still having Cin channels. The second step is a 3D pointwise

convolution depicted in Figure 2b, which is similar to standard

convolution operations but uses Cout 1x1x1 kernels with Cin

channels to combine outputs from the previous step along the

channel dimension. Ultimately, this produces an output feature map

with Cout channels and dimensions D1×H1×W1.

The parameter count (P3D-ds) and computational load (F3D-ds)

of the entire 3D depth-wise separable convolution process are

calculated as follows:

P3D−ds = Cin � KD � KH � KW + Cin � Cout (1)

F3D−ds = D� H �W � Cin � (KD � KH � KW + Cout) (2)

If standard 3D convolution operations are used to achieve the

same feature extraction effect, the parameter count P3D-standard and

computational load F3D-standard of the network would be calculated

as follows:

P3D−standard = Cin � KD � KH � KW � Cout (3)

F3D−standard = D� H �W � Cin � KD � KH � KW � Cout (4)

To compare the parameter count and computational load of the

proposed 3D depth-wise separable convolution with those of

standard 3D convolution.

P3D−ds
P3D−standard

=
Cin � KD � KH � KW + Cin � Cout

Cin � KD � KH � KW � Cout

=
1

Cout
+

1
KD � KH � KW

(5)
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F3D−ds
F3D−standard

=
D�H �W � Cin � (KD � KH � KW + Cout)
D�H �W � Cin � KD � KH � KW � Cout

=
1

Cout
+

1
KD � KH � KW

(6)

It can be observed that after employing 3D depth-wise separable

convolutions, both the parameter count and computational

load are only 1
Cout

+ 1
KD�KH�KW

of their original values. This

significantly minimizes the model’s parameter count and

computational complexity.
2.3 Channel expansional convolution

Compared to low-dimensional spaces, computations in high-

dimensional spaces facilitate more complex feature learning

patterns. This allows models to uncover latent information within

the data, which is challenging to capture through low-dimensional

features, providing a more comprehensive description of data

characteristics. Consequently, deep learning models can discern

subtler and more intricate relationships and patterns within the

data. To this end, this study introduces a CEC unit which initially

expands the dimensionality of input features to map them from

low-dimensional inputs to a high-dimensional space for enhanced

feature extraction. Subsequently, it reduces the dimensionality of

features to alleviate the computational burden on subsequent layers,

thereby boosting model efficiency without significantly increasing

computational load or parameter count. This proposed CEC unit

enhances network expressiveness and nonlinearity without

substantial increases in computational demand. The structure of

the CEC unit is depicted in Figure 3, primarily consisting of three

stages: channel expansion, depth-wise convolution, and

channel compression.

During the channel expansion phase, for input features of size

Cin×D×H×W, a 1×1×1 convolutional kernel first expands the
FIGURE 3

The architecture of Channel Expansional Convolution.
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channel dimension to t×Cin, where t is the channel expansion factor

that regulates the extent of channel expansion. This produces a

feature map with enriched dimensional information, sized

(t×Cin)×D×H×W. Subsequently, in the depth-wise convolution

phase, a 3×3×3 3D depth-wise separable convolution is employed

to independently extract features from each channel, thereby

reducing the model’s computational load while maintaining

stable internal spatial structure. The output feature map

dimensions remain (t×Cin)×D×H×W. Finally, during the channel

compression stage, another 1×1×1 convolutional kernel reduces the

channel count from t×Cin to Cout, significantly decreasing both the

computational load and the number of parameters. Notably, after

each convolution in the channel expansion and depth-wise

convolution stages, a combination of Leaky ReLU activation

function and Instance Norm normalization is used for nonlinear

transformation and channel normalization of the feature map

which enhances nonlinearity and stability in feature extraction.

During the channel compression stage, a linear activation function

is employed after convolution in the low-dimensional space to

perform linear transformation of the feature map so as to avoid loss

of nonlinear information while preserving more original

image information.
Frontiers in Oncology 06
2.4 Inverted residual block

Inspired by ResNet, we have incorporated IRB into the CEC

unit. Unlike traditional residual blocks where an identity mapping

is added to connect the input features to the output while the

number of channels remains constant. In this study, the opposite

strategy is used, where the channel of input features is first

expanded, and the features are extracted and then compressed. If

both input and output features pose identical channel numbers, a

direct addition of the input feature map to the output feature map

forms a residual connection. This strategy not only enhances the

efficiency of information transfer across the computational unit but

also preserves part of the input features, effectively mitigating the

issue of gradient vanishing and enhancing feature representational

capacity (Figure 4).
2.5 Auxiliary classification task

In the task of breast cancer tumor segmentation, leveraging the

global feature differences between lesion and normal regions can

enhance the accuracy and stability of segmentation. Therefore, we

have augmented the decoder stage of our network with an ACT

branch, designed to determine whether the input image contains a

lesion site. This branch operates in parallel with the primary task of

breast cancer tumor segmentation within the overall deep learning

framework. ACT bypasses the correlation between breast cancer

lesion segmentation and lesion and normal tissue classification by

sharing the image features extracted from the shared encoding stage

and adds additional supervisory signals from the perspective of

learning global feature information. This approach supplies the

network decoder with more global contextual information,

fostering the learning of more generalized feature representations,

preventing overfitting in the main task, and improving the

performance of the semantic segmentation task. The structure of

ACT is illustrated in Figure 5, including an additional parallel

classifier unit into the final computation module of the encoder.

After feature map restoration, it first maps these features to a two-

dimensional space, then employs a 3×3 convolutional kernel to

extract type features from the input image, followed by a pooling

layer to adjust the data structure, and finally, a linear activation

layer outputs results corresponding to the number of types.
2.6 Data processing

2.6.1 Breast MRI image acquisition
In this study, we acquired multimodal MRI data for breast

cancer using a Discovery MR 750w system from GE Healthcare,

which was equipped with an eight-channel dedicated breast phased-

array coil. Patients were positioned in the prone position with

breasts naturally pendant within the coil cavity. Scanning

parameters and sequences followed standard protocols, including

non-contrast and dynamic contrast-enhanced scans. Specific
FIGURE 4

The architecture of Inverted Residual Block (IRB).
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parameters for some of the non-contrast sequences included a

VIBRANT sequence with a TR of 7.6 ms, TE of 4.2 ms, a matrix

of 256×256, a slice thickness of 1.00 mm, and no interslice gap. The

contrast agent used was gadopentetate dimeglumine (GD-DTPA;

Magnevist®; Bayer, Berlin, Germany), at a dose of 0.1 mmol/kg

administered via antecubital vein at a flow rate of 2 ml/s. Imaging

was performed before contrast injection (mask phase) and

continued for six subsequent acquisitions post-injection, totaling

seven phases in total duration. These configuration parameters were

carefully selected to ensure optimal clarity and resolution of the data

to facilitate subsequent image segmentation and analysis tasks.

2.6.2 Dataset construction
In this study, the data were diagnosed by two experienced

radiologists with over ten years of expertise. Lesion delineation was

performed using a dedicated GE workstation to draw time-signal

enhancement curves from dynamic contrast-enhanced MRI scans,

specifically selecting the phase where lesions showed maximum

enhancement in VIBRANT images. The original DICOM images

were converted to NIfTI format, and lesion delineation was

conducted utilizing ITK-SNAP software. This process was further

refined by incorporating ADC values from DWI sequences to
Frontiers in Oncology 07
ensure the accuracy of lesion marking, ultimately producing

labeled images of breast cancer tumors (Figure 6). The dataset

comprises 219 breast tissue samples, each containing 184 MRI

slices, resulting in a total of 40,296 images. After converting

DICOM images to NIfTI format, comprehensive preprocessing

was applied: (1) Intensity normalization using Z-score

standardization across all MRI sequences to mitigate scanner

variability; (2) Rigid spatial alignment of DCE-MRI phases via

Elastix toolkit to correct patient motion artifacts; (3) Random

volumetric augmentation including ±15° rotation along axial

plane, horizontal flipping (50% probability), and ±20% linear

intensity scaling to improve model robustness. The original

dataset was divided into training and test sets at an 8:2 ratio.

During training, consecutive sets of 16 or 32 slices were randomly

selected as input for the model.

2.6.3 Experimental environment configuration
This study was conducted using the Ubuntu 20.04 LTS operating

system for development and testing, employing Python 3.8 as the

programming language. All model training, validation, and testing

processes were performed under the deep learning framework

Pytorch v1.13. The computational hardware included a 13th Gen
FIGURE 6

Breast Cancer Tissue Labels: (a) Breast Tissue; (b) Breast Cancer Tumor Labels.
FIGURE 5

The architecture of ACT.
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Intel(R) Core(TM) i5-13600K CPU, 64GB of RAM, and an NVIDIA

GeForce RTX 3090 GPU. Hardware acceleration was facilitated by

leveraging the CUDA 12.2 computing platform along with the

cuDNN 8.9.1 library optimized for deep learning operations.
2.7 Model parameter configuration

During network training, the number of epochs was set to 130

with a batch size of 24. The Adam optimizer was employed with a

weight decay rate of 0.0001 and a momentum factor of 0.95. Dice

Loss was utilized as the loss function for segmentation tasks, while

ACT were addressed using Cross-Entropy Loss (CE Loss). Dice

Loss aggregates all pixels of a category to compute the loss, directly

using the segmentation performance metric as a supervisory signal.

This approach disregards a significant amount of background pixels

in the intersection-over-union calculation, effectively addressing the

issue of class imbalance and facilitating faster convergence. The

formulations for Dice Loss and CE Loss are as follows:

Ldice = 1 −
2I + e
U + e

= 1 −

2 o
H�W

i=1
p(ci)g(ci) + e

o
H�W

i=1
p(ci) + o

H�W

i=1
g(ci) + e

(7)

Lce = − o
H�W

i=1
g(ci)log p (ci) (8)

In the formula, p(ci) represents the label value of the i-th pixel

for class C, which can take values of either 0 or 1. Meanwhile, g(ci)

denotes the predicted probability that the i-th pixel belongs to class

C. I is the intersection of the predicted and label values; H and W

are the height and width of the feature map, respectively; U is the

union of the predicted and label values; whereas e is a smoothing

coefficient introduced to prevent division by zero, typically set to a

very small positive number. Additionally, the network training

process employs a Cosine Annealing Learning Rate as the rate

decay strategy, with its calculation formula presented as follows:

lrt =
lr0
2

1 + cos
tp
T

� �h i
(9)

In the equation, lrt represents the learning rate for each training

iteration; lr0 is the initial learning rate, set to 0.0001; T denotes the

number of training iterations in one cosine cycle, which is

equivalent to the number of epochs in the network.
2.8 Evaluation metrics

In image semantic segmentation tasks, evaluating the

performance of deep learning networks comprehensively requires

not only assessing the accuracy of individual target pixel

classification but also comparing the overall segmentation results

with the segmentation labels. Therefore, this study employs the

Intersection over Union (IoU) as an evaluation metric for

evaluating the accuracy of the MM-3DUNet model. IoU

quantifies the ratio of the intersection to the union between the
Frontiers in Oncology 08
predicted target area pixels and the actual annotated target area

pixels, reflecting the overlap degree between the segmentation

results and the annotated labels. The calculation formula is as

follows:

IoU =
TP

TP + FN + FP
(10)

where TP represents the number of pixels accurately identified

as the target category, FP denotes the pixels incorrectly classified as

the target category despite being labeled as non-target, TN refers to

the pixels correctly identified as non-target, and FN encompasses

the pixels erroneously classified as non-target despite being labeled

as the target category.

In parallel, this study also adopts the Dice Similarity Coefficient

(DSC) as a complementary evaluation metric to assess segmentation

accuracy. The DSC measures the spatial overlap between the

predicted segmentation and the ground truth annotations,

emphasizing the consistency of positive classifications. It is

calculated by harmonizing the ratio of twice the intersection area to

the sum of the predicted and annotated target areas, thereby

providing sensitivity to both over- and under-segmentation errors.

The mathematical formulation is defined as:

DSC =
2� TP

2� TP + FN + FP
(11)

The DSC ranges from 0 to 1, with higher values reflecting

greater congruence between algorithmic outputs and expert

annotations, particularly in scenarios with class imbalance or

irregular lesion morphology.

Additionally, Floating Point Operations (FLOPs) and the total

number of Parameters were used as evaluation metrics in order to

evaluate the changes in computational complexity of the improved

segmentation network. FLOPs represent the number offloating-point

operations required for one forward pass of the model, directly

reflecting the computational workload. A higher FLOP count

indicates an increased computational cost and extended processing

time due to more floating-point calculations performed during

computation. Parameters denote the total count of all model

components, including weights and biases, influencing not only the

computational complexity but also impacting the data volume

requirements and training duration. Excessive parameters can lead

to model overfitting, while insufficient parameters may limit the

model’s representational capacity.
3 Results

3.1 Model performance validation and
comparison

In this study, both the classical 3DUNet and the proposed

lightweight 3D semantic segmentation network, MM-3DUNet,

were trained using the same breast cancer pathology image

dataset and model parameter settings to validate the superior

performance and computational efficiency of MM-3DUNet. The

changes in the loss function and Intersection over Union (IoU) for
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both models during validation are illustrated in Figures 7 and 8,

respectively. As depicted in Figure 7, the loss values for both

3DUNet and MM-3DUNet decrease progressively with each

epoch. Notably, our MM-3DUNet demonstrates a more rapid

reduction in loss value, indicating enhanced learning efficiency

that enables swift feature extraction from data and effectively

parameters adjustment for thorough information extraction.

Comparison of the IoU curves in Figure 8 reveals a gradual
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increase in IoU over epochs for both models, however, MM-

3DUNet exhibits a significantly faster rate of improvement. This

further confirms the efficiency of MM-3DUNet during training.

Additionally, smaller fluctuations in the IoU curve of MM-3DUNet

suggest its enhanced stability and reduced susceptibility to

variations or noise in the training data, demonstrating superior

performance and reliability in the task of breast cancer

tumor segmentation.
FIGURE 8

Comparison of IoU change curves between 3DUNet and MM-3DUNet in verification.
FIGURE 7

Comparison of loss value change curve between 3DUNet and MM-3DUNet in verification.
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3.2 Performance of 3D depth-wise
separable convolutions

To validate the effectiveness of the proposed 3D depth-wise

separable convolutions in reducing the number of network

parameters and computational complexity, we employed the

classical 3DUNet as a baseline model with standard 3D

convolutions. We replaced the convolutional unit in this baseline

with 3D depth-wise separable convolutions and conducted training

and evaluation on the same dataset. The accuracy and

computational complexity of both networks were compared using

the test set, with results presented in Table 1. It shows that replacing

standard 3D convolutions with 3D depth-wise separable

convolutions significantly reduced the computational complexity

of the breast cancer tumor segmentation network. Specifically, the

number of parameters decreased by 1.57M to 11.8% of the baseline,

while FLOPs were reduced by 88.05G to 23.5% of the baseline.

Moreover, employing these new convolutions resulted in nearly

unchanged IoU and DSM, with only a minor reduction of 0.97%

and 0.55%, maintaining high segmentation accuracy.

These results demonstrate that the proposed 3D depth-wise

separable convolutions can efficiently adapt to the complex

structural characteristics of three-dimensional data, thereby

capturing both spatial and depth correlations. Furthermore, while

maintaining comparable model performance, this approach

significantly reduces the number of floating-point operations

required during forward propagation and the overall parameter

count. Consequently, it enables faster data processing during

training and inference, achieving enhanced computational

efficiency and reduced resource consumption. As a result, this

methodology facilitates the deployment of models on resource-

constrained devices such as mobile and embedded systems.
3.3 Performance of channel expansion
convolution unit

Based on 3D depth-separable convolution, a channel expansion

convolution unit is designed to improve the accuracy of breast

cancer tumor feature extraction. In order to explore the
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effectiveness of this structure, a comparative experiment was

designed as shown in Table 1. By setting different channel

expansion factors, adjusting the number of channels in the

network expansion layer and changing the diversity of feature

learning, we compared the performance of different networks on

the test set. The results demonstrate that small channel expansion

factor leads to a significant decrease in network computing

complexity but compromises segmentation accuracy compared

with the Baseline. Notably, when adjusting MM-3DUNet’s

channel expansion factor from 6 to 12, IoU increased by 1.46%,

DSM increased by 0.83%, surpassing classic 3DUNet by 0.49%.

From the aspect of network computing complexity, the Parameters

of MM-3DUNet decreased by 1.45M and FLOPs decreased by

73.31G compared with Baseline.

To further evaluate the impact of CEC unit on segmentation

performance, we compared the visual results of breast cancer mass

segmentation accuracy among different networks in the test set, as

shown in Figure 9. As illustrated in the figure, directly adding

channel expansion convolution leads to a decrease in the

segmentation accuracy of the network. Compared to 3DUNet,

there is a greater absence of edge details and insufficient

recognition accuracy for fuzzy regions in these segmentation

results. However, by appropriately adjusting the channel

expansion factor, significant improvement was observed in the

segmentation precision of the network for complex areas within

image compared to Baseline, resulting in more refined contour

restoration for breast cancer lump region.

The experimental results show that CEC unit effectively adjust the

complexity and feature extraction capability of the model while aiding

removal of redundant information and retention of key features, so as

to obtain a more compact and effective feature representation which

balance the representation capability and computational complexity of

the model. Furthermore, when combined with 3D depth-separable

convolution, it reduces computational load on network while

enhancing segmentation accuracy.
3.4 Performance of ACT

On the basis of the existing MM-3DUNet, we further

incorporated the ACT. Following training and verification on the

same dataset, we compared the performance of different networks

on the test set, as shown in Table 1. The results demonstrate that

with the addition of ACT, the IoU and DSM of MM-3DUNet

increases by 1.30% and 0.73% compared with those of 3DUNet,

while reducing Parameters and FLOPs by 63.16% and 80.90%

respectively. The results highlight that incorporating an ACT

provides additional supervisory signals about breast cancer lesions

within the network architecture, facilitating learning of more

generalized feature representations, and preventing overfitting

through appropriate network complexity augmentation, thus

enhancing the segmentation performance of the main task.

The integration of ACT into the network is illustrated in

Figure 10, showcasing its ability to enhance segmentation visual

effects. This addition notably refines the boundary segmentation of
TABLE 1 Comparison of breast cancer tumor segmentation
performance between different models.

Model
Expansion
factor

Parameters
(M)

FLOPs
(G)

IoU
(%)

DSC
(%)

3DUNet – 1.78 115.10 88.61 93.96

MM-
3DUNet

6 0.21 27.05 87.64
93.41

MM-
3DUNet

12 0.33 41.79 89.10
94.24

MM-
3DUNet
+ACT

12 0.34 42.40 89.91
94.69
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breast cancer tumors, resulting in a closer alignment with the actual

conditions. Consequently, it aids in a more accurate understanding

of spatial relationships between the target region and surrounding

pixels, thereby enabling precise delineation of pathological site

boundaries by the network. Furthermore, the augmented network

exhibits improved performance in handling complex cases as

suggested by enhanced visual effects. It effectively addresses

challenges such as variability in mass shape and indistinct

boundaries, thereby providing a more dependable foundation for

early diagnosis and treatment of breast cancer.
4 Discussion

In this study, we developed MM-3DUNet, a lightweight breast

cancer mass segmentation network which integrates depth-wise

separable convolutions with 3D convolutional neural networks. To

further enhance its performance, we introduce CEC unit and an IRB

to replace traditional simple 3D convolutional unit. This novel

design successfully focuses computational resources on more
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representative features, reducing redundant calculations, thereby

maintaining or even improving segmentation accuracy while

significantly lowering the model ’s parameter count and

computational demands. Specifically, by decomposing standard

3D convolutions into depth-wise and pointwise convolutions, our

approach of using 3D depth-wise separable convolutions effectively

reduces the network’s parameter count and computational load

without compromising feature extraction capabilities.

Previous studies primarily relied on traditional manually

extracted MRI features for distinguishing benign from malignant

breast cancer tumors and predicting breast cancer molecular

subtypes. Although recent research have adopted semi-automatic

radiomics approaches for feature extraction, these methods still

depend on manual assessment of critical lesion characteristics

(26, 27). Particularly in case of non-mass-like enhancements,

where lesion distribution is diffuse and interspersed with normal

fibroglandular and adipose tissue, clinical palpation may not always

detect a distinct mass, thus complicating surgical diagnostics.

Conversely, advanced deep learning methods can accurately

delineate clinical lesion size, volume, and characteristics while
FIGURE 9

Comparison of breast cancer mass segmentation accuracy before and after using a CEC unit network on the test set: (a) breast tissue section;
(b) breast cancer mass labeling; (c) segmentation results from the 3DUNet network; (d) segmentation results from the MM-3DUNet network with an
expansion factor of 6; (e) segmentation results from the MM-3DUNet network with an expansion factor of 12. (The IoU value is displayed in the
upper left corner of each segmentation effect diagram.).
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identifying subtle image feature variations that may be overlooked

by manual methods.

The effectiveness of the lightweight MM-3DUNet for breast

cancer mass segmentation has been validated across various

medical segmentation domains. For example, Yu et al. (28)

applied depth-wise separable convolutions for glioma imaging

segmentation, resulting in a significant reduction in model

computation time. Ma et al. (29) on the other hand, combined

multilayer perceptrons with depth-wise separable convolutions to

create LMU-Net, a lightweight medical imaging segmentation

model which reduced computational demands by nearly 50%

compared to baseline models. By incorporating this strategy into

breast cancer mass segmentation, the training process is accelerated

and enables deployment in resource-constrained environments.

However, constructing such networks still confronts the inherent

challenge of balancing higher accuracy with increased computational

demands. Although MM-3DUNet reduces parameter counts and

computational needs through its lightweight design, this

simplification might potentially compromise segmentation accuracy

in certain cases. To address this concern, we have implemented a
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series of strategies to balance accuracy and efficiency, including

adjustable channel expansion factors in the CEC unit to balance

computational complexity and segmentation accuracy (30, 31). While

most lightweight breast cancer segmentation networks prefer 2D slices

over 3D imaging, our model adjusts parameters flexibly based on

specific dataset and task requirements to meet diverse clinical

application needs. Additionally, this study innovatively includes

ACT at the network’s end, a strategy whose effectiveness has been

amply validated in various medical imaging scenarios such as

ventricular, cerebral, and hepatic vessel segmentation (32, 33).

This research repurposes learned features to determine the

presence of lesion information in input images, providing

supervision for the primary segmentation task to avoid loss of

crucial information in deep learning and improve segmentation

accuracy for small area targets. However, the study still faces

limitations, as single input and convolution operations struggle

with real-time and generalization capabilities in large-scale or

diverse clinical datasets. Future research will aim to expand data

collection, optimize 3D convolutional structures, and explore

integration with other advanced deep learning frameworks such
FIGURE 10

Comparison of breast cancer mass segmentation accuracy on a test set before and after the incorporation of ACT: (a) breast tissue sections;
(b) labeled breast cancer masses; (c) segmentation results from the 3DUNet network; (d) segmentation results from the MM-3DUNet network;
(e) segmentation results from the MM-3DUNet+ACT network. (The Intersection over Union (IoU) values are displayed in the upper left corner of
each segmentation result image.).
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as Transformers to enhance the potential of multimodal inputs in

lightweight medical segmentation scenarios. This will further

improve computational efficiency and segmentation performance

while enhancing network stability and adaptability.
5 Conclusion

Addressing the challenges posed by high parameter count and

computational demands associated with the classical 3DUNet

network for MRI segmentation, this study introduces MM-

3DUNet, a lightweight segmentation network enhanced with

multi-task depth-wise separable convolution. This innovative

network achieves a notable reduction in both model parameters

and computational complexity while enhancing the segmentation

accuracy for breast cancer tumor masses. Initially, depth-wise

separable convolutions were applied to the convolutional

computations of 3DUNet, supplemented by CEC unit and IRB.

These modifications not only streamline the network’s efficiency

but also bolster its feature extraction capabilities, leading to

improved segmentation performance. Furthermore, ACT was

incorporated during the decoding phase of the network to

provide additional supervisory signals for the primary

segmentation task, further enhancing the segmentation accuracy

of breast cancer masses under reduced computational complexity.

Experimental results demonstrate that compared to the classical

3DUNet, MM-3DUNet achieves a remarkable reduction of 63.16%

in parameters and 80.90% in FLOPs, substantially lowering the

model’s computational complexity. In terms of segmentation

accuracy, MM-3DUNet shows an increase of 1.30% in IoU

compared to 3DUNet, thus achieving a lighter model while

enhancing the precision of breast cancer mass segmentation.
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4. Mootz AR, Madhuranthakam AJ, Doğan B. Changing paradigms in breast cancer
screening: abbreviated breast MRI. Eur J Breast Health. (2019) 15:1–6. doi: 10.5152/
ejbh.2018.4402
frontiersin.org

mailto:wangxy198812@163.com
https://doi.org/10.1038/s41568-020-0266-x
https://doi.org/10.1016/j.asoc.2020.106238
https://doi.org/10.1016/j.clinimag.2018.10.017
https://doi.org/10.5152/ejbh.2018.4402
https://doi.org/10.5152/ejbh.2018.4402
https://doi.org/10.3389/fonc.2025.1563959
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1563959
5. Onega T, Zhu W, Kerlikowske K, Miglioretti DL, Lee CI, Henderson LM, et al.
Preoperative MRI in breast cancer: effect of breast density on biopsy rate and yield.
Breast Cancer Res Treat. (2022) 191:177–90. doi: 10.1007/s10549-021-06418-x

6. Al-Karawi D, Al-Zaidi S, Helael KA, Obeidat N, Mouhsen AM, Ajam T, et al. A
review of artificial intelligence in breast imaging. Tomography. (2024) 10:705–26.
doi: 10.3390/tomography10050055

7. Udayakumar D, Madhuranthakam AJ, Doğan BE. Magnetic resonance perfusion
imaging for breast cancer. Magn Reson Imaging Clin N Am. (2024) 32:135–50.
doi: 10.1016/j.mric.2023.09.012

8. Gubern-Mérida A, Martı ́ R, Melendez J, Hauth JL, Mann RM, Karssemeijer N,
et al. Automated localization of breast cancer in DCE-MRI. Med Image Anal. (2015)
20:265–74. doi: 10.1016/j.media.2014.12.001

9. Ya G, Wen F, Xing-Ru L, Zhuan-Zhuan G, Jun-Qiang L. Difference of DCE-MRI
parameters at different time points and their predictive value for axillary lymph node
metastasis of breast cancer. Acad Radiol. (2022) 29 Suppl 1:S79–86. doi: 10.1016/
j.acra.2021.01.013

10. Derevianko A, Pizzoli SFM, Pesapane F, Rotili A, Monzani D, Grasso R, et al.
The use of artificial intelligence (AI) in the radiology field: what is the state of doctor-
patient communication in cancer diagnosis? Cancers (Basel). (2023) 15:470.
doi: 10.3390/cancers15020470

11. Karacan K, Uyar T, Tunga B, Tunga MA. A novel multistage CAD system for
breast cancer diagnosis. SIViP. (2023) 17:2359–68. doi: 10.1007/s11760-022-02453-3

12. Rahman H, Naik Bukht TF, Ahmad R, Almadhor A, Javed AR. Efficient breast
cancer diagnosis from complex mammographic images using deep convolutional
neural network. Comput Intell Neurosci. (2023) 2023:7717712. doi: 10.1155/2023/
7717712

13. Deepak GD, Bhat SK. A comparative study of breast tumour detection using a
semantic segmentation network coupled with different pretrained CNNs. In: Computer
Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization.
(2024) 12:2373996. doi: 10.1080/21681163.2024.2373996

14. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans
Syst Man Cybern. (1979) 9:62–6. doi: 10.1109/TSMC.1979.4310076

15. Huang Q, Huang Y, Luo Y, Yuan F, Li X. Segmentation of breast ultrasound
image with semantic classification of superpixels. Med Image Anal. (2020) 61:101657.
doi: 10.1016/j.media.2020.101657

16. Wang Z, Gao X, Zhang Y, Zhao G. MSLWENet: A novel deep learning network
for lake water body extraction of google remote sensing images. Remote Sens. (2020)
12:4140. doi: 10.3390/rs12244140

17. Liu L, Cheng J, Quan Q, Wu F-X, Wang Y-P, Wang J. A survey on U-shaped
networks in medical image segmentations. Neurocomputing. (2020) 409:244–58.
doi: 10.1016/j.neucom.2020.05.070

18. Rachmadi MF, Del C. Valdés-Hernández M, Komura T. Transfer learning for
task adaptation of brain lesion assessment and prediction of brain abnormalities
progression/regression using irregularity age map in brain MRI. In: Rekik I, Unal G,
Adeli E, Park SH, editors. PRedictive Intelligence in MEdicine. Springer International
Publishing, Cham (2018). p. 85–93. doi: 10.1007/978-3-030-00320-3_11

19. Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q, et al. Ultra-fast T2-
weighted MR reconstruction using complementary T1-weighted information. In:
Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors.
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