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Metabolic reprogramming
and therapeutic targeting in
non-small cell lung cancer:
emerging insights beyond
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Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related

mortality worldwide. Recent advancements have illuminated the intricate

metabolic reprogramming that underpins NSCLC progression and resistance to

therapy. Beyond the classical Warburg effect, emerging evidence highlights the

pivotal roles of altered lipid metabolism, amino acid utilization, and themetabolic

crosstalk within the tumor microenvironment (TME). This review delves into the

latest discoveries in NSCLC metabolism, emphasizing novel pathways and

mechanisms that contribute to tumor growth and survival. We critically assess

the interplay between cancer cell metabolism and the TME, explore the impact of

metabolic heterogeneity, and discuss how metabolic adaptations confer

therapeutic resistance. By integrating insights from cutting-edge technologies

such as single-cell metabolomics and spatial metabolomics, we identify potential

metabolic vulnerabilities in NSCLC. Finally, we propose innovative therapeutic

strategies that target these metabolic dependencies, including combination

approaches that enhance the efficacy of existing treatments and pave the way

for personalized metabolic therapies.
KEYWORDS

non-small cell lung cancer, metabolic reprogramming, tumor microenvironment,
therapeutic targeting, metabolic vulnerabilities
1 Introduction

Lung cancer remains a global health challenge, being the leading cause of cancer-related

mortality worldwide, with an estimated 2.2 million new cases and 1.8 million deaths in 2020

(1). NSCLC accounts for approximately 85% of all lung cancer cases and includes various

histological subtypes such as adenocarcinoma, squamous cell carcinoma, and large cell

carcinoma (2). Despite significant advances in surgical techniques, chemotherapy, targeted

therapies, and immunotherapy, the overall five-year survival rate for NSCLC patients remains
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low, particularly in advanced stages where it drops below 10% (3).

Late diagnosis, tumor heterogeneity, and the development of

resistance to conventional treatments contribute to this poor

prognosis (4). Therefore, a deeper understanding of the underlying

mechanisms driving NSCLC progression and therapeutic resistance is

crucial for developing more effective treatments.

One area of intense research is the metabolic reprogramming of

cancer cells-a hallmark of cancer that supports rapid proliferation

and survival under hostile conditions (5). Metabolic alterations

enable cancer cells to meet the increased demands for energy and

biosynthetic precursors required for continuous growth and

division (6). Warburg effect, characterized by increased glycolysis

even in the presence of oxygen, has been a focal point of cancer

metabolism research (7), recent studies have uncovered a more

complex metabolic landscape in NSCLC. Alterations in lipid

metabolism, amino acid utilization, and metabolic interactions

with the TME play significant roles in tumor progression,

metastasis, and therapeutic resistance (8). Furthermore, metabolic

heterogeneity within tumors and the metabolic plasticity of cancer

cells allow them to adapt to changing environmental conditions and

therapeutic pressures (9).

The TME, comprising stromal cells, immune cells, extracellular

matrix (ECM) components, and vasculature, interacts dynamically

with cancer cells, influencing their metabolic behavior and

contributing to disease progression (10). Cancer-associated

fibroblasts (CAFs) can alter the availability of nutrients and

secrete metabolic intermediates that fuel tumor growth (11).

Immune cells within the TME can have their function modulated

by the metabolic activities of cancer cells, leading to immune

evasion (12). Hypoxia, a common feature of solid tumors due to

abnormal vasculature, further drives metabolic reprogramming by

stabilizing hypoxia-inducible factors (HIFs) that regulate genes

involved in glycolysis and angiogenesis (13).

This review aims to provide a comprehensive and up-to-date

analysis of energy metabolism in NSCLC, highlighting novel

insights and potential therapeutic opportunities. We focus on

recent discoveries that shed light on the metabolic heterogeneity

of NSCLC, the influence of the TME on metabolic adaptations, and

the implications for therapy resistance. By integrating emerging

technologies such as single-cell metabolomics, CRISPR-based

metabolic screens, and systems biology approaches, and by

adopting multidisciplinary perspectives, we propose innovative

strategies to target metabolic vulnerabilities in NSCLC.

Ultimately, we aim to bridge the gap between basic metabolic

research and clinical applications, paving the way for more

effective and personalized therapies for NSCLC patients.
2 Metabolic reprogramming in
NSCLC: beyond the Warburg effect

2.1 The Warburg effect revisited

The Warburg effect, first described by Otto Warburg in the

1920s, refers to the observation that cancer cells preferentially
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utilize glycolysis for energy production even in the presence of

adequate oxygen-a phenomenon known as aerobic glycolysis. This

metabolic reprogramming allows cancer cells to rapidly generate

ATP and accumulate intermediates for biosynthetic processes

essential for proliferation (14). In NSCLC, there is significant

upregulation of glycolytic enzymes such as hexokinase 2 (HK2)

and pyruvate kinase M2 (PKM2), which facilitate increased

glycolytic flux (15). However, this glycolytic shift is only part of

the complex metabolic adaptations in NSCLC. Recent studies have

revealed that mitochondrial oxidative phosphorylation (OXPHOS)

remains active in many cancer cells, including NSCLC (16). This

suggests that cancer cells exhibit metabolic flexibility, capable of

utilizing both glycolysis and OXPHOS depending on environmental

conditions and cellular demands (17). For instance, under hypoxic

conditions commonly found within tumors, glycolysis is

upregulated, while in oxygen-rich areas, OXPHOS can contribute

significantly to adenosine triphosphate (ATP) production (18).

Moreover, the reliance on glycolysis is influenced by oncogenic

signaling pathways. Mutations in genes such as kirsten rats

arcomaviral oncogene homolog (KRAS) and epidermal growth

factor receptor (EGFR), which are prevalent in NSCLC, activate

downstream effectors like phosphatidylinositol 3-Kinase/protein

kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR)

and mitogen-activated protein kinase (MAPK) pathways (19).

These pathways upregulate glucose transporters (e.g., GLUT1)

and glycolytic enzymes, enhancing glucose uptake and glycolysis

(20). Additionally, HIFs, stabilized under low oxygen conditions,

promote the expression of genes involved in glycolysis and suppress

OXPHOS (21).

Understanding the nuances of the Warburg effect in NSCLC is

crucial for therapeutic development. Targeting glycolytic enzymes

has shown promise in preclinical models; however, due to the

metabolic plasticity of cancer cells, inhibition of glycolysis alone

may lead to compensatory upregulation of OXPHOS or other

pathways. Therefore, combination therapies that target multiple

metabolic pathways may be more effective in overcoming resistance

and achieving sustained antitumor effects.
2.2 Mitochondrial metabolism and
OXPHOS

Contrary to the traditional view that cancer cells have impaired

mitochondrial function, recent studies have demonstrated that

mitochondrial OXPHOS remains active and is essential for the

survival and proliferation of NSCLC cells (22). Mitochondria play a

pivotal role not only in energy production but also in biosynthesis,

redox balance, and regulation of apoptosis (23). NSCLC cells exhibit

remarkable metabolic flexibility, enabling them to switch between

glycolysis and OXPHOS in response to environmental cues such as

nutrient availability, oxygen levels, and therapeutic interventions

(24). Figure 1 illustrates the dynamic interplay between these two

energy-producing pathways and highlights the compensatory

mechanisms that allow NSCLC cells to adapt their metabolism

under stress conditions.
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The metabolic adaptability contributes significantly to

therapeutic resistance. For instance, when glycolysis is inhibited-

either pharmacologically or due to nutrient scarcity-NSCLC cells

can upregulate OXPHOS to meet their energy and biosynthetic

demands (25). This compensatory increase in OXPHOS allows

cancer cells to evade glycolysis-targeted therapies, highlighting the

challenge of metabolic plasticity in effective cancer treatment (26).

Additionally, some subpopulations of cancer stem cells within

NSCLC have been found to rely heavily on OXPHOS, contributing

to tumor heterogeneity and resistance to chemotherapy and

radiotherapy (27).

Recent research has uncovered that oncogenic drivers common

in NSCLC, such as mutations in the KRAS gene, can influence

mitochondrial function. KRAS-mutant NSCLC cells demonstrate

enhanced mitochondrial biogenesis and elevated OXPHOS activity,

which supports their aggressive phenotype (28). Moreover,

alterations in mitochondrial dynamics-processes that control

mitochondrial fission and fusion-have been implicated in NSCLC

progression. Dysregulated expression of proteins like dynamin-

related protein 1 (DRP1) and mitofusins (MFN1 and MFN2)

affects mitochondrial morphology and function, promoting

cancer cell survival and metastasis (29). Targeting mitochondrial
Frontiers in Oncology 03
metabolism presents a promising therapeutic strategy. Inhibitors of

OXPHOS components, such as complex I inhibitor IACS-010759,

have shown antitumor activity in preclinical models of NSCLC by

inducing energy stress and apoptosis (30). Furthermore, combining

OXPHOS inhibitors with agents targeting glycolysis may overcome

metabolic compensation mechanisms and enhance therapeutic

efficacy (31). Agents that disrupt mitochondrial dynamics or

promote mitochondrial dysfunction are also being explored as

potential treatments (32).

The interplay between mitochondrial metabolism and the TME

further complicates the metabolic landscape. Hypoxic regions

within tumors can influence mitochondrial function and promote

metabolic reprogramming (33). Additionally, interactions with

stromal cells and immune cells can modulate mitochondrial

activity in NSCLC cells, affecting tumor growth and response to

therapy (34).

In summary, mitochondrial metabolism and OXPHOS play

critical roles in NSCLC biology. Understanding the mechanisms

underlying metabolic flexibility and mitochondrial function in

cancer cells is essential for developing effective therapeutic

strategies that can circumvent resistance and target the metabolic

vulnerabilities of NSCLC.
FIGURE 1

Integrated schematic of glycolysis, mitochondrial metabolism, and lipid pathways in NSCLC cells. This figure summarizes key metabolic processes in
NSCLC cells, illustrating the interplay and compensatory mechanisms between glycolysis and OXPHOS, as well as the integration of lipid
metabolism. Glucose is metabolized through glycolysis to produce pyruvate, which enters mitochondria to fuel the TCA cycle and OXPHOS for ATP
production. Under certain conditions, pyruvate is diverted to lactate via LDHA. Glutamine contributes to TCA cycle intermediates through
glutaminolysis, supporting biosynthesis and redox balance. Fatty acid metabolism is also reprogrammed in NSCLC: fatty acid synthesis, driven by
enzymes such as ACC and FASN, converts citrate and acetyl-CoA into lipids, while FAO via CPT1a provides additional acetyl-CoA for mitochondrial
respiration. Together, these interconnected pathways reflect the metabolic flexibility and adaptability of NSCLC cells in response to environmental
and therapeutic pressures.
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2.3 Lipid metabolism: a new frontier

Lipid metabolism has emerged as a critical aspect of NSCLC

biology, influencing tumor growth, survival, and metastasis (35).

Cancer cells require a continuous supply of lipids for the synthesis

of cellular membranes and signaling molecules that support rapid

proliferation. Enhanced de novo lipogenesis—the endogenous

production of fatty acids from non-lipid precursors like glucose

and glutamine—is a hallmark of metabolic reprogramming in

cancer (36), and is particularly prominent in NSCLC.

This process is depicted in Figure 1, which illustrates key

pathways involved in lipid synthesis and oxidation in NSCLC

cells. This process provides not only structural components for

membrane biogenesis but also lipid signaling molecules that can

activate oncogenic pathways. Enzymes such as fatty acid synthase

(FASN) and stearoyl-CoA desaturase-1 (SCD1) play pivotal roles in

lipid synthesis and are overexpressed in NSCLC (37). FASN is

responsible for the synthesis of palmitate, a saturated fatty acid that

serves as a building block for more complex lipids. Overexpression

of FASN has been associated with increased tumor aggressiveness,

resistance to chemotherapy, and poorer prognosis in NSCLC

patients (38). Targeting FASN with small-molecule inhibitors has

shown promise in preclinical models, leading to reduced tumor

growth and enhanced sensitivity to other therapies (39). SCD1

introduces a double bond into saturated fatty acyl-CoAs to produce

MUFAs, which are essential for maintaining membrane fluidity and

function. Elevated SCD1 expression has been linked to enhanced

tumor growth, metastasis, and reduced survival rates in NSCLC.

Inhibition of SCD1 can disrupt membrane composition, induce

endoplasmic reticulum (ER) stress, and trigger apoptosis in cancer

cells (40). Acetyl-CoA carboxylase (ACC) is a key rate-limiting

enzyme in fatty acid synthesis, playing a critical role in cellular

metabolism and tumor growth by converting acetyl-CoA to

malonyl-CoA. ACC regulates de novo fatty acid synthesis to meet

the biosynthetic demands of tumor growth, and its inhibitor ND-

646 significantly suppresses the growth and viability of NSCLC cells

while enhancing the efficacy of chemotherapy, making it a potential

target for cancer metabolism therapy (41).

Beyond lipid synthesis, NSCLC cells can utilize lipid oxidation

through fatty acid oxidation (FAO) pathways to meet their energy

demands and maintain redox balance (42). FAO involves the

breakdown of fatty acids in mitochondria to generate acetyl-CoA,

nicotinamide adenine dinucleotide (NADH), and flavin adenine

dinucleotide hydrogen (FADH2), which feed into the tricarboxylic

acid (TCA) cycle and electron transport chain to produce ATP (43).

By relying on FAO, cancer cells can adapt to nutrient-deprived or

hypoxic conditions where glycolysis may be less efficient (44). FAO

also contributes to the maintenance of redox homeostasis by

generating NADPH, a critical reducing agent that helps neutralize

reactive oxygen species (ROS) and protect cells from oxidative stress

(45). Enzymes like carnitine palmitoyltransferase 1 (CPT1), which

regulates the transport of long-chain fatty acids into mitochondria,

are often upregulated in NSCLC. Inhibition of CPT1 can impair

FAO, leading to energy stress and increased sensitivity to oxidative

damage (46).
Frontiers in Oncology 04
NSCLC cells can enhance lipid uptake from themicroenvironment

by overexpressing lipid transporters such as cluster of differentiation

36 (CD36) and fatty acid-binding proteins (FABPs) (47). This

uptake allows cancer cells to utilize exogenous fatty acids for

energy production and membrane synthesis. Additionally, cancer

cells can store excess lipids in lipid droplets, which serve as

reservoirs that can be mobilized during times of metabolic stress

(48). Alterations in lipid metabolism are often driven by oncogenic

signaling pathways common in NSCLC. For example, activation of

the PI3K/AKT/mTOR pathway can upregulate lipid synthesis by

increasing the expression and activity of lipogenic enzymes (49).

Mutations in KRAS, frequently observed in NSCLC, have been

shown to enhance lipid metabolism, promoting tumor growth and

survival (50). These signaling pathways not only stimulate lipid

production but also integrate metabolic cues with cell proliferation

and survival mechanisms.
2.4 Amino acid metabolism: beyond
glutamine addiction

While glutamine metabolism is well-established in cancer

biology due to its role in supporting rapid cell proliferation and

survival (51), NSCLC cells also exploit other amino acids to meet

their metabolic demands. Recent studies have highlighted

alterations in the metabolism of amino acids such as serine,

glycine, proline, and branched-chain amino acids (BCAAs),

which contribute to nucleotide synthesis, redox balance, and

energy production (52).

2.4.1 Serine and glycine metabolism
Serine and glycine are non-essential amino acids that play

crucial roles in one-carbon metabolism, which is essential for

nucleotide synthesis, methylation reactions, and antioxidant

defense (53). NSCLC cells can upregulate enzymes involved in the

serine-glycine synthesis pathway, such as phosphoglycerate

dehydrogenase (PHGDH), phosphoserine aminotransferase

(PSAT1), and serine hydroxymethyltransferase (SHMT) (54).

Overexpression of PHGDH has been observed in NSCLC and is

associated with enhanced tumor growth and poor prognosis (55).

Targeting this pathway can disrupt nucleotide biosynthesis and

reduce the proliferation of cancer cells. Moreover, serine and

glycine contribute to the synthesis of glutathione, a major

intracellular antioxidant that helps maintain redox homeostasis

(56). By elevating serine and glycine metabolism, NSCLC cells

enhance their capacity to detoxify ROS, thereby promoting

survival under oxidative stress conditions induced by therapies (57).

2.4.2 Proline metabolism
Proline metabolism is another pathway exploited by NSCLC

cells to support tumor growth and metastasis (58). Proline

biosynthesis from glutamate involves the enzyme pyrroline-5-

carboxylate synthase (P5CS), while its degradation is mediated by

proline dehydrogenase (PRODH). Proline can serve as a source of

energy and contribute to redox balance by generating NADP+/
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NADPH (59). Altered proline metabolism aids in the adaptation of

cancer cells to hypoxic conditions and nutrient deprivation,

facilitating tumor progression (60). Inhibiting key enzymes in

proline metabolism may impair cancer cell survival and sensitize

tumors to treatment (61).

2.4.3 BCAAs
BCAAs-leucine, isoleucine, and valine-are essential amino acids

involved in protein synthesis and signaling pathways that regulate

cell growth and metabolism (62). NSCLC cells can exhibit increased

uptake and catabolism of BCAAs to fuel the TCA cycle and provide

nitrogen for nucleotide and amino acid synthesis (52). Enzymes

such as branched-chain amino acid transaminase 1 (BCAT1) are

upregulated in NSCLC and have been associated with tumor

aggressiveness and poor clinical outcomes (63). Targeting BCAA

metabolism may disrupt energy production and biosynthesis,

leading to reduced tumor growth.

2.4.4 Amino acid transporters
To support increased amino acid demands, NSCLC cells often

upregulate amino acid transporters. Transporters like solute carrier

family 1 member 5 (SLC1A5/ASCT2) and SLC7A5 (LAT1)

facilitate the uptake of glutamine, serine, leucine, and other

amino acids (64, 65). Overexpression of these transporters has

been linked to enhanced tumor growth, metastasis, and resistance

to chemotherapy (66). Inhibiting amino acid transporters can

reduce the intracellular availability of critical nutrients, inducing

metabolic stress and apoptosis in cancer cells (67).
2.5 Metabolic heterogeneity and plasticity

NSCLC exhibit significant metabolic heterogeneity, both

between different tumors (intertumoral heterogeneity) and within

individual tumors (intratumoral heterogeneity)1. This

heterogeneity arises from a complex interplay of genetic

mutations, epigenetic modifications, tumor microenvironmental

factors, and cellular interactions, leading to diverse metabolic

phenotypes among cancer cells (68).

2.5.1 Genetic mutations and metabolic diversity
Genetic mutations commonly found in NSCLC, such as

alterations in KRAS, EGFR, anaplastic lymphoma kinase (ALK),

and liver kinase B1 (LKB1), drive distinct metabolic reprogramming

in tumor cells (69). For instance, KRAS-mutant NSCLC cells often

exhibit enhanced glucose uptake and glycolysis, whereas EGFR-

mutant cells may rely more on glutamine metabolism (70). Loss of

LKB1 function is associated with defects in mitochondrial OXPHOS

and increased dependency on alternative energy sources (71). These

genetic differences contribute to metabolic heterogeneity,

influencing how tumor cells utilize nutrients and respond to

metabolic stress.
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2.5.2 Microenvironmental influences
The TME significantly impacts metabolic heterogeneity. Factors

such as hypoxia, nutrient availability, pH changes, and interactions

with stromal cells create spatial metabolic gradients within tumors

(72). Hypoxic regions often lead to increased glycolysis and lactate

production, while well-oxygenated areas may favor OXPHOS (73).

Additionally, the availability of nutrients like glucose, amino acids,

and lipids can vary within the tumor, forcing cancer cells to adapt

their metabolism accordingly (74).
2.5.3 Interactions with stromal cells
CAFs, immune cells, and endothelial cells within the TME

modulate cancer cell metabolism through paracrine signaling and

direct cell-cell interactions (75). For example, CAFs can secrete

metabolites such as lactate, amino acids, and fatty acids, which

cancer cells uptake and utilize for energy and biosynthesis (10).

Immune cells like tumor-associated macrophages (TAMs) produce

cytokines that alter metabolic pathways in cancer cells, promoting

survival and proliferation (76). These interactions further enhance

metabolic diversity within the tumor.
2.5.4 Metabolic plasticity and therapeutic
resistance

Metabolic heterogeneity contributes to therapeutic resistance by

enabling subpopulations of cancer cells to survive under treatment-

induced stress (77). Cancer cells with different metabolic profiles

may respond variably to therapies targeting specific metabolic

pathways (78). Metabolic plasticity-the ability of cancer cells to

switch between metabolic states-allows them to adapt to

environmental changes or therapeutic pressures (79). For

instance, inhibiting glycolysis may lead some cancer cells to

increase OXPHOS or utilize alternative substrates like fatty acids

and amino acids (80).
2.5.5 Implications for personalized medicine
The presence of metabolic heterogeneity underscores the need

for personalized metabolic interventions in NSCLC (81).

Therapeutic strategies that consider the specific metabolic

dependencies of a patient’s tumor may improve treatment efficacy

(82). Techniques such as single-cell metabolomics and metabolic

imaging can identify metabolic subtypes within tumors,

guiding the selection of targeted therapies (83). Additionally,

combining metabolic inhibitors with other treatments may

overcome resistance by targeting multiple metabolic pathways

simultaneously (84).

Understanding the mechanisms driving metabolic heterogeneity

and plasticity is crucial for developing effective therapies. Integrating

genomic, transcriptomic, and metabolomic data can provide a

comprehensive view of tumor metabolism (85). Personalized

approaches that tailor treatments based on individual metabolic

profiles hold promise for improving outcomes in NSCLC patients.
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3 The TME: metabolic crosstalk and
therapeutic resistance

3.1 CAFs and metabolic support

CAFs are among the most abundant stromal cells within the

TME of NSCLC and play a crucial role in supporting tumor

metabolism and progression (86). CAFs undergo significant

metabolic reprogramming that enables them to supply essential

nutrients and metabolites to cancer cells, thereby promoting tumor

growth and survival (51). One of the key phenomena illustrating

this supportive role is the “reverse Warburg effect”. Unlike the

traditional Warburg effect, where cancer cells preferentially utilize

glycolysis for energy production even in the presence of oxygen, the

reverse Warburg effect describes how CAFs enhance their glycolytic

activity to produce high-energy metabolites such as lactate and

pyruvate (87). These metabolites are then secreted into the TME

and taken up by cancer cells, which utilize them through OXPHOS

to generate ATP and support anabolic processes. This metabolic

coupling allows cancer cells to conserve glucose for biosynthetic

pathways, thus facilitating rapid proliferation and growth (88).

Beyond lactate production, CAFs secrete a variety of nutrients,

including amino acids (e.g., glutamine, alanine) and fatty acids,

which cancer cells can exploit. CAF-derived glutamine serves as an

anaplerotic substrate replenishing TCA cycle intermediates in

cancer cells, supporting energy production and biosynthesis of

nucleotides and amino acids (89). Alanine secreted by CAFs can

be converted into pyruvate, further fueling the TCA cycle. CAFs can

release free fatty acids that cancer cells uptake and utilize for b-
oxidation, contributing to ATP generation and membrane

synthesis (90).

CAFs also modulate the ECM and secrete cytokines and growth

factors that influence cancer cell metabolism and behavior (91).

Factors such as transforming growth factor-beta (TGF-b),
hepatocyte growth factor (HGF), and interleukins secreted by

CAFs can activate signaling pathways (e.g., PI3K/AKT, MAPK) in

cancer cells, leading to enhanced glycolysis and survival (92).
3.2 Immune cell metabolism and immune
evasion

The metabolic state of immune cells within the TME

profoundly affects their function and the overall immune

response against NSCLC (93). Effective antitumor immunity relies

on the activity of various immune cells, particularly effector T cells

and natural killer (NK) cells, which require substantial energy and

biosynthetic materials to proliferate and exert their cytotoxic

functions (94). However, the TME is often characterized by

metabolic competition and deprivation, as rapidly proliferating

tumor cells consume large amounts of glucose, amino acids, and

other nutrients (95). As illustrated in Figure 2, this metabolic

imbalance not only limits nutrient availability for immune cells

but also drives the reprogramming of both effector and regulatory
Frontiers in Oncology 06
immune cell populations, ultimately shaping the immune landscape

toward either tumor suppression or immune evasion.

3.2.1 Metabolic competition and nutrient
deprivation

Tumor cells alter the availability of key nutrients in the TME by

upregulating glucose transporters and amino acid transporters,

leading to increased uptake and consumption of glucose and

amino acids (96). This metabolic competition results in a

nutrient-deprived environment for immune cells. Effector T cells

rely on glycolysis for energy production and effector functions such

as cytokine production and proliferation. Glucose deprivation

impairs T cell receptor (TCR) signaling, reduces cytokine

production (e.g., interferon-gamma), and diminishes cytotoxic

activity (97). Amino acids like glutamine, arginine, and

tryptophan are critical for T cell function and proliferation (98).

Tumor cells can deplete these amino acids or produce

immunosuppressive metabolites (e.g., kynurenine from

tryptophan catabolism via indoleamine 2,3-dioxygenase [IDO])

that inhibit T cell activity (99).

3.2.2 Metabolic checkpoints and immune
suppression

Metabolic reprogramming in lung cancer plays a pivotal

role in immune regulation by inducing metabolic stress and

activating metabolic checkpoints in immune cells, leading to

immunosuppression. Tumor-induced energy stress activates key

metabolic sensors such as AMP-Activated Protein Kinase (AMPK),

which modulates T cell metabolism and reduces their effector

functions. Similarly, nutrient deprivation within the TME inhibits

mTOR signaling, impairing T cell growth and responses.

Additionally, hypoxia stabilizes HIFs, which alter immune cell

metabolism and promote an immunosuppressive phenotype (100).

Tumor cells exploit these metabolic pathways to evade immune

responses through several mechanisms. First, the upregulation of

immune checkpoint molecules such as programmed cell death ligand

1 (PD-L1) on tumor cells interacts with programmed cell death

protein 1 (PD-1) on T cells, suppressing glucose uptake and glycolysis

in T cells, thereby diminishing their effector functions (101). Second,

tumor cells secrete immunosuppressive factors like TGF-b and

adenosine, which further modulate immune cell metabolism and

suppress antitumor immunity. These metabolic interactions

underscore the critical role of metabolic reprogramming in shaping

the immune landscape of lung cancer, presenting potential targets for

therapeutic intervention (102).
3.3 Hypoxia and metabolic adaptations

Hypoxia, or low oxygen conditions, is a hallmark of the TME in

solid cancers, including NSCLC (103). Rapid tumor growth often

outpaces the development of new blood vessels, leading to regions

of insufficient oxygen supply. Hypoxic conditions trigger the

stabilization of HIFs, particularly HIF-1a and HIF-2a, which are

key transcription factors orchestrating cellular responses to low
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oxygen levels (104). Under normoxic conditions, HIF-a subunits

are hydroxylated by prolyl hydroxylase domain proteins (PHDs),

marking them for degradation via the von Hippel-Lindau (VHL)

ubiquitin-proteasome pathway (105). Hypoxia inhibits PHD

activity, preventing HIF-a degradation. Stabilized HIF-a
translocates to the nucleus, dimerizes with HIF-1b, and activates

the transcription of target genes involved in crucial processes such

as metabolism, angiogenesis, erythropoiesis, and cell survival (106).

HIFs play a pivotal role in reprogramming cancer cell metabolism

to adapt to hypoxic conditions (107). HIF-1a upregulates glycolytic

enzymes, including HK2, phosphofructokinase 1 (PFK1), and lactate

dehydrogenase A (LDHA), shifting the metabolic flux towards

glycolysis despite the presence of oxygen (aerobic glycolysis) (108).

This shift allows cancer cells to generate ATP efficiently under low

oxygen conditions. Upregulation of glucose transporters such as

GLUT1 enhances glucose uptake from the extracellular environment,

providing substrates for glycolysis (109). HIF-1a induces pyruvate

dehydrogenase kinase 1 (PDK1), which inhibits pyruvate

dehydrogenase (PDH), decreasing the conversion of pyruvate to

acetyl-CoA and thus reducing entry into the TCA cycle (110). This

adaptation minimizes oxygen consumption and reduces ROS

production from mitochondria. Increased LDHA activity converts

pyruvate to lactate, which is exported out of the cell via

monocarboxylate transporters (MCTs), contributing to the acidic

TME (111).
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4 Emerging technologies unveiling
metabolic vulnerabilities

The rapid advancement of innovative technologies has significantly

enhanced our ability to uncover metabolic vulnerabilities in cancer,

providing new insights into tumor biology and therapeutic

opportunities. Single-cell metabolomics has emerged as a powerful

tool, enabling the analysis of metabolic heterogeneity at an

unprecedented resolution (112). By profiling individual cells,

researchers can identify distinct subpopulations with unique

metabolic dependencies, which can inform the development of more

precise and effective targeted therapies. Spatial metabolomics further

expands this capability by detecting and imaging metabolites with

spatial resolution at the tissue or cellular level (113). By combining

mass spectrometry imaging with traditional metabolomics approaches,

this technique allows for the visualization of metabolite distribution

within biological tissues, offering a deeper understanding of the TME

and its metabolic interactions.

The advent of high-resolution mass spectrometry (HRMS) has

significantly enhanced the sensitivity and accuracy of metabolite

detection. HRMS provides precise molecular weight measurements

and detailed structural information, making it a cornerstone

technology in metabolomics research (114). Finally, systems

biology and computational modeling integrate multi-omics data

to construct metabolic networks and predict therapeutic outcomes
FIGURE 2

Immunometabolic interactions in the NSCLC TME.This schematic illustrates the dual roles of immune cell metabolism in either promoting or
suppressing tumor growth in NSCLC. On the left, antitumor immunometabolism is driven by activated CD4+ and CD8+ T cells, NK cells, and other
cytotoxic immune cells exhibiting increased glycolysis, fatty acid (FA) synthesis, OXPHOS, and glutaminolysis, supporting IFN-g production,
angiogenesis, and tumoricidal activity. On the right, tumor-promoting immunometabolism is characterized by immunosuppressive cells such as
regulatory T cells (Treg cell), myeloid-derived suppressor cells (MDSCs), TAMs, and neutrophils, which exploit elevated glycolysis, lactic acid
production, and altered metabolic intermediates (e.g., methylglyoxal) to inhibit cytotoxic function and promote Treg cell proliferation, PD-L1
expression, and M2 polarization. Tumor cells actively shape the metabolic landscape of the TME by rewiring their own metabolic programs (e.g.,
enhanced glycolysis, glutaminolysis, and b-oxidation) to suppress immune responses and sustain growth.
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(115). Computational tools enable the simulation of metabolic

interventions and identification of synergistic drug combinations,

paving the way for more strategic and effective treatment regimens.

Together, these emerging technologies are revolutionizing our

understanding of cancer metabolism and driving the discovery of

novel therapeutic strategies.
5 Therapeutic implications and
strategies

Recent advances in elucidating the metabolic landscape of

NSCLC have highlighted several key pathways that are amenable

to therapeutic intervention. Targeting metabolic dependencies

represents a promising strategy to disrupt tumor growth and

overcome resistance mechanisms (Figure 3). In this section, we

discuss emerging therapeutic approaches aimed at modulating core

metabolic processes in NSCLC. A summary of representative

metabolic inhibitors and their targeted pathways is provided in

Table 1, which offers a comprehensive overview of current

therapeutic agents explored in NSCLC metabolic intervention.
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5.1 Targeting glycolysis and OXPHOS

The metabolic reprogramming of NSCLC cells presents a

strategic opportunity for therapeutic intervention by targeting key

energy-producing pathways. Glycolysis and OXPHOS are central to

cancer cell metabolism, providing ATP and metabolic intermediates

necessary for rapid proliferation and survival. Inhibitors targeting

these pathways have shown promise in preclinical models, but due

to metabolic plasticity, cancer cells can switch between glycolysis

and OXPHOS to compensate when one pathway is inhibited (129).

Therefore, combination therapies targeting both pathways may be

more effective in preventing metabolic compensation and inducing

cancer cell death.

Key glycolytic enzymes such as HK2 and PKM2 are

overexpressed in NSCLC and are critical for maintaining the high

glycolytic flux observed in cancer cells. HK2 catalyzes the first step of

glycolysis, phosphorylating glucose to glucose-6-phosphate.

Inhibitors like 2-deoxy-D-glucose (2-DG) mimic glucose but

cannot undergo further metabolism, effectively inhibiting HK2

activity (130). Preclinical studies have shown that 2-DG induces

apoptosis and enhances the sensitivity of cancer cells to
FIGURE 3

Targetable metabolic pathways and inhibitors in NSCLC.This schematic highlights key metabolic pathways reprogrammed in NSCLC cells and
outlines current therapeutic targets under investigation. Central carbon metabolism—including glycolysis, the pentose phosphate pathway (PPP),
TCA cycle, and OXPHOS—is regulated by oncogenic signaling pathways such as PI3K/mTOR and MAPK/ERK, often activated by mutations in
receptor tyrosine kinases (EGFR, ALK, MET). Metabolic enzymes (e.g., HK2, PFKFB3, LDHA, PHGDH, PKM2, ACLY, FASN, SCD, GLS1) and transporters
(e.g., SLC1A5/SLC7A5) are shown with corresponding small-molecule inhibitors (e.g., 2-DG, BAY-876, PFK158, Oxamate, PX-478, CB-839, TVB2640,
MF-438, JPH203), many of which are being evaluated in preclinical or clinical settings. The diagram also illustrates amino acid metabolism (e.g.,
glutaminolysis, serine biosynthesis, arginine and proline metabolism), emphasizing the metabolic plasticity of NSCLC and the opportunities for
combinatorial metabolic interventions. This comprehensive map provides a framework for rational design of therapies targeting metabolic
vulnerabilities in NSCLC.
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chemotherapy and radiotherapy (116). However, its clinical

application is limited by toxicity and lack of specificity.

PKM2 controls the final step of glycolysis, converting

phosphoenolpyruvate to pyruvate. PKM2 exists in both active

tetrameric and less active dimeric forms, with cancer cells favoring

the dimeric form to promote anabolic processes. Small-molecule

activators like TEPP-46 and DASA-58 stabilize the tetrameric form,

enhancing pyruvate production and reducing lactate formation (117,

118). This shift can suppress tumor growth and induce apoptosis.
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Cancer cells can compensate for inhibited glycolysis by

increasing reliance on mitochondrial OXPHOS. Targeting

OXPHOS can disrupt this adaptive mechanism: 1. Complex I

Inhibitors: Metformin and phenformin inhibit mitochondrial

complex I, reducing ATP production and increasing ROS

generation (120, 121). Phenformin has shown greater antitumor

activity than metformin in preclinical models of NSCLC but with a

higher risk of lactic acidosis (131). 2. ATP Synthase Inhibitors:

Oligomycin and its derivatives inhibit ATP synthase, leading to
TABLE 1 Drugs/compounds targeting different proteins/enzymes of the metabolic pathway.

Pathways Molecular
target

Drugs/
compounds

Mechanism of action Clinical
trial status

Glucose metabolism pathway

GLUTS BAY-876 selective GLUT1 inhibitor, inhibition of proliferation in NSCLC cells (20) –

PFK2/PFKFB3 PFK158 Inhibits growth of NSCLC (in vitro) (26) Phase I
NCT02044861

HK2 2-DG Specific HK2 inhibitor, induction apoptosis of lung cancer stem cells (116) Phase I/II
NCT00096707

PKM2 TEPP-46 and
DASA-58

Inhibits proliferation and induces apoptosis of NSCLC cells (117, 118) –

LDH-A Oxamate Enhances the efficacy of anti-PD-1 treatment in an NSCLC (119) –

Mitochondrial metabolism

OXPHOS Metformin
Phenformin

Inhibit mitochondrial complex I, reducing ATP production and increasing
ROS generation (120, 121)

Phase I/II
NCT03086733
-

ATP Synthase Oligomycin Inhibit ATP synthase (122) –

Bcl-2/Bcl-xL venetoclax Promote apoptosis (123) Phase
I NCT04274907

Lipid metabolism pathway

ACC ND-646 Prevents ACC subunit dimerization (41) Preclinical

FASN TVB2640
TVB3166

Selective FASN inhibitor (124)
Selective FASN inhibitor (125)

Phase II
(NCT03808558)
Preclinical

SCD1 MF-438 Specific SCD1 inhibitor, induction apoptosis lung cancer stem cells (126, 127) Preclinical

CPT1 Etomoxir Irreversible inhibitor of CPT1B (46) –

Amino acid metabolism pathway

SLC1A5 V9302 Inhibits proliferation and induces apoptosis of NSCLC cells (64) –

SLC7A5 JPH203 Selective SLC7A5 inhibitor (65) –

GLS1 CB-839 Induction apoptosis lung cancer stem cells (128) Phase I/ II
(NCT02071862)
(NCT02771626)

Signaling proteins and transcription factors

mTORC1
and mTORC2

TAK-228 ATP-dependent mTOR1/2 inhibitor, inhibition of proliferation in NSCLC
cells (49)

Phase II
(NCT02503722)

HIF-1a PX-478 Induction apoptosis of NSCLC cells (104) Preclinical

PI3K and mTOR XL765 A pan PI3K/mTOR inhibitor (19) Phase I
(NCT00777699)
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decreased ATP production (122). While effective in vitro, their

clinical use is limited due to toxicity in normal cells. 3. B-cell

lymphoma-2/-xL (Bcl-2/Bcl-xL) Inhibitors: Agents like venetoclax

target anti-apoptotic proteins located on the mitochondrial

membrane, promoting apoptosis in cancer cells (123). Combining

these with OXPHOS inhibitors can enhance cancer cell death.

Combining glycolysis inhibitors with OXPHOS inhibitors may

prevent cancer cells from switching energy sources and enhance

therapeutic efficacy. Simultaneous targeting of HK2 and complex I

can induce energetic crisis in cancer cells. For example, combining

2-DG with metformin has shown synergistic effects in reducing

NSCLC cell viability (132). Inhibiting key enzymes in both

pathways limits the ability of cancer cells to adapt metabolically.

This approach can lead to increased ROS production, DNA

damage, and activation of cell death pathways.
5.2 Targeting lipid metabolism

Lipid metabolism plays a crucial role in the growth and survival

of NSCLC cells, as previously discussed. Targeting key enzymes

involved in lipid synthesis and desaturation presents a promising

therapeutic strategy. FASN and SCD1 are two pivotal enzymes in

lipid metabolism that have gained significant attention as potential

targets for cancer therapy.

FASN is an essential enzyme responsible for the de novo

synthesis of long-chain fatty acids from acetyl-CoA and malonyl-

CoA precursors. Overexpression of FASN has been observed in

various cancers, including NSCLC, and is associated with poor

prognosis and aggressive tumor behavior (133). By promoting lipid

synthesis, FASN supports membrane biogenesis, energy storage,

and the production of lipid signaling molecules that facilitate tumor

growth and metastasis (134). TVB-2640 is a first-in-class, orally

bioavailable, small-molecule inhibitor of FASN that has entered

clinical trials. It selectively inhibits the enzymatic activity of FASN,

leading to reduced fatty acid synthesis and accumulation of

malonyl-CoA, which can induce apoptosis and inhibit tumor

growth (124). In preclinical studies, TVB-2640 demonstrated

significant antitumor activity in NSCLC models, both as a

monotherapy and in combination with other agents (125).

Clinical trials are currently evaluating the safety and efficacy of

TVB-2640 in patients with advanced solid tumors, including

NSCLC (124). Preliminary results have shown that TVB-2640 is

well-tolerated and exhibits antitumor activity, especially when

combined with other treatments such as chemotherapy or

targeted therapies. These findings suggest that inhibiting FASN

can disrupt lipid homeostasis in cancer cells, leading to growth

inhibition and enhanced sensitivity to other anticancer agents.

SCD1 is a rate-limiting enzyme in the synthesis of

monounsaturated fatty acids (MUFAs) from saturated fatty acids

(SFAs). MUFAs are critical components of cellular membranes and

play a role in lipid signaling and energy storage (126). Overexpression

of SCD1 has been linked to increased proliferation, survival, and

chemoresistance in NSCLC cells (135). Targeting SCD1 disrupts the

balance of saturated and unsaturated fatty acids, affecting membrane
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fluidity and function. Inhibition of SCD1 leads to the accumulation of

SFAs, which can cause ER stress and activate the unfolded protein

response (UPR) (136). Prolonged ER stress can trigger apoptosis in

cancer cells. Additionally, decreased levels of MUFAs impair

membrane synthesis and the formation of lipid rafts, which are

essential for signal transduction and the activation of oncogenic

pathways. Several small-molecule inhibitors of SCD1 have been

developed and shown to exhibit antitumor activity in preclinical

models of NSCLC. For example, A939572 and MF-438 are potent

SCD1 inhibitors that have demonstrated the ability to reduce tumor

cell proliferation and induce apoptosis (126, 127). In combination

with other treatments, such as chemotherapy or targeted therapies,

SCD1 inhibitors may enhance therapeutic efficacy by sensitizing

cancer cells to these agents. While targeting lipid metabolism

shows promise, clinical outcomes have been variable. Some studies

suggest that inhibiting FAO may impair T cell function and

exacerbate inflammation, raising concerns about off-target effects.

Moreover, conflicting evidence exists regarding the dependency of

certain NSCLC subtypes on FAO versus lipogenesis, underscoring the

need for subtype-specific therapeutic strategies.
5.3 Targeting amino acid metabolism

Amino acid metabolism plays a pivotal role in the growth and

survival of NSCLC cells. Targeting key enzymes and pathways

involved in amino acid utilization presents a promising

therapeutic strategy. Glutaminase (GLS) inhibitors, such as CB-

839 (telaglenastat), and inhibitors of serine and glycine synthesis

pathways have shown potential in impairing tumor growth by

disrupting critical metabolic processes (128). Glutamine is an

essential nutrient for rapidly proliferating cancer cells, serving as

a carbon and nitrogen source for nucleotide and amino acid

synthesis, as well as maintaining redox balance through

glutathione production. GLS catalyzes the conversion of

glutamine to glutamate, a key step in glutamine metabolism.

Overexpression of GLS has been observed in NSCLC and is

associated with increased tumor aggressiveness (137). CB-839 is

an orally bioavailable, selective GLS inhibitor that has demonstrated

antitumor activity in preclinical models of NSCLC by blocking

glutamine utilization (138). By inhibiting GLS, CB-839 reduces the

production of glutamate and downstream metabolites, leading to

impaired nucleotide synthesis, decreased glutathione levels, and

increased oxidative stress (139). This can result in cancer cell death

and reduced tumor growth.

Serine and glycine are non-essential amino acids integral to

one-carbon metabolism, which is crucial for nucleotide synthesis,

methylation reactions, and maintaining redox balance (54). NSCLC

cells often upregulate enzymes involved in the serine-glycine

synthesis pathway to meet the increased demands of rapid

proliferation. PHGDH catalyzes the first step in the de novo

serine synthesis pathway. Overexpression of PHGDH has been

observed in NSCLC and is associated with enhanced tumor

growth (140). Inhibitors targeting PHGDH can disrupt serine

production, impair nucleotide biosynthesis, and induce cell cycle
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arrest. Novel PHGDH inhibitors have shown efficacy in preclinical

models, reducing tumor growth and enhancing sensitivity to

chemotherapy (141). SHMT converts serine to glycine,

contributing to one-carbon units necessary for thymidine and

purine synthesis (142). Inhibiting SHMT disrupts DNA synthesis

and can induce apoptosis in cancer cells. Agents targeting SHMT

have demonstrated antitumor activity by inducing DNA damage

and impairing cell proliferation (143).

Proline metabolism is another pathway exploited by NSCLC cells

to support tumor growth and metastasis (144). Proline biosynthesis

and degradation are linked to energy production and redox balance.

Inhibiting key enzymes such as pyrroline-5-carboxylate reductase

(PYCR) can disrupt proline metabolism, leading to increased

oxidative stress and reduced tumor growth (145). Targeting proline

metabolism may also impair the survival of cancer stem cells, which

are often resistant to conventional therapies (146).

BCAAs-leucine, isoleucine, and valine-are essential amino acids

involved in protein synthesis and signaling pathways that regulate cell

growth (147). NSCLC cells may exhibit increased uptake and

catabolism of BCAAs to fuel the TCA cycle and provide nitrogen

for nucleotide and amino acid synthesis (148). BCAT1 catalyzes the

first step in BCAA catabolism. Overexpression of BCAT1 has been

associated with tumor aggressiveness and poor prognosis in NSCLC

(149). Inhibiting BCAT1 can impair BCAA metabolism, suppress

tumor growth, and reduce cancer cell proliferation. To support

increased amino acid demands, NSCLC cells often upregulate

amino acid transporters (150). Targeting these transporters can

reduce the uptake of critical nutrients: ASCT2 is a glutamine

transporter overexpressed in many cancers (151). Inhibiting

ASCT2 can decrease glutamine uptake, leading to metabolic stress

and sensitizing cancer cells to chemotherapy (152). LAT1 transports

large neutral amino acids, including leucine (153). Targeting LAT1

can disrupt mTOR signaling pathways, reduce protein synthesis, and

inhibit tumor growth (65). Similarly, targeting amino acid

metabolism is not without limitations. For instance, while LAT1

inhibitors show antitumor potential, they may also impact immune

cell metabolism or lead to resistance via transporter redundancy.

Furthermore, some clinical trials targeting amino acid pathways have

failed to show significant benefits, highlighting the complexity and

redundancy of metabolic networks in cancer.
5.4 Combination therapies and
immunometabolism

Combining metabolic inhibitors with immunotherapies has

emerged as a promising strategy to enhance antitumor immune

responses in NSCLC (154). Modulating tumor metabolism can

improve the function of immune cells within the TME,

representing a synergistic approach to NSCLC treatment. Tumor

cells often create a metabolically hostile environment for immune

cells by consuming large amounts of glucose and amino acids, leading

to nutrient deprivation for tumor-infiltrating lymphocytes (TILs)

(155). Additionally, tumor cells produce immunosuppressive

metabolites like lactate and adenosine, which inhibit immune cell
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function (156). By targeting tumor metabolism, it is possible to

alleviate these immunosuppressive conditions and enhance the

efficacy of immunotherapies. Inhibiting glycolysis in tumor cells

can reduce glucose competition, making it more available for

effector T cells that rely on glycolysis for their function (157).

Glycolytic inhibitors, such as 2-DG, may improve T-cell activity

when combined with immune checkpoint inhibitors (116). IDO is an

enzyme overexpressed in some tumors that depletes tryptophan and

produces immunosuppressive metabolites (158). IDO inhibitors can

restore tryptophan levels and enhance T-cell proliferation.

Combining IDO inhibitors with PD-1/PD-L1 blockade has shown

synergistic antitumor effects in preclinical models (159). As discussed

previously, GLS inhibitors like CB-839 can reduce glutamine

availability for tumor cells (128). Since glutamine is less critical for

T-cell function than for tumor cells, GLS inhibition may

preferentially affect cancer cells and improve immune responses.

Modulating the metabolism of immune cells themselves can also

enhance antitumor immunity. The mTOR pathway regulates T-cell

metabolism and function (160). Activating mTOR can promote T-

cell glycolysis and effector functions. Agents that enhance mTOR

signaling in T cells may boost their antitumor activity. AMPK

activation can improve the metabolic fitness of T cells, enhancing

their survival and function in the nutrient-deprived TME (161).

Combining metabolic inhibitors with immunotherapies aims to

create a more favorable metabolic environment for immune cells

while directly targeting tumor metabolism. Targeting metabolic

checkpoints in tumor cells can sensitize them to immune-mediated

killing. For example, inhibiting LDHA reduces lactate production,

alleviating acid-mediated immunosuppression (119). Combining

immune checkpoint inhibitors (e.g., anti-PD-1/PD-L1 antibodies)

with metabolic modulators can enhance T-cell infiltration and

activity. Clinical trials are exploring such combinations in NSCLC

patients. Epacadostat, an IDO inhibitor, has been evaluated in

combination with pembrolizumab (anti-PD-1) in clinical trials,

showing promising results in some cancer types (162). However,

results have been mixed, and further studies are needed to

determine efficacy in NSCLC. Metformin, a complex I inhibitor,

has immunomodulatory effects and may enhance responses to

immunotherapy (132). Retrospective studies suggest that NSCLC

patients taking metformin may have improved outcomes with

immune checkpoint inhibitors.
5.5 Personalized metabolic therapies

The heterogeneity of metabolic profiles among NSCLC tumors

underscores the need for personalized metabolic therapies (163).

Metabolic profiling of tumors can identify patient-specific

metabolic dependencies, enabling tailored treatment strategies

that target the unique metabolic vulnerabilities of each tumor

(164). Advanced technologies such as metabolomics, genomics,

transcriptomics, and proteomics allow for comprehensive

metabolic profiling of tumors. High-throughput techniques can

analyze metabolic enzyme expression levels, metabolite

concentrations, and metabolic fluxes within cancer cells (165).
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These high-throughput techniques include: 1. Mass Spectrometry

(MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy:

These techniques enable the identification and quantification of a

wide range of metabolites in tumor samples. 2. Positron Emission

Tomography (PET) Imaging: Metabolic imaging using tracers like

18F-fluorodeoxyglucose (FDG) can assess glucose uptake in

tumors, providing insights into glycolytic activity. 3. Gene

Expression Profiling: Analyzing the expression of genes involved

in metabolic pathways can reveal overactive or dysregulated

metabolic enzymes.
6 Challenges and future directions

Cancer cells’ ability to adapt metabolically poses a significant

challenge for metabolic therapies. Their metabolic plasticity enables

them to switch between different energy sources and metabolic

pathways, which can render single-agent treatments less effective.

Future research should focus on understanding these resistance

mechanisms and developing strategies to prevent or overcome

them. Ensuring the safety and selectivity of metabolic inhibitors is

also critical; these agents must selectively target cancer cells without

harming normal tissues. Strategies to achieve this include exploiting

cancer-specific metabolic pathways or employing delivery systems

that preferentially target tumor cells.

Integrating metabolic biomarkers into clinical practice is

essential for personalizing treatment and improving outcomes.

Standardizing these biomarkers and incorporating them into

clinical workflows require close collaboration between researchers

and clinicians. Validation in large, diverse patient cohorts is

necessary to ensure their reliability and effectiveness in clinical

settings. Advancing the field further necessitates interdisciplinary

collaboration among oncologists, biochemists, pharmacologists,

and computational biologists. Integrating diverse expertise will

accelerate the translation of metabolic discoveries into effective

therapies, ultimately enhancing treatment strategies for NSCLC.
7 Conclusion

The metabolic reprogramming of NSCLC cells extends far

beyond the Warburg effect, encompassing alterations in lipid and

amino acid metabolism and dynamic interactions with the TME.

These metabolic adaptations are not merely bystanders but are

integral to tumor growth, survival, and therapeutic resistance. By

leveraging emerging technologies and a deeper understanding of

metabolic heterogeneity, we can identify novel vulnerabilities in

NSCLC. Therapeutic strategies that target these metabolic

dependencies offer promising avenues for improving patient

outcomes. Combining metabolic inhibitors with existing

treatments, such as immunotherapies and targeted therapies, may
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enhance efficacy and overcome resistance. Personalized metabolic

therapies, guided by metabolic profiling, represent the next frontier

in precision oncology. As we continue to unravel the complexities of

NSCLC metabolism, we move closer to realizing the full potential of

metabolic targeting in cancer therapy. The integration of cutting-

edge research with clinical practice holds the promise of

transforming NSCLC management and improving the lives of

patients worldwide.
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