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related gene risk model
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Introduction: Bladder cancer (BLCA) is a prevalent and aggressive disease

characterized by substantial molecular heterogeneity, complicating its diagnosis

and treatment. Existing therapies, including surgery and chemotherapy, often lack

specificity. Alterations in cell death mechanisms, such as ferroptosis, cuproptosis,

and immunogenic cell death, significantly impact cancer progression

and prognosis.

Methods: We analyzed gene expression data from TCGA and GEO. Cox

regression analyses generated a prognostic risk score model incorporating

LIPT1, ACSL5, and CHMP6. This model successfully stratified BLCA patients

into different risk categories and was validated through survival analysis,

immune infiltration, mutation burden assessment, drug sensitivity predictions,

and single-cell analysis. The high-risk group was linked to differentiation

processes, developmental stages, and active metabolic pathways.

Results: Experimental validation highlighted CHMP6’s role in enhancing BLCA

cell survival and migration by regulating the cell cycle. The model’s prognostic

relevance was further supported by drug sensitivity and immune metrics. These

results provide valuable insights into potential biomarkers and therapeutic targets

for BLCA treatment.

Discussion: The CHMP6 protein promotes BLCA cell survival and invasive

migration through modulation of the cell cycle.
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1 Introduction

Bladder cancer is the second most common malignant tumor of

the urinary system globally, with an annual incidence rate exceeding

540,000 cases and a mortality rate of approximately 200,000 deaths

per year. It ranks as the ninth most prevalent malignant tumor and

the thirteenth leading cause of cancer-related deaths worldwide (1,

2). Currently, the standard treatment for bladder cancer involves

surgical resection followed by chemotherapy (3). However, the

selection of chemotherapy agents remains largely at the discretion

of the treating physician (4). Furthermore, the anticipated length of

survival has a significant influence on the selection of active or

conservative treatment options for patients (5). Currently, there are

numerous prognostic categories for bladder cancer, including the

Uromol-2016 classification (6), the Van-Kessel classification (7), the

Seiler classification (8), and others. However, the substantial

heterogeneity of bladder cancer poses a significant challenge in

molecular classification. Consequently, an enhanced insight into the

regulatory mechanisms driving the onset and progression of

bladder cancer, the identification of molecular markers for

prognostication, and the discovery of novel biological targets for

targeted therapy are crucial for advancing the prevention and

treatment of bladder cancer.

Molecular alterations that affect the mechanisms of cell death

are frequently observed in the development of cancer. These

alterations permit malignant cells to evade the effects of intrinsic

death signals (9). Nevertheless, an increasing body of evidence

suggests that there are multiple alternative mechanisms that

coordinate various death pathways. Ferroptosis is an iron-

dependent form of programmed cell death, marked by

uncontrolled peroxidation of phospholipids. The occurrence of

this process is primarily contingent upon the elevation of

phospholipid-containing polyunsaturated fatty acid chains (pufa-

pl), metabolite reactive oxygen species (ROS), and iron

accumulation (10). Several studies have shown a relationship

between ferroptosis-related genes and cancer prognosis (11, 12).

Additionally, Cuproptosis is a unique form of programmed cell

death that distinguishes itself from other well-defined cell death

processes, the regulatory process is directly connected to

mitochondrial metabolism (13). Several studies have established a

strong association between copper death-related genes and the

onset and progression of cancer (14, 15). Immunogenic cell death

(ICD) is a type of tumor cell death induced by the stress caused by

certain chemotherapeutics, radiotherapy and oncolytic viruses (16).

Many literatures have confirmed that immunogenic death-related

genes have great prognostic value (17, 18). While ferroptosis,

cuproptosis, and ICD have been extensively studied as

independent cell death modalities, their interplay in the prognosis

of bladder cancer remains unexplored.

This study holds a novel research perspective on comprehensive

cell death mechanisms, with the objective of identifying new
Abbreviations: CDRI, comprehensive cell death gene risk model; BLCA,

bladder cancer.
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molecular markers for bladder cancer prognosis based on a

comprehensive cell death model, utilising readily accessible

resources in the clinical setting. Additionally, the study aims to

elucidate the mechanism through which comprehensive cell death

affects the development of bladder cancer. By examining clinical

tumour samples, this project would elucidate aspects such as

tumour heterogeneity, mutation map, drug sensitivity, and other

factors related to comprehensive cell death mechanisms. This would

provide a novel perspective on the efficacy of comprehensive death-

related oncogene targeted therapy and the advancement of novel

therapeutic approaches.
2 Materials and methods

2.1 Bulk RNA-seq analysis

2.1.1 Dataset collection
Gene expression profiles and clinical data of bladder cancer

patients were sourced from the Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/). We also consulted to

obtain information on ferroptosis, cuproptosis, and immunogenic

death-related genes (Supplementary Table S1). Furthermore, gene

expression profiles and clinical data of the GSE31684, GSE32548

and GSE32894 datasets were acquired from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

2.1.2 Prognostic risk characteristics construction
Firstly, the “edger” (19) was employed to analyse the

discrepancy between BLCA samples and normal samples. Genes

with a log2 fold change (log2fc) greater than 1 and a false discovery

rate (FDR) below 0.05 were regarded as differentially expressed.

Subsequently, the intersection analysis with comprehensive death-

related genes was conducted to ascertain the differential

comprehensive death-related genes. Then the univariate Cox

regression analysis was employed to identify comprehensive

death-related genes associated with overall survival (OS) in

patients with BLCA. To identify comprehensive death-related

genes that independently influence the prognosis of BLCA, We

conducted a multivariate Cox regression on the selected genes. The

correlation coefficient between each gene was calculated. A

comprehensive mortality prognostic risk score for BLCA was

constructed, and a formula was established as follows:

RiskScore = coef (LIPT1) ∗ exp (LIPT1)

+ coef (ACSL5) ∗ exp(ACSL5)

+ coef (CHMP6) ∗ exp (CHMP6)
2.1.3 Survival analysis
A survival analysis was conducted on various subgroups of

BLCA and TCGA comprehensive death risk scores for other cancer

types. The R packages “survival” and “survminer” (20) were

employed to generate Kaplan-Meier curves.
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2.1.4 Enrichment analysis of high and low risk
groups

The R packages “edgeR” and “ggplot2” (21) were utilized for the

analysis and visualization of differentially expressed protein-coding

genes across the distinct risk groups. To further explore the

potential biological functions, We performed GSEA, GO

enrichment, and KEGG pathway analysis. The R packages

“msigdbr” (22), “fgsea” (23), “clusterProfiler” (24) were used to

generate the enrichment results.

2.1.5 Analysis of immune infiltration
The tumour tissue transcriptome data underwent quantitative

transformation via “CIBERSORT” (25), xCell (26) and TIMER (27)

analysis, allowing the assessment of human immune cell subsets.

Immune cell profiles were compared between high-risk and low-risk

groups to assess tumormicroenvironment differences. TheWilcoxon test

was applied to identify significant variations in immune cell infiltration

and associated functional characteristics between the two groups.

2.1.6 Somatic variant analysis
Somatic mutation data, derived from whole exome sequencing

of the TCGA-BLCA dataset. The mutation annotation format

(MAF) files, containing information on single nucleotide variants,

were analyzed using the “maftools” R package (28).

2.1.7 Pharmacological response assessment
The “pRRophetic” package (29) was employed to evaluate the

response of each sample to a range of pharmacological agents. The

Wilcoxon test was used to assess drug sensitivity differences

between the two groups.
2.2 Single cell data analysis

Three single cell datasets, GSE135337, GSE129845 and GSE277524,

were collected from GEO database. Single-cell data were analyzed using

the “Seurat” R package (30). The expression matrix was filtered using

the criteria: ncount_rna > 200, nfeature_rna< 5000, and percent_MT< 5

to exclude overexpressed and low-quality cells. Principal component

analysis (PCA) andUMAP dimensionality reduction were performed to

cluster the cells, followed by annotation using cluster-specific marker

genes. Cell trajectory analysis by Monocle2 (31) package.
2.3 Experimental validation protocols

2.3.1 Clinical samples
Primary BLCA tissue samples were obtained from 54 patients

who underwent surgery at Xijing Hospital, Air Force Military

Medical University (Xi’an, China) between 2019 and 2024. All

clinical samples adhered to the Clinical International Staging

Guidelines and the Declaration of Helsinki. Informed consent was

obtained from all participants. Clinicopathologic information was
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collected from surgical records and pathology reports. The local

ethics committee approved all operations done in this research

(ethics approval number: K202201-04).

2.3.2 Cell line cultivation and transfection
The human bladder cancer cell lines 5637 and T24 were

obtained from Procell Life Science and Technology (Wuhan,

China). 5637 cells were cultured in RPMI 1640 medium

(PM150110) supplemented with 10% fetal bovine serum (164210-

500), 100 units/mL of penicillin, and 100 units/mL of streptomycin

sulfate, and incubated at 37°C in a humidified incubator with 5%

CO2. T24 cells were maintained in MEM medium (PM150410)

supplemented with 10% fetal bovine serum (164210-500), 100

units/mL of penicillin, and 100 units/mL of streptomycin sulfate,

and cultured under standard conditions. CHMP6 knockdown (KD)

and control (NC) lentiviruses were obtained from GeneChem

(Shanghai, China). Transfection was performed following the

manufacturer’s instructions, and transfection efficiency was

verified through Western blotting and RT-PCR analysis.

2.3.3 Immunohistochemistry and H-score
Surgical specimens were fixed in paraformaldehyde and embedded

in paraffin. The blocks were sliced into 4-mm sections and mounted on

slides. Slides were baked at 37°C overnight, deparaffinized in xylene,

rehydrated in alcohol, acid repaired, and treated with 3% hydrogen

peroxide to block peroxidase activity. The sections were incubated with

anti-CHMP6 antibody (Catalog No: 31838-2, SAB, USA) at 4°C for

≥12 hours after being blocked with phosphate-buffered saline (PBS)

containing 5% bovine serum albumin for 30 minutes. Protein-antibody

complexes were detected and developed using standard rapid EnVision

technology (Dako, Denmark). The tissue sections were counterstained

with hematoxylin, mounted, and observed under a microscope

for imaging.

Immunoreactivity was graded as follows: 0 = absence of staining, 1

+ = weak cytoplasmic staining, and 2+ = intense cytoplasmic staining.

Two experienced researchers independently evaluated the

immunohistochemically stained sections. Samples were classified into

high expression (2+) and low expression (1+ and 0) groups according

to the staining intensity. H scores were calculated using the formula: H

score = 1 × (percentage of 1+ stained cells) + 2 × (percentage of 2+

stained cells) + 3 × (percentage of 3+ stained cells), with a range from 0

to 300.

2.3.4 Western blotting assay
Cells were harvested by scraping or grinding, and proteins were

extracted for analysis by Western blotting. Anti-CHMP6 antibodies

(31838-2, SAB, Nanjing, China; PA5-145901, Invitrogen, USA), anti-

LIPT1 antibody (PA5-57064, Invitrogen, USA), and anti-b-tubulin
antibody (1:2000, CST, USA) were used to detect the target proteins.

The original image is provided in the Supplementary Information.

2.3.5 RT-PCR
RNAiso Plus (TAKARA, Shiga-ken, Japan) was used to extract
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total RNA, which was subsequently analyzed by reverse transcription-

PCR with the SYBR Green II kit (TAKARA, Shiga-ken, Japan). The

expression levels of target genes’mRNAwere normalized to the ACTN

gene. Thermal cycling conditions included 45 cycles: 15 s at 95°C, 5 s at

95°C, and 30 s at 60°C.

2.3.6 Cell viability assay
BLCA cell proliferation was assessed in vitro using the Cell

Counting Kit-8 (YEASEN, China). Cells were seeded in 96-well

plates at a density of 2 × 10³ cells per well, with a final volume of

100 mL. The plates were incubated for a period of time at 37°C with 5%

CO2. Next, 10 mL of CCK-8 solution was added to each well, and after

1–4 hours of incubation, absorbance at 450 nm was measured using a

microplate reader.

2.3.7 Cell permeabilization assay
Transwell chambers (8-mm pores, Corning, Lowell, MA, USA)

were positioned on 24-well culture plates (REF3524, Corning, Lowell,

MA, USA). Matrigel (356234, BD, USA) was mixed with serum-free

medium and added to the chambers. A 200 mL serum-free cell

suspension (3.5 × 104cells) was added to the upper chamber, and

500 mL of cell suspension to the lower chamber. After 24 hours, cells

that had invaded into the lower chamber were fixed with anhydrous

ethanol, stained with crystal violet, and air-dried. Images were

captured in three random fields using an inverted microscope

(200× magnification), and the number of cells was counted.

2.3.8 Scratch wound test
5637 cells were cultured to 80%-90% confluence, and a straight-

line “scratch” was created using a 200-mL pipette tip to form a cell-

free area. The cells were then incubated in serum-free medium for

24–48 hours, and cell migration was observed under a microscope.

2.3.9 Annexin V/PI staining
5637 cells were digested with EDTA-free trypsin and then

centrifuged at 500 × g for 5 minutes to terminate digestion. The

supernatant was discarded, and the cells were washed twice with PBS.

For every 1 × 105 cells, they were resuspended in 500 mL of cell staining
buffer (typically PBS containing 1%-3% BSA or FBS). Next, 2-5 mL of

PI/Annexin V-FITC staining solution (final PI concentration of 0.5

mg/mL) was added to each sample. The cells were incubated for 10-15

minutes, washed twice with PBS, and then analyzed by flow cytometry.

The original image is provided in the Supplementary Information.
3 Results

3.1 Defining multiple cell death genes
associated with BLCA prognosis

The initial analysis of the TCGA database revealed significant

differences between BLCA cancer samples and corresponding

paracancerous samples (Figure 1A; Supplementary Table S2). By
Frontiers in Oncology
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intersecting with the three cell death related gene sets, it was observed

that the three cell death related genes showed no significant difference

between cancer tissues and adjacent tissues (Figure 1B;

Supplementary Figure S1A–C), indicating that the cell death

activity would not be affected by cancer. Univariate Cox survival

analysis was performed on three cell death-related genes to identify

those associated with the prognosis of BLCA patients. This analysis

revealed that a total of 25 cell death-related genes had a significant

impact on the prognosis (Figure 1C; Supplementary Table S3).

Multivariate Cox analysis of these prognostic genes identified three

genes that were significantly associated with prognosis. The overall p-

value for the likelihood ratio test of the model is 2e-11. Among them,

chmp6 is a risk factor, while lipt1 and ACSL5 are protective factors

(Figure 1D). However, no marked differences in the expression of

these three genes were observed between cancerous and adjacent

tissues (Supplementary Figure S1D-F), suggesting that the prognosis

of our patients may not be solely driven by cancer-related factors.
3.2 Evaluating the effect of CDRI model on
prognosis

A comprehensive death gene risk model (CDRI) was constructed

using the genes CHMP6, LIPT1, and ACSL5. Subsequently, cancer

patients were divided into high-risk and low-risk groups using CDRI

scores (-3.003, 2.369) with a threshold of 0.522 (Supplementary Table

S4; Supplementary Table S5). The prognosis of the high-risk group was

markedly inferior to that of the low-risk group (Figure 2A). The same

trend was observed in additional BLCA datasets upon validation

(Figure 2B; Supplementary Figure S2). To investigate the potential of

the CDRI model for pan-cancer prognosis prediction, we extended the

model to encompass additional cancer types. Our analysis demonstrated

that the prognosis of the high-risk group in TCGA-UECE, TCGA-

LIHC, TCGA-MESO and TCGA-ACC was considerably poorer than

the low-risk group (Figures 2C–F). Previous literature also confirmed

that knockout of chmp6 gene would make pancreatic cancer cells and

liver cancer cells more sensitive to ferroptosis (32). Our results indicate

that the area under the curve for predicting the 1-year, 3-year, and 5-

year survival rates of BLAD patients is all above 0.7 (Supplementary

Figure S3A; Supplementary Table S6). Similar results were observed in

the validation cohort (Supplementary Figure S3B–F). These results

indicate that the CDRI model could potentially act as a prognostic

biomarker for pan-cancer.

In addition, we compared the CDRI model with Peng’s model

(33) and Bo’s model (34), and found that the AUC of the CDRI

model was better than that of the Peng’s model at one, three, and

five years. Although the AUC of the CDRI model was comparable to

that of the Bo’s model on the TCGA dataset, the performance of the

CDRI model was much better than that of the Bo’s model on the

GSE32548 and GSE32894 datasets. In addition, the Bo’s model uses

seven gene features, while the CDRI model only uses three gene

features. These results indicate that the CDRI model could

potentially act as a prognostic biomarker for pan-cancer.
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FIGURE 1

Differential expression and prognostic significance of genes in bladder cancer. (A) Volcano Plot of Differentially Expressed Genes between bladder
cancer and normal samples. (B) Heatmap of Ferroptosis and Immunogenic Cell Death-Related Genes. (C) Forest Plot of Univariate Cox Analysis:
Hazard ratios and 95% confidence intervals for genes significantly associated with bladder cancer prognosis from univariate Cox analysis. (D) Forest
Plot of Multivariate Cox Analysis.
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3.3 Research on the mechanism of CDRI
model

To further explore the mechanism behind the CDRI model, we

first carried out a comparative assessment between the two groups.

Subsequently, our analysis showed that the differences between two
Frontiers in Oncology 06
groups were predominantly associated with biological processes related

to differentiation and development, as well as molecular functions

linked to serine peptidase activity (Figure 3A). Earlier research has

demonstrated that serine peptidase is involved in regulating biological

processes related to tumor development (35). KEGG pathway

enrichment analysis further indicated that the differences between
FIGURE 2

Survival analysis of risk groups (A) Overall Survival in TCGA-BLCA: Kaplan-Meier survival curves for high-risk and low-risk groups in bladder cancer
(TCGA-BLCA). (B-E) Kaplan-Meier survival curves for GSE31684, TCGA-LIHC, TCGA-MESO, TCGA-UCEC, and TCGA-ACC.
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two groups were primarily enriched in metabolic pathways, including

the cAMP signaling pathway (Figure 3B). This pathway is also involved

in cancer proliferation and progression (36).
3.4 Comparison of the tumor immune
microenvironment between two groups

To determine whether discrepancies exist in the tumor immune

landscape between two groups, we estimated the proportions of 22

immune cell types (Figure 4A). No significant correlation was

observed among the 22 immune cell types (Figure 4C), indicating

that there was no mixing between cell types. Additionally, there was

no significant difference in the proportion of most immune cells

between the two groups (Figure 4B; Supplementary Figure S4),
Frontiers in Oncology 07
indicating that the difference in prognosis between the two groups

was not caused by the proportion of immune cells. The estimated

score further indicated no discernible difference in immune scores

between the two groups (Figure 4D). However, the stromal score in

the high-risk group was significantly higher than that in the low-risk

group, indicating greater tumor purity in the high-risk group. We

speculate that the prognosis of patients may be mainly affected by the

purity of tumor, rather than by the composition of immune cells.
3.5 Comparison of mutation characteristics
between two groups

We analyzed the mutation profiles of the two groups to evaluate

potential differences in tumor mutation burden. The number of
FIGURE 3

Functional enrichment analysis of differentially expressed genes in bladder cancer. (A) GO Pathway Enrichment Analysis: Enriched Gene Ontology
(GO) terms for differentially expressed genes include biological processes (BP), cellular components (CC), and molecular functions (MF). (B) KEGG
Pathway Enrichment Analysis.
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mutations in high-risk group was higher than that in low-risk group

(Figures 5A, B). But the mutation distribution pattern is similar

between the two groups (Figures 5C, D). The tumor mutation

burden (TMB) of high-risk group was lower than that of low-risk

group (Figures 5E-F). Additionally, the TMB in both groups was higher

than in other cancers (Supplementary Figure S5). Previous studies have

demonstrated that patients with higher TMB tend to have prolonged

survival following immune checkpoint inhibitor (ICI) therapy (37). It

also confirmed the correctness of our prognosis classification.
3.6 Assessment of drug sensitivity in high-
risk and low-risk groups

To guide clinical treatment for two groups, we calculated the

sensitivity of each sample to various drug types, including

chemotherapy agents, targeted therapies, and immune

modulators. The sensitivity of high-risk group and low-risk group

to drugs is different (Figure 6A). These findings can guide

medication administration for patients in different risk groups.
Frontiers in Oncology 08
Additionally, a significant correlation exists between the risk score

and drug sensitivity (Figure 6B), It shows that our CDRI model can

be used to guide patients’ medication. Notably, a higher proportion

of patients in the low-risk group achieved a complete treatment

response compared to the high-risk group (Supplementary Figure

S6). Recapitulation of known molecular subtypes within our

prognostic groups biologically corroborates the classification logic.
3.7 Evaluation of the prognostic impact of
CDRI combined with other scoring systems

To assess the combined effect of CDRI and other evaluation scores

on prognosis, we investigated the impact of TMT and CXCR5+CD8+

scores in both two groups. In the high-risk group, a higher TMT score

was associated with a poorer prognosis (Figures 7A, B), while a higher

CXCR5+CD8+ score correlated with a more favorable prognosis

(Figures 7C, D). The TIDE score in the high-risk group was

significantly higher than in the low-risk group, indicating a greater

level of tumor immune escape in the former (Figure 7E). However, the
RE 4FIGU

Immune infiltration and tumor microenvironment analysis. (A) Relative Abundance of Immune Cell Types in High and Low Risk Groups.
(B) Comparison of Immune Cell Composition Between High and Low Risk Groups. Statistical significance is indicated by ns (not significant),
* (adjust.p< 0.05), ** (adjust.p< 0.01), *** (adjust.p< 0.001), and **** (adjust.p< 0.0001). (C) Correlation Heatmap of Immune Cell Types.
(D) ESTIMATE Scores Comparison Between High and Low Risk Groups.
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TIDE score in both the two groups had no significant impact on patient

prognosis (Supplementary Figure S7). Additionally, no difference in the

prognosis of TIL between the two groups (Figure 7F; Supplementary

Figure S8), suggesting comparable levels of tumor-infiltrating

lymphocytes in both groups. This finding supports our previous

conclusion that the prognostic differences between the two groups

may not be solely driven by immune cell infiltration.
Frontiers in Oncology 09
3.8 Validating the mechanism of CDRI
effect based on single cell data

To validate the conclusions proposed in our study at the

cellular level, we conducted cluster analysis on single-cell RNA

sequencing data from seven bladder cancer patients. Following

cell annotation, the dataset was classified into six distinct cell types
FIGURE 5

Mutation analysis in risk groups. (A, B) Mutation Summary in Risk Group. Variant classification and type distribution. (C, D) Mutation Landscape in Risk
Group. (E, F) Tumor Mutation Burden (TMB) in Risk Group.
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(Figure 8A), with epithelial cells representing the predominant

population. The marker genes for each cell type were highly

specific (Figure 8B). Notably, we observed that CHMP6 were

highly expressed in fibroblasts and endothelial (Figure 8C), with

relatively low expression in immune cells. Additionally, we found

that CHMP6 expression was particularly elevated during the G1

phase, a critical phase for cell proliferation (Figure 8D). We also
Frontiers in Oncology 10
observed consistent trends in other data sets (Supplementary

Figure S9). Further analysis indicated that the expression levels

of these three genes did not significantly change during the

differentiation process (Figure 8E). These results provide

additional evidence for our hypothesis that the prognostic

differences in the samples are primarily determined by

tumor purity.
FIGURE 6

Drug sensitivity analysis in high and low risk groups. (A) Predicted Drug Sensitivity. Boxplots compare predicted drug sensitivity between high risk and
low risk groups. Statistical significance is indicated by ** (adjust.p< 0.01) and *** (adjust.p< 0.001). (B) Correlation between Drug Sensitivity and Risk
Score.
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3.9 CHMP6 protein enhances BLCA cell
survival and invasive migration by
regulating the cell cycle

We investigated the cytoplasmic expression of CHMP6, ACSL5,

and LIPT1 in 54 cases of BLCA using immunohistochemical analysis.
Frontiers in Oncology 11
In comparison to the corresponding noncancerous tissues, the protein

levels of CHMP6 and ACSL5 were more highly expressed in

cancerous tissues (Figures 9A, B) and were mainly localized in the

cytoplasm and cell membranes, whereas LIPT1 was expressed at a

lower level in both cancerous and paracancerous tissues (Figure 9C).

In Figure 9D, we examined the expression levels of CHMP6, ACSL5,
FIGURE 7

Survival analysis and immune cell impact in risk groups. (A, B) Overall Survival Based on Tumor Mutation Burden (TMB) in risk Group. (C, D)
Overall Survival Based on CXCR5+CD8+ T Cells in risk Group. (E) Comparing TIDE scores between the risk groups. (F) Comparing TILs between
the risk groups.
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CDK2, CHMP5, Cyclin A proteins in 5637 and T24 cell lines, in which

ACSL5 protein expression was lower compared to CHMP6, which

was consistent with what we observed in immunohistochemistry. We

constructed CHMP6 knockdown human bladder cancer cell lines and

utilized WB and Q-pcr techniques for validation at the protein level

and RNA level (Figures 9D-F), and in the cell lines with CHMP6

knockdown, we found that ACSL5 protein levels were elevated. CDK2,
Frontiers in Oncology 12
CHMP6 and Cyclin A protein levels were weakened (Figure 9E). We

selected 5637-shCHMP6#2 with higher knockdown efficiency for

subsequent experiments. It was found by Annexin V/PI staining

that more early apoptosis and late apoptosis were exhibited in 5637-

shCHMP6#2 cells (Figure 9G). By analyzing the cell cycle with flow

cytometry, we found that 5637-shCHMP6#2 cells showed significant

S-phase block (Figure 9H). Through the scratch assay, We observed a
FIGURE 8

Single-Cell RNA sequencing analysis of bladder cancer samples. (A) UMAP Plot of cell types. (B) Dot plot of cell types. (C) Heatmap of expression of
three genes in cell types. (D) Heatmap of expression of three genes in cell phase. (E) The expression distribution of three genes in the trajectory of
cell differentiation.
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FIGURE 9

Validation of CHMP6 through in vitro methods. (A-C) Immunohistochemical Staining: Immunohistochemical analysis of CHMP6, ACSL5, and LIPT1 in
BLCA tissues. (D) Protein Expression Levels: Expression of CHMP6 and ACSL5 proteins in 5637 and T24 cell lines. (E) Western Blot (WB) Analysis:
Detection of CHMP6 protein knockdown in 5637 and T24 cell lines, along with ACSL5 expression. (F) RNA Knockdown Efficiency: Validation of
CHMP6 knockdown efficiency at the RNA level in 5637 and T24 cell lines. (G) Apoptosis Assay: Assessment of early and late apoptosis in 5637-
shControl and 5637-shCHMP6#2 cells. (H) Cell Cycle Analysis: Flow cytometry analysis of the cell cycle in 5637-shControl and 5637-shCHMP6#2
cells. (I) Migration Assay: Scratch assay to evaluate the migration ability of 5637-shControl and 5637-shCHMP6#2 cells. (J) Invasion and Migration
Assay: Transwell assay to assess invasion and migration capabilities of 5637-shControl and 5637-shCHMP6#2 cells. ns (not significant) and
** (adjust.p < 0.01).
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significant reduction in the migration ability of 5637-shCHMP6#2

cells (Figure 9I). In the Transwell assay, CHMP6 knockdown

significantly decreased the cells’ invasive and migratory

abilities (Figure 9J).
4 Discussion

The findings of this study highlight the significant prognostic role of

genes involved in programmed cell death in bladder cancer. Univariate

and multivariate Cox analyses further underscore the prognostic value

of cell death genes. The consistency of results across the multiple

datasets enhances the study’s credibility and suggests the widespread

relevance of cell death-related genes across various cancer types.

Immune infiltration and estimation analyses highlight the complex

role of the tumor microenvironment, particularly the variations in

tumor purity and stromal invasion levels. Mutation analysis suggests

that a higher mutation load in the low-risk group may correlate with a

more favorable prognosis. Drug sensitivity analysis may also provide

practical implications for personalized treatment in clinical practice.

Experimental data indicate that CHMP6 may promote the survival and

invasive migration of BLCA cells by modulating the cell cycle.

Although this study offers valuable insights, several limitations

must be recognized. First, the data predominantly come from public

databases, such as TCGA and GEO, which may introduce sample

selection bias. Furthermore, heterogeneity across datasets could

affect the interpretation and generalizability of the findings.

Lastly, although several prognostic genes have been identified,

their underlying mechanisms and pathways warrant further

investigation in future research.

Future research should consider the following directions. First,

new experimental methods are needed to validate the function and

mechanism of the identified genes at the single-cell level (38–40).

Second, expanding the sample size, particularly to include

individuals from diverse racial and geographical backgrounds,

would help assess the generalizability of the findings. Exploring

the transcriptional mechanism of chmp6 in paracancerous tissues

and tumors will provide direction for the study of bladder cancer

treatment. Additionally, integrating various data sources and

analytical techniques could strengthen the reliability and

broader applicability of the results. Finally, the drug sensitivity

analysis in this study may serve as a valuable resource for

designing clinical trials of relevant drugs, aiding in the

evaluation of their potential for personalized bladder

cancer treatment.
5 Conclusions

In this study, we developed a comprehensive death gene risk

model (CDRI) based on cell death-related genes. Additionally, Our

analysis indicates that the prognosis in cancer samples is mainly

related to tumor purity. The CHMP6 protein promotes BLCA cell
Frontiers in Oncology 14
survival and invasive migration through modulation of the cell

cycle. Our findings deepen the molecular understanding of bladder

cancer and offer potential biomarkers and therapeutic targets to

improve patient prognosis.
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