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Objective: The metabolism of amino acids and derivatives (MAAD) is closely

related to the occurrence and development of colorectal cancer (CRC), but the

specific regulatory mechanisms are not yet clear. This study aims to explore the

role of MAAD in the progression of colorectal cancer and ultimately identify key

molecules that may become potential therapeutic targets for CRC.

Methods: This study integrates bulk transcriptome and single-cell transcriptome

to analyze and identify key MAAD-related genes from multiple levels.

Subsequently, numerous machine learning methods were incorporated to

construct MAAD-related prognostic models, and the infiltration of immune

cells, tumor heterogeneity, tumor mutation burden, and potential pathway

changes under different modes were analyzed. Finally, key molecules were

identified for experimental validation.

Results:We successfully constructed prognostic models and Nomograms based

on key MAAD-related molecules. There was a notable survival benefit observed

for low-risk patients when contrasted with their high-risk counterparts. In

addition, the high-risk group had a poorer response to immunotherapy and

stronger tumor heterogeneity compared with the low-risk group. Further

research found that by knocking down the MAAD-related gene. LSM8, the

malignant characteristics of colorectal cancer cell lines were significantly

alleviated, suggesting that LSM8 may become a potential therapeutic target.

Conclusion: TheMAAD-related gene LSM8 is likely involved in the progression of

CRC and could be a hopeful target for therapeutic intervention.
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Background

CRC, as a common type of malignant tumor, poses a significant

threat to human health due to its high incidence and the substantial

number of deaths it causes annually. According to global cancer

statistics, CRC leads to approximately one million new diagnoses

each year, and its incidence is continuously increasing in many

countries (1). Although early screening and surgical treatment can

significantly improve patients’ survival expectations, metastasis,

chemoresistance, and high recurrence rates of colorectal cancer

remain the main challenges in clinical treatment (2).

The metabolism of amino acids and derivatives (MAAD) plays a

crucial role in the growth, proliferation, and metastasis of tumor cells

(3). Amino acids are not only the basis for protein synthesis but also

promote the occurrence and progression of cancer by affecting the

energy metabolism, redox balance, and immune escape mechanisms

of tumor cells. Recent studies have revealed the reprogramming of

amino acid metabolism in colorectal cancer cells, particularly the

uptake of amino acids, metabolic pathways, and secretion of

derivatives, which are of significance to tumor cells (4). Recent

research has also highlighted that the reprogramming of amino

acid metabolism in colorectal cancer cells, particularly the uptake,

metabolic pathways, and secretion of derivatives, is crucial for the

maintenance of tumor cell viability (5). The metabolism of glutamate

and glutamine is vital for the energy supply and antioxidant response

of colorectal cancer cells. Glutamate provides necessary energy

support for cancer cells to grow rapidly by participating in the

tricarboxylic acid cycle (TCA cycle) and amino acid synthesis. In

addition, the metabolic products of tryptophan and tyrosine also play

key roles in immune regulation and drug resistance in the tumor

microenvironment (6–8). The tryptophan metabolic pathway not

only promotes immune escape by regulating the function of T cells

but also supports the progression of cancer by producing anti-

inflammatory molecules (9).

The abnormal metabolism of amino acids not only provides the

material basis for the growth of tumor cells but also affects the acid-

base balance, oxygen supply, and immune response in the tumor

microenvironment (10). Therefore, studying the role of amino acid

metabolism in colorectal cancer, especially MAAD, has become an

emerging direction in cancer treatment. The progress in multi-omics

fields has been exceedingly rapid, and the combination of genomics,

transcriptomics, and metabolomics provides new opportunities to

reveal potential targets in these metabolic pathways (11, 12). In

addition, machine learning and artificial intelligence methods can

also help identify characteristic metabolic patterns in colorectal cancer

patients and promote the realization of personalized treatment (13).

However, the role of MAAD in the clinical prognosis and treatment

response of colorectal cancer remains unclear.

To further explore the potential of MAAD as a biomarker and

therapeutic target, we conducted multi-omics analyses to

comprehensively investigate the significance of MAAD in CRC

patients. Firstly, based on the changes in gene expression at the

transcriptome level, we identified MAAD genes associated with the

CRC process. Subsequently, we employed various machine learning

methods to successfully construct a reliable MAAD-related prognostic
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model and evaluated its clinical value in CRC patients, facilitating

clinical application through the construction of nomograms. Finally,

we analyzed the relationships between tumor heterogeneity, immune

therapy response, immune microenvironment, and single nucleotide

variants (SNVs) in the high and low-risk groups of the prognostic

model. Cellular experiments verified the impact of the MAAD-related

gene LSM8 on cell line.
Methods

Data collection and processing

The TCGA-COAD(colon adenocarcinoma)was filtered to

exclude patients who had received radiotherapy or chemotherapy,

as well as those withmissing OS data, resulting in a final cohort of 420

samples for analysis. The IMvigor210 cohort was utilized to assess the

efficacy of immune therapy responses. From the GEO database, we

downloaded GSE17537 (comprising 55 samples) and single-cell data

from CRC patients (GSE231559, including GSM7290763,

GSM7290769, GSM7290772, GSM7290773, GSM7290774,

GSM7290777). In the analysis of single-cell transcriptomic data, we

initially performed quality control (QC). The specific steps included

filtering out cells with mitochondrial gene content exceeding 250 and

ensuring that each gene was detected in at least three cells.

Subsequently, we used the Seurat package to identify highly

variable genes, focusing on the top 2000 most variable genes for

subsequent analyses. The “AddModuleScore” function of Seurat was

used to annotate the activity of the MAAD gene set (Supplementary

Table S1). Genes that were differentially expressed between cells with

high and low scores in amino acid and derivative metabolism were

inferred to be key regulators of this metabolic process and were

further incorporated into WGCNA whole-transcriptome analysis

and pathway enrichment analysis.
Weighted gene co-expression network
analysis

WGCNA was employed to identify core modules closely

associated with amino acid and derivative metabolism (14). By

leveraging the modular framework of gene co-expression, we

focused on biologically relevant gene clusters rather than isolated

individual genes, incorporating them into subsequent analyses to

enhance the credibility of our research conclusions.
Construction of MAAD prognostic model
based on machine learning

Differential analysis of the TCGA-COAD dataset identified

genes with |logFC| > 0.5 and p-values < 0.05 as differentially

expressed genes, which were then intersected with genes from

modules related to amino acid metabolism. These intersecting

genes are potentially critical in tumor development. The TCGA-
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COAD dataset was randomly divided into a training set (2/3) and a

validation set (1/3), with the GSE17537 dataset used for external

validation. Ten machine learning methods were applied, and

models were trained and optimized using ten-fold cross-

validation. The performance of each model across datasets was

assessed using the C-index to select the best predictive model.
Genomic variation analysis under
MAAD mode

There is significant individual variation among cancer patients,

and this heterogeneity poses a major challenge to tumor treatment.

After comparing the DNA of cancer-adjacent and tumor samples,

we calculated the Mutant Allele Tumor Heterogeneity (MATH)

score and drew survival curves based on the MATH score (15). We

performed copy number variation (CNV) analysis on the 12 genes

with the greatest differences between the high and low-risk groups.

Additionally, we used the maftools package to draw the mutation

landscape of the high and low-risk groups.
Construction of nomogram and analysis of
immune cell infiltration

The survival curves for each group were plotted using the R

package survminer, and the impact of MAAD on clinical

characteristics was investigated. After integrating decision curve

analysis (DCA), calibration curves, and C-index analysis, a

nomogram was constructed to provide auxiliary clinical diagnosis

for colorectal cancer patients. Additionally, the differences in

immune cell infiltration between high and low-risk groups under

the MMAD mode were assessed using the CIBERSORT algorithm

and ssGSEA algorithm (16).
CCK-8 and colony formation assays

Human CRC cell lines were purchased from ATCC. To measure

cell viability, samples in 96-well plates (1.5 × 10^3^ cells/well) were

tested at four time points: 0, 24, 48, and 72 hours. For each well, 100

mL of fresh medium containing 10 mL of CCK-8 reagent was added,

and the plates were incubated at 37°C in the dark for 2 hours. The

absorbance at 450 nm was measured using a microplate reader

(Thermo Fisher Scientific, USA). For the colony formation assay,

cells were seeded in 6-well plates at a density of 1.5 × 10^3^ cells/

well. After 2 weeks, the cells were stained with crystal violet

(Beyotime, China).
Transwell assay and EdU assay

Cellular migratory capacity was evaluated utilizing Transwell

inserts (8 mm pores, Labselect, China). The invasive potential was
Frontiers in Oncology 03
determined using inserts pre-coated with a basement membrane

matrix. A volume of 100 mL of serum-deprived cell suspension,

containing 2 × 10^4^ RKO cells, was placed into the upper

chamber, whereas 500 mL of medium supplemented with 20%

fetal bovine serum was added to the lower chamber. Following

incubation (24 hours for RKO cells), cells were fixed and stained.

For quantification, the mean cell counts from five randomly chosen

fields with consistent cell distribution was determined. In the EdU

incorporation assay, cells were incubated with EdU (Beyotime,

China) at 37°C for 2 hours, subsequently fixed, permeabilized,

and processed with a click chemistry reaction buffer and DAPI.
Construction of LSM8 knockdown RKO
cell lines and qRT-PCR validation

To knock down the LSM8 gene in the RKO cell line, small

interfering RNA (siRNA) was utilized with the following primer

sequences: Si1: TACATCAGATGGGAGAATGATTG, Si2:

AGGTTTTGACCAGACCATTAATT. Transfection of RKO cells

was carried out using Lipofectamine 3000 (Invitrogen, USA). The

expression of LSM8 was analyzed by RT-qPCR. RNA was extracted

using TRIzol reagent (Invitrogen, USA). The RNA samples were

reverse transcribed into cDNA using a reverse transcription kit

from Promega. For qRT-PCR analysis, SYBR Green (Abclonal,

China) was mixed with cDNA in the reaction mixture. The

analysis was performed using a real-time fluorescence quantitative

PCR instrument (Thermo Fisher Scientific, USA) with the following

LSM8 qPCR pr imer sequences : Forward pr imer F :

GCCCTACTCGTTGTGGTTCA , Re v e r s e p r ime r R :

AGAGACTCATCCCAGCAGGT.
Wound-healing assay

RKO cells were plated in six-well culture plates and cultured

until they formed a confluent monolayer. Subsequently, a scratch

was made in the cell layer using a 200 mL sterile pipette tip under

aseptic conditions. The cells were then cultured in 1640 medium

supplemented with 2% serum. After 24 hours, images of randomly

selected areas from each group were captured.
Statistical analysis

Data analysis was performed employing GraphPad Prism 7 and

R software, version 4.1.2. To discern significant quantitative

disparities in variables exhibiting normal distribution, we

implemented a two-tailed t-test or a one-way ANOVA.

Conversely, for variables with non-normal distribution, we opted

for the Wilcoxon test or the Kruskal-Wallis test as appropriate. The

threshold for statistical significance was set at p < 0.05, denoted by *

for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001,

with ns indicating no statistical significance.
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Results

Characteristics of MAAD in colorectal
cancer single-cell sequencing samples

To investigate the role of MAAD in colorectal cancer, we

performed dimensionality reduction on single-cell data from

colorectal cancer using PCA and UMAP, thereby reducing noise

and redundancy in the data while preserving local similarities

between data points. Subsequently, we identified T cells, Plasma

cells, Macrophages, B cells (1), B cells (2), Tumor cells, NK cells,

Fibroblasts, Monocytes, and Endothelial cells in the immune

microenvironment of colorectal cancer patients (Figure 1A). The

heatmap in Figure 1B displays the top 5 marker genes for each cell

subpopulation. We then scored all cell subpopulations against the

408 genes in the MAAD gene set (Figure 1C). The violin plot

(Figure 1D) shows that B cells (2), Macrophages, and Endothelial

cells exhibit higher levels of MAAD activity. Based on the MAAD
Frontiers in Oncology 04
activity scores, we divided all cells into high-MAAD and low-

MAAD groups. The differentially expressed genes between the

high-MAAD and low-MAAD groups are considered to

potentially influence the MAAD process.
Identification of key MAAD-related genes

To better understand the role of in the progression of colorectal

cancer, we utilized the ssGSEA algorithm to score MAAD in

TCGA-COAD for subsequent analysis. Following WGCNA

analysis, we identified two modules related to MAAD

(Figure 2A). The module membership within the grey module

was highly positively correlated with the Gene significance

MAAD score (Figure 2B; detailed information for the grey

module is provided in Supplementary Table S2). Subsequently, we

conducted an analysis of gene expression to pinpoint genes that

exhibit varied expression levels within the TCGA-COAD dataset
FIGURE 1

UMAP visualization and MAAD score of various cell types. (A) UMAP projection displaying the clustering of various cell types in two-dimensional
space. Each point represents a single cell, and cells are color-coded based on their type. The cell types include T cells, plasma cells, macrophages,
two distinct B cell subpopulations, tumor cells, NK cells, fibroblasts, monocytes, and endothelial cells. (B) Heatmap overlay of the gene expression
score on the UMAP plot. The color gradient indicates the relative expression level of key genes across the cell types. (C) Quantitative representation
of the MAAD score distribution across different cell types, with the average gene expression score shown for each cell type. (D) The violin plot
illustrates the MAAD score of different cell types.
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(Figure 2C and detail in Supplementary Table S3). By intersecting

these differentially expressed genes with the WGCNA grey module,

we obtained 828 genes (Figure 2D), which we defined as MAAD-

related genes (MAADRG). Gene ontology analysis revealed that
Frontiers in Oncology 05
these genes were involved in biological processes (BP) such as

structural constituent of ribosome, cellular components (CC) like

cell−substrate junction, and molecular functions (MF) including

RNA splicing, via transesterification reactions (Figure 2E). Through
FIGURE 2

WGCNA analysis and functional annotation of gene modules. (A) WGCNA shows the correlations between gene co-expression modules and specific
phenotypes. Red indicating positive correlations and blue indicating negative correlations. (B) Scatter plot showing the relationship between module
membership and gene significance for the grey module. The x-axis represents the module membership score, while the y-axis represents the gene
significance. (C) Volcano plot of differential gene expression analysis (DEG). The x-axis shows the log2 fold change, while the y-axis shows the
statistical significance (–log10 adjusted p-value). (D) The Venn diagram shows the overlap between WGCNA module genes and differentially
expressed genes. (E) Gene ontology (GO) enrichment analysis was performed for the functional categories of the overlapping genes. (F) The results
of univariate Cox regression analysis for MAADRG and their correlation analysis. (G) CNV frequency of MAADRG.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1565090
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yue et al. 10.3389/fonc.2025.1565090
univariate Cox regression analysis, we narrowed down the 823

MAADRG to 64 (Figure 2F, which illustrates the relationships

among these 64 genes). Upon conducting CNV frequency analysis

on these 64 genes, we observed an interesting phenomenon: the

copy number of TEME50A, RUNX3, CDC42, and DDOST all

decreased by approximately 10% (Figure 2G).
Construction and validation of prognostic
models based on multiple machine
learning

We analyzed the previously filtered 64 genes using 101 machine

learning methods for subsequent analysis. The TCGA-COAD

dataset was randomly divided into a training set and an internal

validation set at a ratio of 2:1. Additionally, GSE17537 was used as

an external dataset to further validate the reliability of the models.

Subsequently, the C-index was calculated for both the training and

validation sets of the 101 prognostic models (Figure 3A). We found

that the Lasso + GBM, StepCox [forward] + GBM, GBM, and

CoxBoost + GBMmodels had C-index values greater than 0.6 in the

TCGA-TRAIN, TCGA-TEST, GSE17537, Mean C-index in all

cohorts, and Mean C-index in validate cohorts (Figure 3A). The

Lasso + GBM model had the highest C-index score, so we used this

model for the MAAD prognostic model. We found that patients

with low MAAD risk scores had significantly better overall survival

(OS) compared to those with high risk scores in the TCGA TRAIN

and GSE17537 cohorts, with P = 0.058 in the TCGA TEST cohort

(Figure 3B). ROC analysis results showed that our MAAD

prognostic model had good predictive power in the TCGA

TRAIN, TCGA TEST, and GSE17537 cohorts (Figures 4A-C).

Changes in clinical indicators are of significant guiding

importance for the treatment of cancer patients (Figures 4D, E).

Therefore, we analyzed the changes in T, N, M staging, stage, and

gender between the high and low MAAD risk groups. Apart from

the gender indicator, the rest of the indicators revealed substantial

variance when comparing the high and low risk groups. We were

pleased to find that patients with T3-T4 had higher risk scores

compared to those with T1-T2 (Figure 4F). Additionally, the

MAAD prognostic model can be used to predict the T stage of

colorectal cancer patients, and survival analysis results also showed

that the MAAD prognostic model had good predictive performance

for T1-T2 and T3-T4 colorectal cancer patients (Figures 4G-I).

These results indirectly prove the reliability and applicability of

our model.
Establishment and validation of a MAAD-
related nomogram

To comprehensively evaluate the reliability of the MAAD score,

we assessed its association with CRC patients by considering the

MAAD score as an independent risk factor. We employed both

univariate and multivariate regression analyses to evaluate the

differences between the MAAD score and other clinical
Frontiers in Oncology 06
characteristics. The MAAD score was identified as an independent

risk factor for OS in CRC patients (Figures 5A, B). To provide each

CRC patient with a precise, digitized probability of survival or risk, we

constructed a nomogram to assist clinicians in making individualized

decisions (Figure 5C). The calibration curves illustrated a

pronounced concordance between the predictive probabilities of

our MAAD-related nomogram and the factual outcomes, which is

evident in Figure 5D. Decision curve analysis (DCA) also indicated

the reliable utility of the MAAD-related nomogram (Figure 5E).

Furthermore, C-index analysis further confirmed the excellent

performance of our nomogram model (Figure 5F).
Analysis of potential pathway changes
in MAAD

The molecular mechanisms of MAAD in CRC patients remain

unclear. To provide a more comprehensive understanding of its

impact on patients, we conducted a Gene Set Enrichment Analysis

(GSEA) on patients across different risk groups. Interestingly,

pathways such as oxidative phosphorylation, fatty acid

metabolism, e2f targets, and glycolysis were significantly enriched

in the low-risk group (Figure 6A). In contrast, angiogenesis,

epithelial-mesenchymal transition, hedgehog signaling, and wnt/

b-catenin signaling were significantly enriched in the high-risk

group (Figure 6B). To further analyze the potential pathway

activities, we used Gene Set Variation Analysis (GSVA). The

results showed that hedgehog signaling and wnt/b-catenin
signaling were significantly enriched in the high-risk group, while

fatty acid metabolism, glycolysis, and oxidative phosphorylation

were mainly enriched in the low-risk group (Figure 6C). The high

consistency between GSEA and GSVA results further confirms the

importance of these pathway activity changes in CRC patients.

Subsequent correlation analysis between MAADs and pathway

hallmark scores also further confirmed the close association of

MAADs with metabolic pathways and tumor progression-related

pathways in CRC (Figure 6D). These results may suggest that the

differences in clinical characteristics between high and low MAAD

risk groups may be related to these pathways.
Intra-tumor heterogeneity and copy
number variations analysis under
MAAD mode

CRC often exhibits intra-tumor heterogeneity (ITH), which

typically arises from the accumulation of genetic mutations. This

heterogeneity affects tumor occurrence, progression, metastasis, and

response to treatment on multiple levels. To comprehensively elucidate

the role of ITH in high and low-risk groups, we employed the MATH

algorithm for scoring. The high-risk group exhibited notably elevated

MATH scores in comparison to the low-risk group, as depicted in

Figure 7A. In addition, CRC patients with increasedMATH scores had

a markedly lower survival rate than their counterparts with decreased

scores, a comparison detailed in Figure 7B. Subsequently, we integrated
frontiersin.org
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ITH andMAAD scores to enhance the predictive accuracy of CRC and

provide more precise diagnoses for patients. Patients in the low-risk +

low MATH group had significantly better prognostic survival rates

than those in the high-risk + high MATH group (Figure 7C). We then

analyzed the mutational landscape between the high and low-risk

groups. TP53, the most common tumor suppressor gene, had a
Frontiers in Oncology 07
mutation frequency of 71% in the high-risk group, significantly

higher than the 48% in the low-risk group (Figures 7D, E).

Additionally, the frequency of co-occurrence mutations was higher

in the high-risk group than in the low-risk group (Figures 7F, G). The

12 genes with the greatest differences between the high and low-risk

groups were selected for CNV analysis. Figure 7H shows that PIK3CA,
FIGURE 3

Construction of a MAAD prognostic model based on machine learning. (A) MAAD prognostic model 101 prognostic models were developed and C-index
scores were assigned to the different models. (B) OS Kaplan–Meier survival curves in TCGA and GEO datasets based on the MAAD prognostic model.
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ZFHX4, RYR2, and SYNE1 had higher CNV gains than CNV losses,

while APC, FAT4, NEB, MUC16, and TP53 had higher CNV losses

than CNV gains (Figure 7H).
The relationship between MAAD and the
tumor microenvironment and
immunotherapy response

Dynamic changes in the immune microenvironment during the

progression of CRC are crucial for the response to immunotherapy.

Therefore, we scored patients in high and low-risk groups for

stromal score, immune score, and estimate score. The results

showed no significant differences in these three scores between

the high and low-risk groups (Figures 8A-C). Subsequently, we

analyzed the immune cell infiltration in the high and low-risk

groups. The CIBERSORT results showed that the proportions of

memory activated CD4 T cells and resting dendritic cells were

significantly higher in the low-risk group than in the high-risk

group (Figures 8D). The ssGSEA results indicated that the score for

gamma delta T cells was significantly higher in the low-risk group

than in the high-risk group (Figures 8E). We evaluated the ability of
Frontiers in Oncology 08
the MAAD model to predict the response to immunotherapy by

analyzing the IMvigor210 cohort treated with atezolizumab. Based

on the MAAD model, we divided the patients in the IMvigor210

cohort into high and low-risk groups. It emerged from our data that

the low-risk group had a reduced frequency of progressive disease

and stable disease (PD/SD). By contrast, there was a notable surge in

the group’s complete and partial response (CR/PR) figures, which is

highlighted in Figure 8F. Individuals categorized as PD/SD tended

to have lower risk scores than those classified as CR/PR

(Figures 8G, H).
Cellular validation experiments

Following further screening of the genes in the prognostic model,

we identified that high expression of LSM8 correlates with poorer

patient survival prognosis, and LSM8 is also highly expressed in

tumor tissues (Figures 9A, B; Supplementary Figure S1).

Consequently, we performed LSM8 knockdown in the RKO cell

line (Figure 9C). CCK-8 and EdU assays indicated that LSM8

knockdown reduces the proliferation rates of tumor cells

(Figures 9D-F). Additionally, LSM8 knockdown diminished the
FIGURE 4

Validation of the MAAD prognostic model across multiple datasets. (A-C) ROC curves for 1-3 years OS predictions of CRC patients under the MAAD
prognostic model. (D) Heatmap showing the expression levels of key genes included in the MAAD model across the high-risk, low-risk groups and
clinical variables. (E) Distribution of clinical features across risk groups. (F) Risk scores for T1-2 and T3-4. (G) MAAD prognostic model ROC curves for
predicting T stage. (H, I) Kaplan-Meier analysis of the MAAD prognostic model in colorectal cancer patients stratified by T stage. *P<0.05, ***P<0.001.
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colony-forming capacity of the RKO cell line (Figures 9G, H). We

also assessed the malignant indicators of tumor cells—migration and

invasion capabilities. The results showed that LSM8 knockdown

significantly inhibits the migration and invasion abilities of tumor

cells (Figures 9I-M).
Discussion

CRC poses a significant challenge in the global health sector,

dealing a heavy blow to human life and bringing about considerable

economic and social burdens. Due to the lack of significant clinical

symptoms in the early stages of CRC, many patients are diagnosed

at an advanced stage, which greatly increases the difficulty of

treatment (17, 18). The disease typically originates from the

glandular epithelium of the colon or rectum and gradually

progresses to an invasive tumor through the adenoma-carcinoma

sequence, exhibiting significant heterogeneity. As the tumor

progresses, common occurrences include invasion of the bowel

wall layers and metastasis to distant organs (19). The heterogeneity

and complexity of the tumor make traditional treatment methods
Frontiers in Oncology 09
limited in effectiveness, especially in late-stage patients, where

treatment faces significant challenges (17, 18). Therefore, gaining

a deeper understanding of the mechanisms underlying the

development of cancer and identifying new therapeutic targets

has become an important direction in current medical research

(20, 21). In recent years, the metabolism of MAAD has been found

to be closely related to the occurrence and progression of CRC.

MAAD not only participates in the energy supply, protein synthesis,

and biosynthesis of tumor cells but also plays a key role in

regulating the proliferation, migration, metastasis, and immune

escape of tumor cells (22, 23). Through in-depth research on the

relationship between MAAD and CRC, this study aims to provide

new theoretical evidence for the early diagnosis, precision

treatment, and targeted intervention of CRC, and to offer more

ideas and potential targets for clinical treatment.

The rapid development of high-throughput sequencing has

provided more new insights and therapeutic strategies in the field

of medicine (24, 25). Recently, the application of machine learning

in the medical field has become increasingly mature (26, 27).

Machine learning can effectively integrate complex information in

high-throughput sequencing data and mine gene features closely
FIGURE 5

Establishment and verification of the nomogram. (A, B) Analysis of OS through univariate and multivariate evaluations of clinical features and the
MAAD prognostic model. (C) Development of a nomogram integrating the MAAD prognostic model with clinical features. (D) The calibration curve
for predicting 1, 3, and 5-year overall survival (OS) using the nomogram. (E) Decision curve analysis illustrates the net clinical benefit of utilizing the
nomogram combined with the risk score. (F) Comparison of the nomogram and various clinical characteristics using the C-index.
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related to prognosis (28, 29). The heterogeneity of tumors often

leads to significant differences in treatment outcomes for patients.

This heterogeneity exists not only between tumors of different

patients but also among different cells within the same tumor.

With the continuous development of single-cell sequencing

technology, it is now possible to reveal the degree of variation

and interconnections between different cells within a tumor, as well

as changes in cell developmental trajectories at the single-cell level

(30, 31). The variability of metabolic pathways within tumors has a

profound impact on the occurrence, development, and treatment of

cancer. With the continuous updating and iteration of

bioinformatics algorithms, it has become easier to accurately

observe changes in specific metabolic pathways. The AUCell

algorithm can calculate the activity score of specific metabolic

pathways for each cell, helping researchers identify new metabolic
Frontiers in Oncology 10
biomarkers and potential therapeutic targets (32). Previous studies

have explored the impact of lactylation-related signaling changes on

the prognosis and immune microenvironment of colorectal cancer

patients (33).

Therefore, based on the analysis of single - cell sequencing results

from CRC patients and using the AUCell algorithm, we

comprehensively assessed the activity of the MAAD pathway across

different immune cells. This approach allowed us to observe the

nuanced changes in the activity of the MAAD pathway within the

tumor microenvironment. Subsequently, we employed the WGCNA

algorithm to delve into the intricate association between the MAAD

pathway and CRC. By focusing on molecules within key modules, we

sought to uncover deeper biological significance and potential

mechanisms underlying the observed associations. Furthermore, by

integrating multiple machine learning algorithms, we significantly
FIGURE 6

Potential pathway alterations under different MAAD prognostic models in colorectal cancer patients. (A) A ridge plot depicting the pathways
predominantly enriched in the low-risk group. (B) Significantly enriched pathways in the high-risk group identified using GSEA. (C) Comparison of
pathway activity differences between the high-risk and low-risk groups assessed by GSVA. (D) Relationship between the risk score and pathway
activity levels analyzed through GSVA.
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enhanced the predictive accuracy of the prognostic model. This

integration enabled a more comprehensive understanding of the

impact of MAAD changes on the progression of CRC. The

enhanced model provided a more robust framework for
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understanding the complex mechanisms of the tumor. Notably,

patients in the low - risk group exhibited longer survival, better

response to immunotherapy, and lower tumor heterogeneity scores.

These findings further highlight the potential significance of MAAD
FIGURE 7

Analysis of tumor heterogeneity and genetic alterations associated with the MAAD prognostic model. (A) A violin plot showing the differences in
MATH scores between the high-risk and low-risk groups. (B) OS differences between high- and low-risk groups. (C) OS analysis combining the risk
score and MATH score. (D, E) Waterfall plots depicting the distribution of somatic mutations in colorectal cancer patients, with (D) representing the
high-risk group and (E) the low-risk group. (F, G) Heatmaps showing the distribution of CNV frequencies for the top 12 genes in the high-risk group
(F) and the low-risk group (G). (H) CNV frequency of 12 genes. *p < 0.05.
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activity changes in the context of CRC and underscore the importance

of our research in revealing the complex mechanisms of the disease. In

the high-risk group, the angiogenesis, epithelial-mesenchymal

transition, hedgehog signaling, and wnt/b catenin signaling pathways

were significantly enriched. Tumor cells promote angiogenesis by

secreting dickkopf2 to support tumor cell growth (34). Epithelial-

mesenchymal transition is a key biological process that plays an

important role in tumor occurrence and development, mediating

chemotherapy resistance through RHOJ-regulated epithelial-

mesenchymal transition (35). Berberine can inhibit the hedgehog

signaling pathway to weaken the malignancy of cells (36). SLC26A9

can affect the growth cycle of colorectal cancer cells by regulating the

wnt/b catenin signaling pathway (37). Cellular experimental results

showed that the proliferation, migration, and invasion capabilities of

RKO cells were significantly reduced after LSM8 knockdown. In gastric

cancer patients, high levels of LSM8 expression were associated with
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fewer immune cell infiltrations (38). This may suggest that elevated

LSM8 expression may play a role in suppressing the immune response

within the tumor microenvironment.

This study integrates single-cell transcriptomics with bulk

transcriptomics data, focusing on the fluctuations in MAAD

activity, and employs diverse machine learning algorithms to

construct a predictive model. Through cellular experiments, we

have gained insights into the potential functions of LSM8 in

colorectal cancer cell lines, thereby expanding the potential

clinical treatment strategies for colorectal cancer. Despite these

findings, our study has its limitations. At present, our research is

concentrated on the regulatory effects of LSM8 on the phenotypes

of colorectal cancer cell lines, but the analysis of its downstream

signaling pathways is not yet sufficiently in-depth. In the future, we

will commit to exploring this area more thoroughly in order to fill

the gaps in the current research.
FIGURE 8

The relationship between the MAAD prognostic model and immune microenvironment and immunotherapy response. (A) Stromal scores in high-
and low-risk groups. (B) Immune scores in high- and low-risk groups. (C) Estimate scores in high- and low-risk groups. (D, E) Immune cell
infiltration in high- and low-risk groups of colorectal cancer patients, based on the CIBERSORT algorithm (D) and the ssGSEA algorithm (E).
(F) Proportion of CR/PR and PD/SD patients receiving immunotherapy in the high- and low-risk groups from the IMvigor210 cohort. (G) A boxplot
showing the difference in risk scores between CR/PR patients and PD/SD patients in the IMvigor210 cohort. (H) Risk scores among CR, PR, SD, and
PD patients based on the IMvigor210 cohort. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001, with ns indicating no statistical significance.
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Conclusion

This study combined multi-omics analysis and machine

learning algorithms to analyze the relationship between MAAD
Frontiers in Oncology 13
activity and colorectal cancer. We constructed a prognostic model

based on MAAD-related genes and comprehensively analyzed

tumor heterogeneity, immune microenvironment, immune

therapy response, and potential pathway changes under different
FIGURE 9

Reduction of LSM8 expression suppresses the malignancy of CRC cells. (A) Survival analysis showing the effect of LSM8 on the OS of CRC patients.
(B) LSM8 expression comparison in normal versus tumor samples. (C) qRT-PCR to assess LSM8 knockdown efficiency, showing siRNA significantly
reducing LSM8 expression. (D) Knockdown of LSM8 expression decreases RKO cell line viability as indicated by CCK8 assays. (E, F) EdU staining
reveals that reducing LSM8 expression diminishes RKO cell line proliferation. (G, H) Representative images of colony formation assays in RKO cells
transfected with shNC, si-1, and si-2. (I, J) Representative images and quantification of wound healing assays in RKO cells at 0 hours (0H) and 24
hours (24H) post-scratch. (K-M) Representative images and quantification of transwell migration and invasion assays in HT-29 and RKO cells. Cells
transfected with siNC, si-1, and si-2 were analyzed. *P < 0.05, **P < 0.01, ***P < 0.001.
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risks. Finally, cell experiments confirmed that knocking down the

expression of the MAAD-related gene LSM8 can reduce the

malignancy of CRC cell lines.
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