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Integrating intratumoral,
peritumoral, and clinical
features in an ultrasound-based
radiomics model: contributions
and synergies for predicting
microvascular invasion in
hepatocellular carcinoma
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1Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People’s Hospital, Shaoxing, China,
2Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor,
Shaoxing, China, 3Department of Ultrasound, Shaoxing People’s Hospital, Shaoxing, China,
4Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China, 5School of Medicine,
Shaoxing University, Shaoxing, Zhejiang, China
Background: Microvascular invasion (MVI) is a critical determinant of poor

prognosis in hepatocellular carcinoma (HCC). Accurate preoperative prediction

of MVI is essential for optimizing surgical and therapeutic strategies. This study

aims to develop a combined model integrating intratumoral, peritumoral, and

clinical features from ultrasound-based radiomics for MVI prediction.

Methods: Ultrasound images of 119 patients with pathologically confirmed HCC

were analyzed. A total of 1,414 radiomics features were extracted from

intratumoral and peritumoral regions. Feature selection was performed using

intraclass correlation coefficient (ICC) analysis, t-tests, and least absolute

shrinkage and selection operator (LASSO) regression. Logistic regression,

Random Forest, and other machine learning algorithms were applied to

construct predictive models. The best-performing intratumoral, peritumoral,

and clinical models were combined using logistic regression. SHapley Additive

exPlanations (SHAP) analysis, logistic regression coefficients, and partial

dependence analysis were employed to evaluate feature contributions

and interactions.

Results: Both intratumoral and peritumoral models achieved high AUCs (0.781 and

0.792, respectively), with no statistically significant difference between them. The

combined model, incorporating tumor size, achieved the highest AUC (0.903, 95%

CI: 0.780–1.000) and superior performance across all evaluation metrics. Tumor

size exhibited the smallest logistic regression coefficient but the highest SHAP

contribution, indicating strong interactions with intratumoral and peritumoral

features. Interaction analyses revealed that the combined effects of tumor size

and radiomics features significantly enhanced predictive performance.
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Conclusion: This study demonstrates that combining intratumoral, peritumoral,

and clinical features enhances the predictive accuracy for MVI in HCC. The

findings underscore the value of feature integration and interactions, providing

insights for personalized treatment planning and advancing the clinical utility of

ultrasound-based radiomics.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, ultrasound radiomics, intratumoral
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1 Introduction

Hepatocellular carcinoma (HCC) is a leading cause of cancer-

related mortality worldwide (1, 2). Microvascular invasion (MVI) is

a critical pathological feature of HCC, significantly associated with

aggressive tumor behavior, early recurrence, and poor prognosis

(3). Accurate preoperative prediction of MVI is crucial for guiding

clinical decision-making, including determining surgical margins,

the necessity of adjuvant therapies, and personalized treatment

strategies (4, 5). However, predicting MVI preoperatively remains

challenging with existing imaging modalities such as computed

tomography (CT) and magnetic resonance imaging (MRI), which

have limitations in detecting microscopic tumor invasion (6–8).

Radiomics, a rapidly evolving field in medical imaging, offers a

non-invasive method to extract high-dimensional quantitative

features from medical images, enabling deeper insights into

tumor heterogeneity (9, 10). While CT- and MRI-based radiomics

models have demonstrated promising results in predicting MVI (11,

12), the application of radiomics in ultrasound (US) imaging

remains underexplored. Ultrasound imaging, with its real-time

capabilities, non-invasive nature, and lower cost, is a particularly

appealing modality for radiomics research, especially in regions

with limited access to advanced imaging techniques. Integrating

both intratumoral and peritumoral regions in radiomics analysis

may provide a more comprehensive characterization of MVI-

related features, as peritumoral tissue often contains crucial
icrovascular invasion;

nce imaging; TACE,

cy ablation; DICOM,

region of interest; ICC,

absolute shrinkage and

AP, SHapley Additive

P, alpha fetoprotein;

; ALB, albumin level;

ransferase; TBIL, total

me; INR, international

fn, false negative; tn,

02
information about tumor invasiveness and interactions with the

surrounding microenvironment (13–16).

Despite these advances, several gaps remain. First, ultrasound-

based radiomics is underutilized compared to CT or MRI, despite

the unique advantages of US imaging. Second, many existing

studies focus exclusively on intratumoral features, neglecting the

valuable predictive information contained in the peritumoral

region. Third, while combining intratumoral, peritumoral, and

clinical parameters in a single model shows promise, the

individual contributions and interactions of these components

within a combined model remain unclear.

Our study aims to address these gaps by developing a radiomics

model based on preoperative ultrasound imaging that integrates

both intratumoral and peritumoral features. Additionally, a

combined model will be constructed by integrating radiomics

features with clinical characteristics using logistic regression to

improve predictive performance. Furthermore, interpretable

analysis methods will be incorporated to visualize and explain the

contributions of specific radiomics and clinical features, enhancing

the model’s transparency and clinical applicability.
2 Material and methods

2.1 Study population

This retrospective study was conducted at Shaoxing People’s

Hospital, following approval from the Institutional Review Board.

Written informed consent was obtained from all patients prior

to participation.

A total of 119 patients with pathologically confirmed HCC who

underwent surgical resection at Shaoxing People’s Hospital between

September 2019 and May 2024 were enrolled. Inclusion criteria

were as follows: (1) preoperative ultrasound imaging performed

within two weeks before surgery; (2) availability of complete clinical

and pathological data; (3) no prior treatment such as transarterial

chemoembolization (TACE) or radiofrequency ablation (RFA)

before surgery; and (4) pathological confirmation of HCC with or

without MVI. Exclusion criteria included poor-quality ultrasound

images unsuitable for radiomics analysis (n = 9), patients with other
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concurrent malignancies (n = 16), and incomplete clinical data (n

= 45).

The study cohort was divided into training and validation sets at

a 7:3 ratio for model development and evaluation. Baseline

characteristics, including demographic, clinical, and pathological

data, were collected from medical records (Table 1). Microvascular

invasion was defined as the presence of tumor cells within a vascular

space lined by endothelial cells beyond the tumor boundary, as

confirmed by histopathological examination.

A flowchart illustrating the inclusion and exclusion of patients

is presented in Figure 1.
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2.2 Ultrasound procedure

Preoperative gray-scale ultrasound imaging was performed

using various ultrasound machines (details provided in the

Supplementary Materials). All patients underwent standardized

ultrasound examination by experienced radiologists two weeks

prior to surgery.

During the examination, patients were positioned in a supine or

left lateral decubitus position to optimize visualization of the liver

and associated structures. The scanning protocol included assessing

tumor location, size, echogenicity, and boundary characteristics.
TABLE 1 Demographic and clinical characteristics of patients.

Variables
MVI
negative
(n=83)

MVI
positive
(n=36)

P

Training group(n=83)

P

Testing group(n=36)

PMVI
negative
(n=59)

MVI
positive
(n=24)

MVI
negative
(n=24)

MVI
positive
(n=12)

Age(year) 65.39 ± 9.43 63.72 ± 13.05 0.44 66.51 ± 9.64 64.25 ± 12.16 0.38 63.5(56.5-68.0) 66.0(51.0-74.5) 0.993

AFP(mg/mL)
9.62
(2.84-60.74)

36.64
(7.56-983.68)

0.133 156.87 ± 426.8
1763.32
± 7088.25

0.091 1602.85 ± 6897.89 9891.91 ± 22613.71 0.118

ALT(IU/L) 36.77 ± 32.95 45.08 ± 44.99 0.267 38.42 ± 36.14 48.45 ± 51.53 0.324 32.71 ± 22.82 38.35 ± 26.35 0.524

AST(IU/L) 41.4 ± 34.11 52.24 ± 59.32 0.216 44.79 ± 38.76 57.97 ± 70.06 0.284 33.08 ± 15.23 40.79 ± 23.33 0.255

TBIL(μmol/L) 16.68 ± 9.73 19.63 ± 26.22 0.378 16.24 ± 8.6 16.85 ± 13.9 0.811 17.77 ± 11.99 25.18 ± 40.37 0.426

DBIL(μmol/L) 5.35 ± 4.19 8.38 ± 15.52 0.106 5.41 ± 4.45 6.48 ± 6.67 0.404 5.2 ± 3.44 12.17 ± 24.73 0.197

ALB (g/L) 38.81 ± 4.24 38.72 ± 4.36 0.92 38.66 ± 4.15 38.32 ± 4.49 0.743 39.18 ± 4.45 39.53 ± 3.96 0.822

PT(s) 13.08 ± 1.31 13.21 ± 1.44 0.633 12.97 ± 1.01 13.16 ± 1.47 0.5 13.35 ± 1.82 13.3 ± 1.38 0.941

INR 1.05 ± 0.13 1.06 ± 0.12 0.798 1.04 ± 0.09 1.06 ± 0.12 0.291 1.08 ± 0.18 1.04 ± 0.11 0.517

Tumor Size 4.0(2.5-5.25) 5.3(4.0-8.6) 0.002* 4.29 ± 2.47 5.87 ± 3.12 0.019* 4.28 ± 2.19 7.18 ± 3.25 0.004*

Sex 0.13 0.103 0.733

Female 15 11 12 9 3 2

Male 68 25 47 15 21 10

HBsAg 0.63 0.801 0.599

Negative 24 12 18 8 6 4

Positive 59 24 41 16 18 8

Cirrhosis 0.981 0.841 0.813

Absent 39 17 26 10 13 7

Present 44 19 33 14 11 5

Multifocality 0.056 0.135 0.257

Absent 72 26 52 18 20 8

Present 11 10 7 6 4 4
fronti
AFP, alpha fetoprotein; ALB, albumin level; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; DBIL, directed bilirubin; PT, prothrombin time; INR,
international normalized ratio; *p<0.05.
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FIGURE 1

Flowchart of included and excluded patients.
FIGURE 2

ROI (Region of Interest) delineation on ultrasound images. (A) Original ultrasound image. (B) ROI delineation of the tumor region (in red). (C) ROI
delineation including the peritumoral region (in red), encompassing the area surrounding the tumor.
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Particular attention was given to the peritumoral region to ensure

comprehensive imaging data were collected for subsequent

radiomics analysis.

Images were stored in Digital Imaging and Communications in

Medicine (DICOM) format for consistency and compatibility with

radiomics feature extraction workflows.
2.3 Histological and immunohistochemistry

Histopathological examination was performed on surgically

resected HCC specimens to confirm the diagnosis and assess

MVI. Tissue samples were fixed in 10% formalin, embedded in

paraffin, and sectioned at 4-μm thickness. Hematoxylin and eosin

staining was used to evaluate tumor differentiation and the presence

of MVI. Microvascular invasion was defined as the presence of

tumor cells within a vascular lumen lined by endothelial cells

beyond the tumor border. Representative HE-stained histological

images illustrating MVI-negative (M0), MVI-positive (M1 and M2)

are shown in Supplementary Figure S1.
2.4 Region of interest delineation

Region of interest (ROI) delineation was performed using ITK-

SNAP software(Version 4.0.0, www.itksnap.org) (17) (Figure 2).

Initially, the tumor region wasmanually delineated by two independent

ultrasound radiologists. For peritumoral analysis, the tumor ROI was

automatically expanded outward by 1 cm, creating a peritumoral

region. This distance was selected based on prior study suggesting

that a 1 cm peritumoral zone is most suitable for MVI prediction, as it

effectively captures both local tumor invasion and critical tissue

interactions near the tumor boundary (18). These automatically

generated ROIs were manually adjusted to ensure accuracy and

exclude irrelevant structures such as large vessels or adjacent organs.

To minimize bias, the two radiologists independently performed ROI

delineation with a 1-week interval between assessments and were

blinded to the clinical and imaging data.
2.5 Radiomics feature extraction and
dimension reduction

Radiomics feature extraction was performed on normalized

ultrasound images to ensure consistency across imaging systems.

The normalization process included resampling images to a uniform

spatial resolution of 3 × 3 × 3 mm³, scaling intensity values to 32 gray

levels based on a scale of 255, and suppressing machine-specific

artifacts or noise. PyRadiomics software was utilized to extract

features from both intratumoral and peritumoral regions. After

feature extraction, the features were standardized by applying z-

score normalization to ensure that all features were on a

comparable scale, improving the stability and performance of

subsequent analyses. These features encompassed shape

characteristics, such as volume and compactness, first-order
Frontiers in Oncology 05
statistics to describe intensity distributions, texture metrics derived

from gray-level co-occurrence and size zone matrices, and higher-

order features from wavelet decompositions.

To reduce dimensionality and improve model robustness, a

systematic feature selection process was applied. Features with low

reproducibility, as assessed by intra- and inter- correlation

coefficient (ICC), were excluded (threshold: ICC < 0.75). Highly

correlated features (correlation coefficient > 0.8) were removed to

eliminate redundancy. Independent samples t-tests were conducted

to identify features significantly associated with MVI (p < 0.05), and

least absolute shrinkage and selection operator (LASSO) regression

was applied to refine the feature set further, prioritizing the most

informative predictors for subsequent model development.
2.6 Model construction

Separate models for intratumoral and peritumoral features were

developed using various modeling techniques, all trained on the

same subset of features selected via LASSO for each region. Optimal

hyperparameters were determined using a two-step approach

combining Random Search and Grid Search with cross-validation.

The best-performing intratumoral and peritumoral models were

then combined using logistic regression, incorporating clinical

parameters to construct a comprehensive model.

Model performance was assessed using metrics, including AUC,

sensitivity, specificity, and accuracy et al. To account for the

relatively small sample size, bootstrapping with 1,000 resamples

was performed to estimate the confidence intervals of model metrics

and to compare the predictive performance of different models

statistically. Model evaluation and comparisons were conducted on

the validation dataset to ensure robustness and generalizability.
2.7 Analysis of feature importance in the
combined model

To analyze the contributions of intratumoral and peritumoral

models, along with clinical parameters, within the combined

framework, several interpretability techniques were employed.

SHAP (Shapley Additive Explanations) analysis quantified both

global and local feature importance by perturbing feature values and

observing the resulting changes in model predictions. Logistic

regression coefficients provided a linear quantification of feature

contributions, reflecting the direction and magnitude of each

feature’s impact on classification outcomes. Partial dependence

analysis (PDA) was conducted to visualize how variations in

individual feature values influenced model predictions,

highlighting both independent contributions and interactions.
2.8 Statistical analysis

All statistical analyses were performed using Python software

(Version 3.11). Continuous variables were expressed as either mean
frontiersin.org
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± standard deviation for normally distributed data or median with

the range for non-normally distributed data. Comparative analyses

of continuous variables were conducted using the independent

samples t-test for normally distributed data or the Mann-Whitney

U test for non-normally distributed data. Categorical variables were

reported as frequencies or percentages and analyzed using chi-

square tests or Fisher’s exact tests, as appropriate. Comparisons of

ROC curves were performed using a bootstrapping method with

1,000 resamples to estimate confidence intervals and evaluate the

differences in predictive performance. A two-tailed p-value of <0.05

was considered statistically significant throughout the analysis.
3 Results

3.1 Characteristics of the study population

A total of 119 patients were included in this study, comprising

83 MVI-negative and 36 MVI-positive cases. The baseline

characteristics of the study population are summarized in Table 1.

Tumor size was significantly larger in the MVI-positive group

compared to the MVI-negative group across the entire cohort

(median [IQR]: 4.0 [2.5–5.25] cm vs. 5.3 [4.0–8.6] cm; p < 0.05).

This difference remained significant in both the training cohort

(4.29 ± 2.47 cm vs. 5.87 ± 3.12 cm; p = 0.019) and the testing cohort

(4.28 ± 2.19 cm vs. 7.18 ± 3.25 cm; p = 0.004).

Serum alpha-fetoprotein (AFP) levels were higher in the MVI-

positive group compared to the MVI-negative group, though the

difference was not statistically significant (p = 0.133). Other baseline

characteristics, including age, liver function markers, and sex,

showed no statistically significant differences between the two

groups (all p > 0.05). And all the clinical characteristics of the

training and testing cohorts showed no significant differences

(Supplementary Table S1).
3.2 Feature selection

A total of 1,414 radiomics features were extracted from both

intratumoral and peritumoral regions. Due to the limited number of

MVI-positive samples, the Synthetic Minority Oversampling

Technique (SMOTE) was applied to balance the data within the

training set.

Feature selection involved several steps: ICC analysis to ensure

feature reproducibility. Both within-group (intraclass) and

between-group (interclass) correlation coefficients were calculated.

Features with an ICC value less than 0.75 for either within-group or

between-group consistency were excluded to maintain high

reproducibility between observers and across groups. In the

intratumoral region, 1373 of features were retained after ICC

analysis, while 1352 were retained for the peritumoral region.

Removal of collinear features addressed redundancy, t-tests were

used for univariate analysis, and LASSO regression was applied for

dimensionality reduction (details of the LASSO process are

provided in Supplementary Figures S2, S3). As a result, 8
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radiomics features were selected for the intratumoral model and 6

features for the peritumoral model. The selected features are

presented in Table 2.
3.3 Model construction

To construct predictive models, multiple machine learning

algorithms were employed, including Support Vector Machine,

Random Forest, K Nearest Neighbor, Logistic Regression, Decision

Tree , Art ificia l Neural Network, AdaBoostClass ifier ,

GradientBoostingClassifier, and XGBOOST. The ROC curves for

different modeling methods are summarized in Figures 3A, B for the

intratumoral and peritumoral models, respectively. Hyperparameter

optimization was performed using a two-step approach combining

RandomizedSearchCV and GridSearchCV with five-fold cross-

validation. The detailed search ranges and the final selected

parameters for each model are provided in the Supplementary

Materials (Supplementary Tables S2–S4).

For the intratumoral model, Logistic Regression achieved the

highest AUC of 0.781 (95% CI: 0.609–0.954), followed by Random

Forest with an AUC of 0.760 (95% CI: 0.582–0.939). For the

peritumoral model, Random Forest performed best with an AUC

of 0.792 (95% CI: 0.622–0.961), while Logistic Regression also

showed strong performance with an AUC of 0.722 (95% CI:

0.535–0.909).

The best-performing intratumoral and peritumoral models

(Logistic Regression and Random Forest, respectively) were

combined with the clinical parameter tumor size using a logistic

regression approach to construct the combined model. The

performance evaluation is presented in Figure 4. (A) The ROC

curves highlight the discriminatory power of the models for

predicting MVI status. The combined model achieved the highest

AUC (0.903, 95% CI: 0.780–1.000), surpassing the clinical model

(AUC: 0.786, 95% CI: 0.615–0.958), the peritumoral model (AUC:

0.792, 95% CI: 0.622–0.961), and the intratumoral model (AUC:

0.781, 95% CI: 0.609–0.954). (B) The radar chart provides a visual

comparison of evaluation metrics, including sensitivity/recall,

specificity, precision, accuracy, and F1 score, demonstrating the

combined model’s superior overall performance and robustness.

Table 3 summarizes the performance metrics of all four models.

While all models achieved the same sensitivity (0.917), the combined

model outperformed the others in accuracy (0.833), specificity (0.792),

precision (0.688), and F1 score (0.786), reflecting its better balance

between precision and recall. The peritumoral model showed slightly

better performance than the intratumoral model, with higher

specificity (0.75 vs. 0.708), precision (0.647 vs. 0.611), and F1 score

(0.759 vs. 0.733). By contrast, the clinical model (tumor size)

demonstrated the lowest specificity (0.542) and precision (0.5),

indicating its limitations as a standalone predictor. These results

further emphasize the strength of the combined model in achieving

superior diagnostic performance.

To statistically compare the performance of the models,

bootstrapping was performed. The results showed no significant

differences between the intratumoral model and the combined
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TABLE 2 The LASSO selected features and their coefficients.

Model Filter Feature class Feature Coefficient

Mask-original VoxelNum -0.076064

glcm Correlation 0.068984

glrlm ShortRunHighGrayLevelEmphasis 0.027603

glszm SizeZoneNonUniformityNormalized 0.074378

glrlm GrayLevelNonUniformityNormalized -0.062907

glszm SizeZoneNonUniformityNormalized -0.028195

glszm SizeZoneNonUniformityNormalized 0.110769

ngtdm Busyness 0.12071

glcm Imc1 0.06622

glszm SmallAreaEmphasis 0.098223

glszm ZoneEntropy 0.046182

glszm ZoneEntropy 0.000931

glcm InverseVariance 0.151837

ngtdm Coarseness -0.045678
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model (p = 0.184) or between the peritumoral model and the

combined model (p = 0.124). However, a significant difference was

observed between the clinical model and the combined model (p =

0.026), highlighting the added predictive value of integrating

radiomics features with clinical parameters. Comparisons between

the intratumoral and peritumoral models (p = 0.952) and between

the clinical model and both the intratumoral (p = 0.978) and

peritumoral models (p = 0.982) revealed no significant differences.

In addition to discrimination performance, we evaluated the

probabilistic accuracy of the combined model. The calibration curve

showed overall good agreement between predicted and observed

probabilities, with only mild deviations observed in the mid-

probability range (Supplementary Figure S4). The Brier score was
Frontiers in Oncology 08
0.151, indicating acceptable probabilistic accuracy. The Hosmer–

Lemeshow goodness-of-fit test was non-significant (c² = 11.45, p =

0.178), suggesting no significant miscalibration.
3.4 Analysis of feature contributions in the
combined model

To analyze the contributions of individual features within the

combined model, several interpretability techniques were employed.

Logistic regression coefficients were analyzed to evaluate the linear

contribution of each feature, with results presented in Figure 5A.

Tumor size showed the lowest importance in this analysis. SHAP
FIGURE 3

Receiver Operating Characteristic (ROC) curves for the intratumoral and peritumoral models. (A) ROC curves for the intratumoral model constructed
using various machine learning algorithms. Logistic Regression achieved the highest AUC of 0.781, followed by Random Forest with an AUC of
0.760. (B) ROC curves for the peritumoral model constructed using the same algorithms. Random Forest achieved the highest AUC of 0.792,
followed by Logistic Regression with an AUC of 0.722.
FIGURE 4

Performance evaluation of the intratumoral, peritumoral, clinical, and combined models. (A) ROC curves demonstrating the discriminatory power of
the models for predicting MVI status. The combined model exhibited the highest AUC (0.903, 95% CI: 0.780–1.000), outperforming the clinical
model (AUC: 0.786, 95% CI: 0.615–0.958), peritumoral model (AUC: 0.792, 95% CI: 0.622–0.961), and intratumoral model (AUC: 0.781, 95% CI:
0.609–0.954). (B) Radar chart illustrating various evaluation metrics, including sensitivity/recall, specificity, precision, accuracy, and F1 score, for the
four models. The combined model consistently achieved the best overall performance across all metrics.
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TABLE 3 The performance of the four models in predicting MVI.

Evaluation indicators Intratumoral model Peritumoral model Tumor size Combined model

tp 11 11 11 11

tn 17 18 13 19

fp 7 6 11 5

fn 1 1 1 1

Sensitivity 0.917 0.917 0.917 0.917

Specificity 0.708 0.75 0.542 0.792

Precision 0.611 0.647 0.5 0.688

Recall 0.917 0.917 0.917 0.917

Accuracy 0.778 0.806 0.667 0.833

F1 Score 0.733 0.759 0.647 0.786

AUC 0.781 0.792 0.786 0.903
F
rontiers in Oncology
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tp, true positive; fp, false positive; fn, false negative; tn, true negative; AUC, area under the curve.
FIGURE 5

Feature importance analysis in the combined model. (A) Bar chart of feature importance based on logistic regression coefficients in the combined
model. The peritumoral model contributed the most to the predictions, followed by the intratumoral model, while tumor size showed the lowest
importance in this analysis. (B) SHAP (Shapley Additive Explanations) plot illustrating the impact of individual features on the combined model’s
predictions. Tumor size exhibited the highest SHAP values, indicating its dominant contribution to the model’s output, followed by the peritumoral
model and intratumoral model. The contrasting results between the two analyses highlight the differences in feature importance interpretations.
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analysis was then used to quantify the global and local importance of

each feature, as shown in Figure 5B. In contrast to the logistic

regression analysis, tumor size demonstrated the highest

contribution in the SHAP analysis, highlighting its critical role in

the combined model’s predictions.

PDA was further applied to evaluate the impact of individual

features and their interactions on the model’s predictions.

Figures 6A–C illustrate the partial dependence plots for the

intratumoral model, peritumoral model, and tumor size,

respectively. The X-axis represents feature values, and the Y-axis

represents partial dependence values, reflecting the positive or

negative influence of each feature on the predicted probability.

Among these, tumor size (Figure 6C) exhibited the most significant

linear increase, emphasizing its critical role in prediction outcomes.

Figures 6D–F depict the interaction effects between features

using 2D partial dependence heatmaps. The interactions between

the intratumoral and peritumoral models (Figure 6D), tumor size

and the intratumoral model (Figure 6E), and tumor size and the

peritumoral model (Figure 6F) reveal substantial contributions to

the combined model. The pronounced color gradients in these

heatmaps indicate that stronger interactions significantly enhance

the model’s predictive performance. High values of tumor size
Frontiers in Oncology 10
combined with radiomics features result in a marked increase in

the probability of positive class predictions, underscoring the

synergistic effects of these interactions in improving model

performance. The PDA results revealed that tumor size and the

peritumoral model exhibited stronger independent contributions to

positive class predictions, showing significant linear growth trends.

In contrast, the intratumoral model’s independent contribution was

weaker but still showed a positive effect. The inclusion of interaction

features significantly improved model predictions, enhancing

diagnostic performance across multiple metrics.
4 Discussion

Our study successfully developed and validated a combined

model integrating grayscale ultrasound-based radiomics features

from intratumoral and peritumoral regions with clinical

parameters, particularly tumor size, to predict MVI in HCC

patients. By combining these three components, the model

achieved superior diagnostic performance, highlighting the

complementary nature of tumor size, intratumoral, and

peritumoral radiomics features.
FIGURE 6

Partial dependence analysis of individual and interactive features in the combined model. (A–C) Partial dependence plots (PDP) for single features,
including the intratumoral model (A), peritumoral model (B), and tumor size (C). The X-axis represents feature values, and the Y-axis represents
partial dependence values, indicating the positive or negative impact of each feature on the model predictions. Among these, tumor size (C) shows
the most significant increase, highlighting its critical importance in the prediction outcomes. (D–F) Interaction effects between features visualized
through 2D partial dependence heatmaps. (D) Interaction between intratumoral and peritumoral models. (E) Interaction between tumor size and the
intratumoral model. (F) Interaction between tumor size and the peritumoral model. The heatmaps illustrate the contributions of these interactions to
the combined model, with more pronounced color gradients indicating stronger interaction effects on the model predictions. High values of tumor
size combined with radiomics features (intratumoral or peritumoral) significantly enhance the probability of positive class predictions.
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Radiomics features provide a quantitative approach to

extracting high-dimensional data from medical images, enabling

the characterization of tumor properties that are imperceptible to

the human eye (9, 19). In our study, the majority of selected features

from both intratumoral and peritumoral regions were wavelet-

filtered, underscoring the importance of multi-scale texture

analysis in capturing subtle variations associated with MVI.

Wavelet filters decompose imaging data into frequency

components, allowing the analysis of textures and patterns at

different scales and orientations (20, 21). This approach is

particularly effective in detecting fine structural details and subtle

heterogeneities, which are often linked to biological processes such

as tumor invasion and microvascular involvement (22). Previous

studies have highlighted the utility of wavelet-based radiomics in

enhancing predictive models for various cancers, demonstrating its

robustness and versatility in capturing complex imaging features

(23). The modeling results in our study demonstrated that LR and

RF consistently outperformed other algorithms in both the

intratumoral and peritumoral models, achieving the best

performance across evaluation metrics. LR is well-suited for

linearly separable data, offering simplicity and interpretability

(24), while RF excels in handling non-linear relationships and

interactions, reducing the risk of overfitting through ensemble

learning (25). The strong performance of these algorithms in our

models further validates the utility of wavelet-filtered features in

predictive modeling and their ability to capture complex imaging

patterns associated with MVI.

The intratumoral and peritumoral models both achieved relatively

high AUC values, and no statistically significant differences were

observed between them. This finding suggests that both

intratumoral and peritumoral tissues contain comparable diagnostic

information for MVI prediction, consistent with previous studies that

have reported similar diagnostic efficacy for tumor and peritumoral

features in radiomics-based models (26, 27). It also highlights the

significance of peritumoral analysis, which captures interactions

between the tumor and its surrounding microenvironment,

providing insights complementary to intratumoral characteristics

(18, 28, 29). In particular, peritumoral heterogeneity may reflect the

presence of microscopic vascular remodeling, immune cell infiltration,

and stromal reactions induced by tumor aggressiveness. These

peritumoral changes, although not directly visible on conventional

imaging, can be captured through radiomic texture analysis. Prior

studies have shown that the peritumoral zone is a common site of

microvascular invasion and angiogenesis, suggesting that

heterogeneity in this region may indirectly indicate vascular

infiltration or early metastatic spread (27). Thus, peritumoral

features may serve as a surrogate marker of MVI-related

microenvironmental alterations, supporting their inclusion in

predictive modeling.

The combined model exhibited the highest AUC and the best

performance across all evaluation metrics, underscoring its ability

to integrate complementary information from tumor size,

intratumoral, and peritumoral features. The results suggest that

each component provides unique and synergistic contributions,

collectively enhancing the model’s predictive performance.
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Although statistical comparisons between models did not yield

significant p-values, the combined model consistently achieved

higher AUC, specificity, precision, and F1-score compared to

standalone models. These improvements, though not statistically

significant, may still hold practical and clinical relevance in settings

where improved diagnostic balance and robustness are required.

Tumor size emerged as the most critical single predictive factor in

the combined model. Its significance aligns with previous studies

linking larger tumors to increased aggressiveness and MVI risk (30–

32). However, while the clinical model achieved a relatively high

AUC, its performance on other metrics was inferior to the

radiomics-based models. This disparity likely reflects the limited

scope of clinical parameters, which lack the nuanced and multi-

dimensional data captured by radiomics features (32). The

radiomics models, by integrating high-dimensional features

extracted from tumor and peritumoral regions, effectively capture

microstructural and textural heterogeneities associated with MVI,

providing superior diagnostic performance (33).

Interestingly, tumor size demonstrated contrasting contributions

in the combined model; it had the smallest coefficient in logistic

regression analysis but the highest importance in SHAP analysis. This

discrepancy suggests that tumor size exhibits strong interactions with

intratumoral and peritumoral features, and these interactions play a

significant role in enhancing the model’s predictive performance (34).

Interaction analyses highlighted the synergistic effects among features,

revealing complex, non-linear relationships where the combined

effects exceeded the sum of individual contributions (35). These

interactions enhanced diagnostic precision, model robustness, and

biological interpretability (36). In our study, the probability of positive

class predictions significantly increased when tumor size, intratumoral

features, and peritumoral features simultaneously reached high values.

This finding highlights the importance of feature interactions,

particularly the interplay between intratumoral and peritumoral

features combined with tumor size, in enhancing predictive

performance. The combination of tumor size with radiomics

features provided deeper insights into the tumor’s biological

behavior, suggesting potential links between microenvironmental

characteristics and structural changes captured by radiomics (37).

Such findings emphasize the need for multi-feature integration to

comprehensively characterize the multifaceted nature of MVI,

ultimately advancing the diagnostic and prognostic capabilities of

predictive models.

Although the combined model demonstrated excellent

discrimination (AUC = 0.903) and overall good calibration

performance, slight overestimation was observed in a limited

mid-range of predicted probabilities. This is reflected in a Brier

score of 0.151, indicating modest deviation from ideal probabilistic

accuracy. Such discrepancies are not uncommon in binary

classification tasks and may be attributed to several factors (38).

First, the dataset exhibited class imbalance, with only 36 of 119 cases

being MVI-positive, potentially biasing the probability distribution

even after SMOTE correction. Second, the relatively small sample

size, when combined with high-dimensional radiomics features,

increases the risk of overfitting and suboptimal calibration. Third,

while SMOTE improves training stability, it may alter the intrinsic
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feature distribution, affecting the reliability of predicted

probabilities (39). Lastly, logistic regression models—while

effective for class separation—are not inherently optimized for

probabilistic calibration (40). Despite these limitations, the

model’s calibration remains clinically acceptable and informative,

as evidenced by the close alignment of most points with the ideal

curve and a non-significant Hosmer–Lemeshow test (c² = 11.45, p =

0.1773). Future validation using larger, multicenter datasets is

warranted to further improve the model’s probabilistic reliability.

Several limitations should be acknowledged. First, this was a

single-center retrospective study with a modest sample size,

particularly in the MVI-positive subgroup (n = 36), which may

limit the generalizability of the findings. Although SMOTE was

employed to balance class distribution, its use in small-sample,

high-dimensional radiomics settings may carry a risk of overfitting.

To mitigate this, we adopted multiple robustness strategies

including cross-validation and an independent internal validation

cohort. Additionally, while the model demonstrated strong

discrimination, we acknowledge the lack of external validation

and prospective confirmation. A multicenter study is currently

underway to address these issues and evaluate model performance

across diverse clinical environments. Second, ultrasound images

were obtained from different machines. Although normalization

was applied to reduce variability, we cannot entirely rule out the

potential influence of device-related differences on radiomics

features. Third, the retrospective design inherently carries a risk

of selection bias. Fourth, although MVI can be further stratified into

M0, M1, and M2 grades, we treated MVI as a binary classification

problem due to limited sample size. Future studies with larger,

balanced cohorts are needed to explore fine-grained, multi-class

prediction of MVI severity. Finally, the contribution of feature

interactions, while significant, requires further validation through

molecular biology experiments and independent clinical datasets.

Future studies should focus on larger, multicenter cohorts and

explore the integration of molecular and multimodal imaging data

to enhance model performance and generalizability.
5 Conclusion

This study highlights the feasibility and effectiveness of

integrating radiomics features from intratumoral and peritumoral

regions with clinical parameters for MVI prediction in HCC. The

combined model’s superior performance underscores the potential

of this approach in personalized treatment planning, offering

valuable insights for advancing radiomics research and its clinical

applications in oncology.
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