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Targeting the nuclear orphan
receptor NR4A1: a key target in
lung cancer progression and
therapeutic resistance
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Shirong Li1* and Zeqing Pu1*

1Department of Clinical Laboratory, WeiFang People’s Hospital, Shandong Second Medical University,
Weifang, China, 2School of Medical Laboratory, Shandong Second Medical University, Weifang, China
As amalignant tumor with high morbidity andmortality, lung cancer is associated

with a variety of risk factors, including smoking, exposure to occupational

carcinogens, familial inheritance, and chronic lung disease. Lung cancer is

often detected late and has a complex pathogenesis, so early diagnosis and

intervention of lung cancer are essential. Finding effective targets is important to

develop new treatments for lung cancer. As a member of Group 4A of the

nuclear receptor subfamily, Nuclear Receptor Subfamily 4 Group A Member 1

(NR4A1) is an immediate early gene that encodes a transcription factor that plays

a regulatory role when the cell and tissue microenvironment changes. NR4A1

plays a pro-cancer role in solid tumors including lung cancer, but a tumor

suppressor role in hematological malignancies. NR4A1 palys a role through

multiple mechanisms in lung cancer, including promoting cell proliferation by

forming a complex with p300/specific protein 1 (Sp1) and acting on the survivin

and AMP-activated protein kinase (AMPK)/mechanistic Target of Rapamycin

Complex 1 (mTORC1) pathways, promoting metastasis and invasion by

inducing the occurrence of transforming growth factor-b (TGF-b) dependent
epithelial-mesenchymal transition (EMT), promoting vascular remodeling by

acting on vascular endothelial growth factor A (VEGF-A), promoting immune

escape by acting on programmed cell death-1 (PD-1) dependent T cell

exhaustion, promoting cell apoptosis interacted with B-cell lymphoma-2 (Bcl-

2) and promoting metabolic reprogramming by increasing fatty acid oxidation. In

recent years, several studies on NR4A1-related agonists and inhibitors in lung

cancer have been reported. These compounds are expected to become drugs

for targeted tumor therapy, but current research is limited to cellular and animal

experiments. It still takes time to verify and evaluate clinical applications, other

biological effects and potential side effects. This review summarizes the

biological role of NR4A1 in lung cancer and describes the molecular

mechanisms and signaling pathways regulated by NR4A1. This paper will

provide a theoretical basis for the early treatment of lung cancer by using

NR4A1-related compounds in the clinic.
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1 Introduction

According to global cancer statistics, in 2022, the number of

lung cancer cases reached 2.481 million cases, accounting for 12.4%

of cancers worldwide. Lung cancer accounts for 18.7% of all cancer

deaths, ranking first among all types of cancer (1). The American

Cancer Society 2025 model estimates 226,650 new cases of lung

cancer and 124,730 deaths in the United States in 2025 (2). Its high

incidence and mortality are important issues in the field of global

public health. From a histologic point of view, lung cancer is mainly

classified into two major types: small cell lung carcinoma (SCLC)

and non-small cell lung carcinoma (NSCLC). NSCLC accounts for

about 80%–85% of lung cancer cases and can be further subdivided

into three main subtypes: adenocarcinoma, squamous cell

carcinoma, and large cell carcinoma (3). Lung cancer is highly

insidious, so most of the patients are in the middle to late stage

when they are diagnosed, and the primary tumor is often

accompanied by localized or distant metastasis. The treatment

strategies for lung cancer include surgical resection (4),

chemotherapy (5), radiotherapy (6), targeted therapy (7, 8),

immunotherapy (9, 10), nano drug delivery therapy system (11),

molecular targeted treatment system (12), photothermal treatment

strategy (13). Despite the various treatment modalities, the

prognosis of lung cancer is still poor and the five-year survival

rate of patients is relatively low. The search for new treatment

methods for lung cancer and the identification of key target genes

have become important tasks that need to be solved urgently.

Recent studies have found that nuclear receptor NR4A1 is

widely expressed in a variety of tumors, including lung cancer.

NR4A1, a transcription factor, regulates related signaling pathways

and participates in tumor cell proliferation (14), migration (15),

invasion (16), apoptosis (17) and immunoregulation (18). The aim

of this article is to summarize the regulatory role and mechanism of

NR4A1 in lung cancer to provide a sound theoretical basis for the

clinical treatment of lung cancer.
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2 Structure and role in oncology of
NR4A1

NR4A1 (Nuclear Receptor subfamily 4 group A member 1, also

known as Nur77/TR3) is an early stress gene that acts as an important

transcription factor to regulate the expression of multiple target genes

(19). NR4A1 is also thought to mediate tumor metabolism (20). In

addition to NR4A1, the NR4A nuclear receptor subfamily also

includes NR4A2 and NR4A3. The three exhibits similar structures,

including a DNA-binding domain (DBD), C-terminal ligand binding

domain (LBD) and N-terminal trans-activation domain (TAD)

(Figure 1). The intermediate DBD can interact specifically with the

DNA sequence of NBRE and NurRE. The TAD contains the ligand-

independent activation function 1 (AF-1) region, which regulates the

activity of transcription factors. The DBD can form a response

element with NBRE (AAAGGTCA) or interact with NurRE

(TGATATTTX6AAATGCCA) DNA sequences as a homodimer or

heterodimer (21). NR4A1 forms a heterodimer with the retinoid X

receptor (RXR), which then binds to the DR5 response element to

produce transcriptional activation (sequence: AGGTCA-NNNAA-

AGGTCA) (22, 23). In addition to the three binding modes

mentioned above, NR4A1 forms DNA-binding complexes with Sp1

and p300 to exert transcriptional activation in lung and pancreatic

cancer cells (24, 25). The LBD contains the ligand-dependent

activation function 2 (AF-2) region, which recognizes the

corresponding ligand to ensure transcriptional activity (26, 27).

NR4A1 was initially characterized as a gene inducible by serum

growth factors, and its overexpression has been found in a variety of

solid tumors (28–30). In breast cancer, inflammatory factors can

induce NR4A1 expression both in vivo and in vitro. Whole-genome

cDNA screening results showed that nuclear receptor NR4A1 is a

strong activator of transforming growth factor-b (TGF-b) signaling,
which can enhance the migration, invasion, and metastasis of breast

cancer cells (31). The long non-coding RNA MALAT1 modulates

NR4A1 expression through a downstream regulatory element in
FIGURE 1

A NR4A1 structure and functional domains schematic. Structure of NR4A1 including DNA-binding domain (DBD), C-terminal ligand-binding domain
(LBD), hinge region (Hinge), and N-terminal trans-activating domain (TAD). The DBD region interacts specifically with the DNA sequences of the
NBRE and the NurRE. NR4A1 forms a heterodimer with the retinoid X receptor (RXR), which then binds to the DR5 response element to produce
transcriptional activation. NR4A1 forms DNA-binding complexes with Sp1 and p300 to exert transcriptional.
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breast cancer cells (32). NR4A1 is highly expressed in high-grade

serous ovarian cancer samples with poor progression-free survival

and is mainly localized in the cytoplasm and nucleus (33). NR4A1

regulates endoplasmic reticulum stress and Reactive oxygen species

(ROS) levels in pancreatic cancer cells to promote cell proliferation

and survival (34). Immunohistochemical staining of 20 colon

tumors and 20 normal colon tissues showed that the proportion

of colon tumors with high NR4A1 staining was as high as 60% (12/

20), while that of normal colon tissues was only 10% (2/20) (35).

NR4A1 promotes invasion and metastasis of colorectal cancer cells

by up-regulating matrix metalloproteinase-9 and subsequently

down-regulating E-cadherin (36). Cheng et al. findings suggest

that targeting NR4A1 with OSI-930 may be a promising

therapeutic strategy for COAD patients with high levels of

immune infiltration (37). Although NR4A1 expression promotes

the growth of these tumors, NR4A1 regulated by long non-coding

RNAs activates the apoptosis signaling pathway and inhibits the

progression of endometrioid endometrial carcinoma (38). NR4A1 is

also required for melanoma growth (39). Phosphoserine

phosphatase reduces 2-hydroxyglutarate levels and inhibits

histone demethylases in melanoma cells, upregulates NR4A1

expression and promotes tumor growth and metastasis (40).

NR4A1 also plays an important role in the developmental process

of bladder cancer (41). In addition, NR4A1 showed opposite effects

in hematologic tumors compared with solid tumors. Low

expression of NR4A1 has been found in acute myeloid leukemia

(42–44) and chronic myelodysplastic/myeloproliferative diseases

(45), where it exhibits tumor-suppressive effects (Figure 2A).

These conflicting roles of NR4A1 that NR4A1 may play different

roles depending on the type and location of the cancer.
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3 Correlation between NR4A1
expression and lung cancer
The expression level of NR4A1 varies with the subcellular

localization. NR4A1 plays a multi-effect regulatory role and

although it is generally accepted that NR4A1 has a pro-cancer

effect, the correlation between high expression and adverse clinical

outcomes is controversial. Seong et al. collected RNA-seq data

from 1013 lung cancer cases and 397 normal tissue samples from

the TCGA and GTEx databases and found that NR4A1 expression

was lower in lung adenocarcinoma (LUAD) and lung squamous

cell carcinoma (LUSC) than in normal tissue (46). Huang et al.

similarly performed RNA-seq using tumor and tumor-adjacent

tissues from four LUAD patients and found low expression of

NR4A1 in the cancer tissues (47). We searched the GEPIA and

TissGDB databases and found that the expression of NR4A1 was

significantly reduced in LUAD and LUSC. However, Lee et al.

collected tissue from 59 patients with NSCLC and adjacent normal

lung tissue and, by immunohistochemical analysis, showed that

NR4A1 was expressed in lung cancer but there was low or no

expression in normal lung tissue (Figure 2B). Overexpression of

NR4A1 is associated with reduced survival and poor clinical

outcomes in patients with NSCLC (25). Yang et al. used the

STRING database to show that NR4A1 expression correlates

with RNA polymerase I subunit B (POLR1B) activity, and

POLR1B is an important modulator of lung cancer cell

proliferation (48). Although the role of NR4A1 in lung cancer

remains to be verified, a growing number of studies have found

that NR4A1 plays a pro-cancer role in lung cancer (49–51).
FIGURE 2

Role of NR4A1 in different tissues. (A) NR4A1 plays a tumor-promoting role in lung, breast, colorectal, pancreatic, melanoma, and bladder cancers.
NR4A1 exerts an inhibitory effect in acute myeloid leukemia and myeloproliferative diseases. (B) NR4A1 expression is normal or low in tissues of
healthy individuals and in tissue adjacent to the tumor in lung cancer patients, but NR4A1 is overexpressed in cancerous tissues.
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4 Role and molecular mechanism of
NR4A1 in the pathogenesis of lung
cancer

The role of NR4A1 in lung cancer involves multiple aspects,

including transcriptional regulation, protein-protein interactions,

and post-translational modifications. NR4A1 is regulated at both

the transcriptional and post-transcriptional levels and regulates

downstream signaling pathways involved in lung cancer

processes, including angiogenesis, cell proliferation, migration,

invasion, apoptosis, and immune regulation (Figure 3). The role

of NR4A1 also depends on the subcellular localization, expression

level, and co-activator/co-repressor factors. NR4A1 interferes with

intracellular regulation at different levels through various signaling

pathways associated with many cancers, and understanding these

interactions may elucidate the role of this family member in

tumorigenesis and tumor suppression.
4.1 Cell cycle and cell proliferation

Molecules that inhibit tumor cell proliferation or cell cycle

checkpoints play an important role in alleviating tumor
Frontiers in Oncology 04
progression. Stimulation by serum and epidermal growth factor

induces trans-activation of NR4A1 in H460 and Calu-6 lung cancer

cells, and high expression of NR4A1 promotes cell cycle

progression, exerting a positive effect on mitosis in lung cancer

cells (49). Zhang et al. found that NR4A1 promotes cell mitosis and

survival via its transcriptional activity in the nucleus (50). Lee’s

group found that NR4A1 promotes the proliferation of lung cancer

cells in two ways. The first involves the expression of p300, which

has histone acetyltransferase activity. In A549 and H460 cells, p300

enhances NR4A1 acetylation and protein stability. NR4A1 interacts

with specific protein 1 (Sp1) or specific protein 4 (Sp4) to form the

NR4A1-Sp1/Sp4-p300 DNA-binding complex. This complex binds

to GC-rich promoters and upregulates survivin expression, thereby

promoting lung cancer cell survival. The second way that NR4A1

promotes lung cancer cell proliferation is by inhibiting p53

expression to induce Adenosine 5’-monophosphate (AMP)-

activated protein kinase (AMPK)/mechanistic Target of

Rapamycin Complex 1 (mTORC1) pathway activation (25).
4.2 Epithelial-mesenchymal transition

Tumor cell metastasis is the main cause of lung cancer patient

mortality. Tumor cells can acquire invasive ability through
FIGURE 3

Role and molecular mechanism of NR4A1 in the pathogenesis of lung cancer. (A) The role of NR4A1 in lung cancer cell proliferation. The NR4A1/
Sp1/p300 complex upregulates survivin; NR4A1 inhibits p53 acetylation, which in turn induces activation of the AMPK/mTORC1 pathway. (B) The role
of NR4A1 in lung cancer cell migration and invasion. The NR4A1/Sp1 complex promotes G9A expression; NR4A1 export from the nucleus is induced
by phosphorylation of the TGF-b/TGF-b receptor. (C) The role of NR4A1 in immunomodulation. The NR4A1/AP-1 complex decreases tumor cell
killing by T cells by reducing IFN-g and IL-2 secretion. (D) The role of NR4A1 in apoptosis of lung cancer cells. Nuclear export of NR4A1 indirectly
induces apoptosis by NR4A1 binding to mitochondrial Bcl-2. (E) The role of NR4A1 in lung cancer cell metabolism. (F) The pro-angiogenic role of
NR4A1 in lung cancer cells. VEGF-A binding to VEGF-A receptor 2 upregulates NR4A1 expression and participates in angiogenesis.
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epithelial-mesenchymal transition (EMT), after which they invade

vascular or lymphatic vessels and ultimately distant organs. The

high metastasis and mortality rates of lung cancer are related to

EMT in lung tumors (51–53). TGF-b acts as a multifunctional

regulator of migration and upregulates the expression of key EMT

regulators, such as Snail and dEF1/SIP1 (51, 54, 55). Erik’s group

found that TGF-b-induced migration depends on the nuclear

export of NR4A1 in cell lines such as A549, H460, and H1299,

and the migration could be blocked by the NR4A1 inhibitor DIM-

C-pPhOH (56). Paraspeckle Component 1 (PSPC1) is an activator

of TGF-b-dependent EMT. Safe et al. found that NR4A1, by acting

as a transcription factor, enhances the promoter sequence activation

of the PSPC1 gene, thereby promoting EMT (57). Fan et al. similarly

concluded that the nuclear long non-coding RNA (lncRNA) LETS1

inhibits SMAD7-induced TGF-b type I receptor polyubiquitylation

through activation of NR4A1 expression in A549 cells, thereby

promoting TGF-b-induced EMT migration and extravasation of

cancer cells (58).
4.3 Angiogenesis

Tumor growth requires the formation of new blood vessels to

deliver oxygen and nutrients. Vascular endothelial growth factor

(VEGF) is a highly specific pro-vascular endothelial cell growth

factor, which plays a key role in tumorigenesis and development

(59). Using a DNA microarray assay, Zeng et al. found that NR4A1

gene expression was upregulated in human umbilical vein

endothelial cells (HUVECs), and knockdown of NR4A1 limited

the effect of VEGF-A on HUVECs and inhibited tumor

angiogenesis (60). It has also been reported that histamine and

serotonin play positive roles in angiogenesis Previously, it was also

reported that histamine and serotonin play positive roles in

angiogenesis (61). Qin et al. implanted histamine or serotonin

pellets subcutaneously in wild-type mice and found that both

induced angiogenesis in a dose-dependent manner, but little

angiogenesis occurred in NR4A1-/- mice (62).
4.4 Immunomodulation

Immunomodulation is involved in the entire process of

tumorigenesis and development. Tumor cells can evade immune

surveillance as well as resist immune defense in various ways, such

as through gene mutation or tumor antigen defects. In recent years,

more and more studies have shown that NR4A1 can help tumor

cells achieve immune escape by affecting the function of immune

cells in the tumor microenvironment (TME), and then regulate

tumor development (63–66).

In the immune system, NR4A1 regulates the immune response

mainly by inhibiting the recognition and proliferation of T cells,

thus reducing the body’s ability to monitor and attack lung cancer

cell. Liu et al. identified NR4A1 as a key molecule in T cell

dysfunction by genome-wide analysis, and NR4A1 was stably

highly expressed in tolerant T cells (Ttol). In T cells,
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overexpression of NR4A1 in combination with activating protein-

1 (AP-1) inhibits the expression of effector genes, such as Jund and

Naf1, which reduces their secretion of interferon-gamma (IFN-g)
and Interleukin-2 (IL-2), leading to a significant decrease in the

tumor-killing effect of T cells (67). Yang et al. also found that

NR4A1 upregulates the LAYN gene at the transcriptional level,

thereby inhibiting the killing function of CD8+ T cells against

LUAC (68). Sana et al. found that tumor growth was significantly

inhibited in Mice lacking NR4A1 and NR4A2 genes specifically in

Tregs subcutaneously inoculated with Lewis lung carcinoma cells,

and inhibition of NR4A1 in tumor-infiltrating regulatory T cells

(TI-Tregs) breaks down the immune tolerance to tumor cells and

promotes the antitumor activity of tumor-infiltrating CD8+ T

cells (69).

In recent years, chimeric antigen receptor (CAR) T cell therapy

has been widely used in leukemia and lymphoma but is less effective

in solid tumors, such as lung cancer. NR4A1 promotes the

expression of inhibitory receptors, such as programmed cell

death-1 (PD-1), leading to the depletion or dysfunction of CAR T

cells, which ultimately allows lung cancer cells to evade the immune

response (70, 71). Kensuke et al. transferred NR4A1/2/3 gene

knockout CAR T-cells into A549 tumor-bearing immunodeficient

mice and reached a similar conclusion (72). The above studies

indicate that NR4A1 depletes T cells, inhibiting the proliferation

and killing function of T cells, and is thus a promising tumor

immunotherapy target for mediating T cells.
4.5 Apoptosis

NR4A1 plays a pro-apoptotic role in a variety of cancers, in part

because of its localization in the nucleus. When NR4A1 translocates

from the nucleus to the mitochondria, it interacts directly with the

Bcl-2 protein and change the Bcl-2 conformation, exposing the pro-

apoptotic BH3 domain, which triggers the release of cytochrome c

and indirectly induces apoptosis (73–81). TIAM1, a small GTPase

RAC1 activator, interacts with NR4A1 in the nucleus of SCLC cells

to reduce their cell viability and tumorigenicity. Malayoside, an

extract from Antiaris toxicaria Lesch, activates ERK1/2 and p38 and

phosphorylates NR4A1 in H460 cells, prompting NR4A1 to

translocate to the mitochondria (82). NR4A1 also binds to the

promoter of the anti-apoptotic protein BRE, exerting a pro-

apoptotic effect by interfering with BRE function (83). Martin

et al. found that NR4A1-derived peptides can induce apoptosis in

paclitaxel-resistant cancer cells by acting on Bcl-2 (84). Liu et al.

Found that quinoline derivative 10E modulates the pro-apoptotic

nuclear export of NR4A1 in A549 and H460 cells (85). These

findings suggest that the effect of NR4A1 on Bcl-2 provides a

theoretical basis for targeted cancer therapy.
4.6 Metabolic reprogramming

Tumor cells provide substrates and energy for themselves

through metabolic reprogramming activities, such as glycolysis,
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glutamine metabolism, fatty acid metabolism, and nucleic acid and

amino acid metabolism, to promote tumor cell activity. NR4A

family receptors are considered mediators of metabolic markers

in tumors. Holla et al. found that NR4A1 plays a pro-oncogenic role

in the regulation of fatty acid oxidation pathways in colon cancer

(86). In breast cancer and melanoma, Poirot et al. found that the

cholesterol metabolite dendrogenin A activates NR4A1 expression

and exhibits tumor suppressor effects (87). Dysregulation of

glutamine metabolism occurs in a variety of solid tumor cells and

is essential for cancer cell proliferation (88). Hypoxia-inducible

factor 1 (HIF-1) is an important regulator of glutamine metabolism,

and Christoph et al. found that the expression of HIF-1 and NR4A1

was upregulated in A549 cells (89). The expression of NR4A1 in

metabolic pathways is expected to inhibit the abnormal metabolism

of tumor cells. NR4A1 potentially leads to targets for the control of

tumor development.
5 Research progress of NR4A1
inhibitors or activators

Targeted therapies can attack tumor cells more precisely than

chemotherapy and can reduce the incidental killing of normal cells.

In recent years, studies have shown that targeted inhibition of

NR4A1 can play an important role in preventing the development

of lung cancer. In future clinical applications, in addition to the use

of cisplatin, Nimotuzumab, and Bevacizumab alone in the

treatment of lung cancer, the combination of NR4A1-targeted

drugs with monoclonal antibody chemotherapy may provide a

better treatment option for patients.

Cytosporone B (Csn-B), a natural agonist of NR4A1, specifically

binds to the LBD region of NR4A1 and enhances the trans-

activation of NR4A1. Wu’s laboratory found that Csn-B promotes
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the translocation of NR4A1 from the nucleus to the mitochondria,

mediating the onset of apoptosis. They also measured the

proliferative effects of Csn-B on several tumor cell lines and

found that Csn-B inhibited the proliferation of BGC-823 human

gastric cancer cells and SW620 human colon cancer cells by >70%,

but inhibited H1299 human lung cancer cells and HepG2 human

liver cancer cells by ≥40% (90). Dawson et al. showed that the

interaction of Csn-B with the NR4A1 LBD region inhibited the

viability of H460 lung cancer cells with a weaker efficiency than the

positive control, DIM-Ph-4-CF3 (91). Amoitone B, a Csn-B analog

nanocrystal, preferentially targets lung tissue and may be a

potentially effective antitumor agent, although it has only a

moderate inhibitory effect on H460 cells (92). The compound

CCE9, which is extracted from Chinese herbal plants, can induce

NR4A1 expression and Bcl-2 phosphorylation, leading to NR4A1

cytoplasmic localization and induction of the NR4A1-Bcl-2

apoptosis pathway in a p38a MAPK-dependent manner (93). The

above results suggest that Csn-B and its derivatives have pro-

apoptotic effects in a variety of tumor cells, but their antitumor

effects are selective. Therefore, the inhibitory effect of Csn-B and its

derivatives on lung cancer cells needs to be further studied.

DIM-C-pPhOH (C-DIM-8), a cruciferous plant-derived indole

compound, and its derivatives are commonly employed in research

exploring cancer cell proliferation and apoptotic pathways (94, 95).

Lee et al. found that in lung cancer cells (A549, H460, and H1299),

DIM-C-pPhOH reduced NR4A1 trans-activation and inactivated

the NR4A1/p300/Sp1 complex, which in turn exhibited antitumor

activity and low toxicity (25). Two C-DIM analogs, DIM-C-

pPhOCH3 (C-DIM-5) and C-DIM-8, induced apoptosis in A549

cells, leading to a G0/G1-to-S phase block and tumor growth

inhibition (96). Kumaravel found that C-DIM reduced PSPC1-

mediated TGFb cancer-promoting activity by inhibiting NR4A1,

the upstream regulator of PSPC1 (57) Summary of the main

targeted drugs is shown in Table 1.
TABLE 1 Research progress of NR4A1 inhibitors and agonists in lung cancer.

Category Drug
Molecule/
pathway

Expression
Regulation

effect
Method Study subjects Reference

Agonist

Cytosporone B

NR4A1(LBD) Promotion

Inhibition of
cell proliferation

MTT
BGC-823
C57BL/6

(90)
Apoptosis
promotion

Immunohistochemistry
TUNEL assays

NR4A1(LBD) /

Inhibition of
cell proliferation

MTT

H460 (91)
Apoptosis
promotion

Immunohistochemistry

Amoitone B G1 cycle arrest /

Inhibition of
cell proliferation

MTT H460
BGC-823
HepG2
SW620/

Kunming strain mice

(92)
Apoptosis
promotion

Hoechst staining
Flow cytometric analysis

Annexin V-FITC/
PI staining

(Continued)
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In addition to C-DIM, coumarin derivative apaensin has been

found to be an inducer targeting NR4A1, which has anticancer

effects by regulating the NR4A1-Bcl-2 apoptotic pathway (97). A

coumarin derivative extracted from Arrowwood Antiaris toxicaria

(98), resveratrol extracted from fruits and vegetables (99), cardiac

glycosides (100), malayoside (82), isoharringtonine (IHT) (101) and

other compounds have similar effects on lung cancer cell and exert

anticancer effects by inhibiting lung cancer cell growth, inducing

NR4A1 nuclear export, and activating NR4A1-Bcl-2 apoptosis

pathway. Other compounds are shown in Table 2.

The above natural and synthetic compounds can affect the

expression and action of NR4A1 and have a good prospect of

becoming the basis of tumor-targeted therapy. However, the effect is

limited to molecular, cellular, and animal experiments, and it will

take time to verify and evaluate the clinical applications, other

biological effects, and potential side effects.
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6 Summary and prospect

According to our current understanding, NR4A1 plays an important

role in the occurrence and development of lung cancer. NR4A1 is a

potential antitumor drug target, and precise targeting of NR4A1 can

induce tumor cell apoptosis and inhibit cell growth.However, there is still

a long way to go in researching NR4A1 as a target for chemoprevention

of lung cancer. By using single-cell RNA sequencing technology

combined with spatial transcriptomics, the dynamic changes of

heterogeneity within tumors can be analyzed, especially in the

constantly evolving tumor microenvironment. Future research

directions can be more inclined to search for molecular targets that

address intratumoral heterogeneity. In addition, the role of NR4A1 in

cancer depends on the degree of expression and the subcellular site and is

characterized by tissue selectivity. The development of subcellular specific

NR4A1 modulators may be a direction for future precision therapy.
TABLE 1 Continued

Category Drug
Molecule/
pathway

Expression
Regulation

effect
Method Study subjects Reference

CCE9
p38a MAPK
NR4A1-Bcl-2

Promotion
Apoptosis
promotion

Immunofluorescence
Apoptosis assay

Flow cytometric analysis

A549
HepG2
HeLa229

(93)

Suppressant DIM-C-pPhOH

NR4A1/p300/
Sp1
p53/

sestrin2/AMPKa

No Effect
Inhibition of

cell proliferation
Cell proliferation assay
In vivo experiments

A549
H460
H1299/

A549 -C57BL/6

(25)
TABLE 2 Research progress of other compounds of NR4A1 in lung cancer.

Category Drug
Molecule/
Pathway

Expression
Regulation

effect
Method Study subjects Reference

Other
Compounds

Antiaris toxicaria / Promotion

Inhibition of
cell proliferation

MTT

H460 (94)
Apoptosis
promotion

Apoptosis assay

Malayoside
ERK1/2
p38

Promotion

Inhibition of
cell proliferation

MTT H460
H252
A549

(81)
Apoptosis
promotion

Apoptosis assay

Isoharringtonine / No Effect

Inhibition of
cell proliferation

Cell viability assay A549
H460/

A549- NR4A1-/-
C57BL/6

(98)
Apoptosis
promotion

Apoptosis assay

Cardiac
glycosides

/ Promotion
Inhibition of

cell proliferation
MTT H460 (99)

Apaensin
JNK

P38 MAPK
NR4A1-Bcl-2

Promotion
Apoptosis
promotion

Immunofluorescence
H460
MCF-7

(100)
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