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Introduction: Gastric cancer (GC) is one of the most frequently encountered

malignant tumors in the clinic. Because effective early screening techniques are

lacking, most patients have advanced disease at first diagnosis. The interleukin

(IL)-36 family plays a vital role in regulating the immune system, inflammatory

responses, and the occurrence and development of cancer. Hence, this study

explored the potential role of IL-36 related genes (IL-36RGs) in GC and built a

prognostic risk assessment model for GC based on IL-36RGs, which can help

evaluate treatment and prognosis.

Methods: First, relevant datasets were downloaded from public databases. After

processing the datasets to remove batch effects, perform differential analysis, and

take intersections, IL-36-related differentially expressed genes (IL-36RDEGs) were

screened. A prognostic risk model containing nine model genes was constructed

based on univariate Cox and least absolute shrinkage and selection operator

(LASSO) regression methods. Then, to investigate the potential biological

activities of the model genes in GC, we conducted enrichment, PPI interaction

network, and immune infiltration analyses. Immunohistochemical staining was

conducted to validate the expression of IL-36A in GC.

Results: The prognostic risk model analysis revealed that mortality events in the

high-risk group were substantially elevated compared to those in the low-risk

group. Themodel demonstrated excellent predictive capability at 1, 2, and 3 years

and showed the best clinical predictive performance at 3 years. Bioinformatics

analysis of the model genes indicate that they primarily participate in

mechanisms that promote the synthesis and secretion of cytokines in GC. And

hub genes may be strongly correlated with host immune response mechanisms.

According to the immunohistochemical staining results, IL-36A expression was

higher in the STAD group than in the control group.

Conclusions: The results of the above analysis suggest that IL-36RDEGs can

serve as independent prognostic biomarkers for GC and provide insights into IL-

36RGs from both bioinformatics and experimental validation perspectives.
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1 Introduction

Gastric cancer (GC) is one of the most prevalent malignant

tumors encountered in clinical practice. Statistical data show that

GC ranks fifth as the most frequently occurring cancer and fourth

leading cause of death, especially in East Asia and Eastern Europe,

where it has the highest incidence and usually a poor prognosis (1).

Owing to the lack of obvious symptoms in early-stage patients and

the insidious course of the disease, including the current lack of

effective early screening methods in clinical practice, the majority of

patients are found to be in an advanced stage upon their initial

diagnosis (2). Although the pathogenesis of GC is not completely

understood, its growth and differentiation are regulated by various

factors. Most clinical treatments include surgical resection, targeted

therapy, systemic chemotherapy, and radiotherapy. Although these

treatment methods are effective (3, 4), the long-term survival

outcomes for patients with GC are unsatisfactory, especially for

patients with advanced GC (5). Therefore, identification of new

prognostic biomarkers and molecular targets is urgently required to

better predict the prognosis of patients with GC and guide

individualized clinical diagnosis and treatment.

IL-36 belongs to the IL-1 family of cytokines, including three

isoforms: IL-36A (IL-36a), IL-36B (IL-36b) and, IL-36G (IL-36g). It
forms a complex by binding to IL-36R (IL-1RL2) and recruiting IL-1

receptor accessory protein (IL-1RAcP), it subsequently triggers the

activation of associated signaling pathways, including MyD88-NF-kB
(Myeloid differentiation primary response 88) and Mitogen-activated

protein kinase (MAPK), which modulate the expression of

downstream target genes (6); IL-36Ra and IL-38 are antagonists of

IL-36R; upon binding to IL-36R, they prevent the recruitment of IL-

1RAcP, thereby inhibiting the assembly of an active IL-36R complex

and limiting signal transduction (7, 8). Studies have shown that IL-36

and its related signaling pathways are associated with various

inflammatory diseases, autoimmune diseases, and cancers (9–12).

The study found that, compared to adjacent tissues, the expression

of IL-36 is significantly reduced in human hepatocellular carcinoma

(HCC) tissues. HCC cases with IL-36 positive expression have a lower

recurrence rate and longer survival time (13). IL-36A inhibits HCC

proliferation, survival, and migration, which correlates with a decrease

in the expression of cytokines IL-1b and IL-18, suggesting that IL-36A

may inhibit pyroptosis (14). In contrast to non-cancerous tissues, the

mRNA and protein expression of IL-36 family members is increased in

colorectal cancer tissues, and IL-36R can activate the oncogenic

phenotype of cancer cells (11, 15). The relationship between IL-

36RGs and tumors, whether inhibitory or promotional, may be

related to different types of cancer, various samples, and the

heterogeneity of the cancer itself. Over the last few years, studies

have revealed a significant association between chronic inflammation

in the tumor microenvironment and cancer, with IL-36 considered to

play a major role in aseptic chronic inflammation (8, 16). A studies has

shown that IL-36 is a potent activator of innate immune cells and

mediates a strong anti-tumor response through complement and

adaptive immunity. IL-36-treated neutrophils can directly kill tumor

cells, induce NK cells to generate cytolytic activity, and enhance T cell

proliferation. The interactions between these IL-36-treated neutrophils
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(TME) result in a highly effective anti-tumor response (17). Research

has confirmed that IL-36b can promote the activation of CD8+ T cells

by activatingmTORC1 through PI3K/Akt, IKK, andMyD88 pathways,

thereby enhancing the anti-tumor immune response and laying the

groundwork for the application of IL-36b in tumor immunotherapy

(18). However, the relationship between IL-36RGs and GC has rarely

been studied, and their mechanism of action remains unclear.

To reveal the relationship between IL-36RGs and GC, this study

integrated and analyzed data from multiple public databases,

including TCGA-STAD, GSE19826, and GSE54129. By

implementing strict data preprocessing techniques (such as batch

effect correction and differential analysis), we obtained IL-36RDEGs.

Based on this, we constructed a prognostic risk model using various

statistical methods, including univariate Cox regression and LASSO

regression, and performed external validation with an independent

GEO dataset to ensure the robustness and wide applicability of the

study results. Through systematic multi-cohort cross-validation, this

research can contribute to a comprehensive assessment of the role of

IL-36RDEGs in GC prognosis and their potential mechanisms,

thereby providing a theoretical basis for the clinical development of

new prognostic biomarkers and molecular therapeutic targets.
2 Materials and methods

2.1 Technical roadmap

The technical roadmap is shown (Figure 1).
2.2 Data download

The TCGA-STAD dataset was sourced from the TCGA database

(https://portal.gdc.cancer.gov/) with the aid of the R package

TCGAbiolinks (19) and was used as the test set, excluding

samples that did not have clinical details. After normalization, the

associated clinical data were extracted from the UCSC Xena database

(20) (https://xena.ucsc.edu/) and are summarized in Table 1. The

GSE19826 and GSE54129 datasets were obtained from the GEO

database (21) (https://www.ncbi.nlm.nih.gov/geo/) using the

GEOquery (22) package in R for further validation purposes (23).

The sva package in R was used to eliminate batch effects from the

data (24). The GSE19826 and GSE54129 datasets were processed for

probe annotation, standardization, normalization, and other

treatments using the R package limma (25). All selected STAD

and control samples were used in this study. Further information is

provided in Table 2. A total of 44 IL-36RGs were sourced from the

GeneCards (26) (https://www.genecards.org/) and MsigDB (27)

(Molecular Signatures Database). After using the term

“Interleukin-36” as a search keyword and keeping only “protein-

coding” IL-36RGs, a total of 44 IL-36RGs were obtained in the

GeneCards. In addition, we also got seven IL-36RGs in MsigDB

database. IL-36RGs obtained in the above way were merged and

deduplicated to obtain a total of 44 IL-36RGs.
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2.3 IL-36-related differentially expressed
genes

We employed the limma package in R to perform differential

analysis of genes in the STAD and Control groups across the TCGA-

STAD, GSE19826, and GSE54129 datasets. We set the thresholds for
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DEGs as |log2FC| > 0 and p value < 0.05, and the outcomes of the

differential analysis were plotted as a volcano plot using the ggplot2

package in R. We intersected the DEGs obtained from the differential

analysis in the TCGA-STAD dataset with IL-36RGs and obtain IL-

36RDEGs to draw a Venn diagram, which was then displayed as a

heatmap using the pheatmap package in R.
2.4 Creation of a risk model for predicting
prognosis related to GC

Using the R package survival (28), the prognostic risk model in

the TCGA-STAD dataset was created to analyze the effect of
TABLE 1 Overall baseline data sheet.

Characteristics Overall

Age, n (%)

>60 222 (66.3%)

<=60 113 (33.7%)

Gender, n (%)

MALE 214 (63.9%)

FEMALE 121 (36.1%)

Pathologic_stage, n (%)

Stage III 146 (43.6%)

Stage II 108 (32.2%)

Stage IV 34 (10.1%)

Stage I 47 (14%)
FIGURE 1

Work flow diagram of this study. TCGA, The Cancer Genome Atlas; STAD, Stomach adenocarcinoma; DEGs, Differentially Expressed Genes; GSEA,
Gene Set Enrichment Analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ExpDiff&ROC, Expression Differential &
Receiver Operating Characteristic; LASSO, Least Absolute Shrinkage and Selection Operator; DCA, Decision Curve Analysis; GSVA, Gene Set Variation
Analysis; ssGSEA, single-sample Gene-Set Enrichment Analysis; PPI, Protein-Protein Interaction; IHC, Immunohistochemistry.
TABLE 2 GEO microarray chip information.

Information about
the dataset

GSE19826 GSE54129

Platform GPL570 GPL570

Species Homo sapiens Homo sapiens

Tissue Gastric Tissue Gastric Tissue

Samples in GC group 12 111

Samples in Control group 15 21

Reference 21132402 –
frontiersin.org

https://doi.org/10.3389/fonc.2025.1566993
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1566993
IL-36RDEGs on prognosis through single and multivariate Cox

regression analyses based on clinical information and to ascertain

whether IL-36RDEGs are an independent prognostic factor. The

process began with univariate Cox regression analysis of genes

showing p value < 1, after which LASSO regression analysis with

family = “cox” applying the package glmnet in R (29) was

conducted to ascertain the model genes for the prognostic risk

model. We adopted a 10-fold cross-validation approach to

determine the variables in the LASSO regression model and

identify the optimal penalty parameter l. After completing the

training for all 10 folds, we calculated the average of C-index to

ascertain the optimal l that produced the highest mean C-index.

This optimal l was employed to construct the LASSO regression

model, facilitating the selection of the most significant genes.

Finally, using the LASSO risk score and clinical information, we

conducted a multivariate Cox regression analysis. The following

approach was used to compute risk scores:

riskScore  =  o
i
Coefficient (genei)*mRNA Expression   (genei)

Furthermore, a risk factor graph was created using the LASSO

risk score and the package ggplot2 in R.

This study sought to explore the differences in overall survival

(OS) between high-risk (High) and low-risk (Low) patients in the

STAD group of the E dataset. Using the R package survival, we

performed a Kaplan–Meier (KM) (30) curve analysis and plotted

the KM curves according to the LASSO risk score. Then, the

survivalROC package in R (31) was employed to generate time-

dependent ROC curves utilizing the LASSO risk score and OS data,

and the area under the curve (AUC) was computed to estimate the

survival outcomes for 1, 2, and 3-year periods within the STAD

group from TCGA-STAD dataset.
2.5 Analysis of enrichment in GO and
KEGG pathways

To further investigate the biological and signaling pathways

associated with the genes linked to the risk score, we performed

enrichment analysis using Gene Ontology (GO) (32) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (33). The model genes

were subjected to GO and KEGG enrichment analysis using the

clusterProfiler (34) package in R, utilizing entry screening criteria that

considered a p value < 0.05 and an FDR value (q value) < 0.25 as

statistically significant. Finally, the GO and KEGG enrichment

analysis results were visualized using the R package PathView (35).
2.6 Gene set enrichment analysis

In the TCGA-STAD dataset, the STAD group was sorted into

high- and low-risk groups using the median value of the LASSO risk

score, and GSEA was performed for all genes in the STAD group

using the clusterProfiler package in R (34). The GSEA screening

criteria were set as adj.p < 0.05 and an FDR value (q value) < 0.25,

correcting the p value using the Benjamini–Hochberg method.
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2.7 Gene set variant analysis

The h.all.v7.4.symbols.gmt gene set was sourced from the

MSigDB database, and GSVA (36) was conducted on all genes

in the TCGA-STAD dataset to evaluate the differences in

enrichment of functions among the high- and low-risk groups,

using a GSVA selection criterion of p value < 0.05. This was

performed to assess whether the various samples were enriched in

different pathways.
2.8 Assessment of the prognostic risk
model for GC

To illustrate the findings of the multivariate Cox regression

analysis, a forest plot was created to represent the expression of

the LASSO risk score and clinical variables considered in the

analysis. A nomogram (37) was created based on the outcomes of

the multivariate Cox regression analysis using the rms package in

R, illustrating the correlation between clinical information and the

LASSO risk score inside the multivariate Cox regression model.

Calibration analysis was conducted to draw calibration curves and

evaluate the accuracy and discrimination capacity of the

prognostic risk model based on the LASSO risk score. Applying

the R package ggDCA, a decision curve analysis (DCA) (38)

diagram derived from the LASSO risk score was generated to

assess the accuracy and discrimination of the prognostic risk

model for GC.
2.9 PPI interaction network and functional
similarity analysis

Using the STRING database (39), hub genes were screened, a

hub gene-related protein-protein interaction network (PPI

Network) was created, and the PPI network model was visualized

using Cytoscape (40). Using the GeneMANIA database (41) (http://

genemania.org), we predicted genes with functions analogous to the

hub genes online and downloaded the interaction network. The

inner circle in the figure represents the hub genes in our study, and

the outer circle represents functionally similar genes.
2.10 Validation of differential expression of
hub genes and ROC curve analysis

To further explore the differences in hub gene expression in the

TCGA-STAD dataset and in STAD and Controls in the GSE19826

and GSE54129 datasets, group comparison plots were constructed

based on the expression of hub genes. Finally, the package pROC in

R was employed to generate the ROC curve for the hub genes and to

compute the AUC to assess the diagnostic impact of hub gene

expression levels on the occurrence of GC. Subsequently, to

investigate the connections among hub genes, the Spearman

algorithm was employed to assess the association between hub
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gene expression and TCGA-STAD dataset. A heat map generated

using the pheatmap package in R represents the outcomes of the

relationship analysis.
2.11 Immune infiltration examination of the
high- and low-risk groups

First, various infiltrating immune cell subtypes were identified.

Subsequently, the enrichment scores derived from ssGSEA (42)

represented the comparative immune cell infiltration abundance in

each sample, which produced an immune cell infiltration matrix for

the STAD group in the TCGA-STAD dataset. The package ggplot2

in R was used to demonstrate the differences in immune cell

expression between the high- and low-risk groups within the

STAD group of TCGA-STAD dataset. The immune cells showing

considerable differences between the two groups were filtered for

additional analysis; the correlation between immune cells and hub

genes was assessed using the Spearman algorithm; and the findings

were depicted through a correlation bubble map produced with the

R package ggplot2.
2.12 Patient and tissue samples

This study was approved by the Ethics Committee of the

Affiliated Hospital of Beihua University in Jilin City, Jilin

Province, China (Approval No. 20240084). All patients signed an

informed consent form. This study used GC and adjacent tissue

samples collected by our research group with clear pathological

diagnoses. All patients with GC underwent radical surgery and did

not receive endocrine or radiation therapy prior to surgery.
2.13 Immunohistochemical staining and
evaluation methods

Immunohistochemistry was conducted using an IL-36A

antibody (24173-1-AP; Proteintech, China) diluted at 1:100,

following the manufacturer ’s instructions and based on

preliminary experiments. Two pathologists independently

assessed the pathological grouping of each slice. The positive

expression rate of the tissue slices was calculated using the ImageJ

software. The IL-36A positive expression rate was calculated as

follows: Positive area/Total area × 100%.
2.14 Statistical analysis

The R software was used to analyze all data in this study

(Version 4.4.1). Unless otherwise specified, statistical significance

for comparisons of two categories of continuous variables was

examined by applying the independent Student’s t-test for

normally distributed variables and the Mann–Whitney U test,

commonly known as the Wilcoxon rank-sum test, for variables
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that were not normally distributed. The Kruskal–Wallis test was

used to assess differences across three or more groups. Correlation

coefficients between different molecules were calculated using

Spearman’s correlation analysis. All statistical p-values were

calculated using a two-tailed method, with a p value < 0.05,

considered statistically meaningful. Quantitative data are

represented as mean ± standard deviation (SD).
3 Results

3.1 Processing of GC datasets

First, batch effects in the GSE19826 and GSE54129 datasets

were eliminated using the R package sva. Subsequently, boxplots

were generated to compare the differences in illustration values of

the datasets before and after batch-effect removal (Figures 2A–D).

The outcomes from the box plots indicate that the batch effects

among the samples in the datasets were largely eradicated after

batch removal.
3.2 Differentially expressed genes related
to IL-36

Differential analysis was conducted on STAD and control

samples from the TCGA-STAD dataset, together with the

GSE19826 and GSE54129 datasets, applying the R package

limma to identify DEGs, and volcano plots were created from

the results of each dataset’s differential analysis (Figures 3A–C).

The intersections of all DEGs from the TCGA-STAD dataset,

which fulfilled the thresholds of |log2FC| > 0 and p < 0.05, and IL-

36RGs were selected. A Venn diagram was plotted showing 16 IL-

36RDEGs (Figure 3D). Following intersection analysis, the

differences of IL-36RDEGs in various sample groups within the

TCGA-STAD dataset were evaluated, and a heatmap was

generated using the package pheatmap in R to illustrate the

results (Figure 3E).
3.3 Construction of a prognostic risk
model for GC

To develop a prognostic risk model for GC, we conducted

univariate Cox regression analysis using clinical information

from the STAD group in the TCGA-STAD dataset combined

with IL-36RDEGs. The LASSO regression analysis included all

variables with a p value < 1 from the univariate analysis, and a

forest plot was constructed to present the outcomes (Figure 4A).

To further determine the prognostic value of the genes from the

univariate Cox regression model in GC, LASSO regression

analysis was conducted and a LASSO regression model was

constructed. The C-index was used as the criterion for

selecting LASSO variables, and the results were visually

presented in the LASSO regression model (Figure 4B) and
frontiersin.org

https://doi.org/10.3389/fonc.2025.1566993
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1566993
LASSO variable trajectory (Figure 4C) plots. The LASSO

regression model included 9 LASSO regression model genes:

IL-36A, AP1S3, IL1RAP, CARD14, IL1A, TNXB, CD276,

SLC44A4 and IRAK1. The risk factors derived from the LASSO

risk score were plotted utilizing the package ggplot2 in R

(Figure 4D). The RiskScore was calculated as follows:

RiskScore  = IL36A � ( − 0:0817) + AP1S3 � ( − 0:0877) + IL1RAP � 0:3167 + CARD14 � 0:1534 
+IL1A � 0:1208 + TNXB � 0:0441 + CD276 � 0:0468 + SLC44A4 � ( − 0:0387)

+IRAK1 � ( − 0:1612)

The data demonstrated that the death rate was higher in the

high-risk group than in the low-risk group, and CD276, TNXB,

IL1A, CARD14 and IL1RAP were expressed at elevated levels in the

high-risk group.

Subsequently, we conducted a prognostic KM curve analysis

based on the LASSO risk score combined with the OS of the STAD

group in the TCGA-STAD dataset using median value grouping

(Figure 4E). The findings revealed a statistically significant

difference in OS between the high- and low-risk groups within

the STAD group of TCGA-STAD dataset (p < 0.001). Furthermore,

we plotted a time-dependent ROC curve for the STAD group in

TCGA-STAD dataset (Figure 4F). The study revealed that the GC
Frontiers in Oncology 06
prognostic risk model had an effective diagnostic capability (0.5

<AUC <0.7).
3.4 GO and KEGG enrichment analysis

Through GO and KEGG enrichment analyses, we further

examined the biological processes (BP), molecular functions

(MF), cellular components (CC), and the relationship between

biological KEGG and GC of the nine model genes. These nine

model genes were used for the GO and KEGG enrichment analyses.

The findings indicated that the nine model genes were primarily

abundant in BP-like cytokine-mediated signaling pathways within

STAD samples and in MF, such as interleukin (IL)-1 receptor

binding and growth factor receptor binding. Additionally, they

were enriched in biological pathways (Kyoto Encyclopedia of

Genes and Genomes), including the MAPK and NF-kappa B

signaling pathways. The results of the GO and KEGG enrichment

analyses are illustrated in a bubble chart (Figure 5A). Concurrently,

network diagrams of BP, MF, and biological pathways were outlined

according to the results obtained from the GO and KEGG

enrichment analyses (Figures 5B–D).
FIGURE 2

Batch Effects Removal of GSE19826 and GSE54129. (A) Distribution boxplot of GSE19826 dataset before going batch. (B) Distribution boxplot of the
post-batch GSE19826 dataset. (C) The distribution of GSE54129 dataset boxplot before batch processing. (D) The distribution boxplot of the post-
batch GSE54129 dataset.
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3.5 Gene set enrichment analysis

To assess how the expression levels of all genes in STAD

samples influenced the high and low risk of GC, GSEA was

employed to examine the connections among gene expression, the

biological processes in which they participate, the affected cellular

components, and the molecular functions they exert, as represented

through a mountain plot (Figure 6A). The analysis demonstrated

that every gene in the TCGA-STAD dataset showed significant

enrichment in biological functions and signaling pathways related

to cellular metabolism, signal transduction, and regulation of gene

expression (Figures 6B–E).
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3.6 Gene set variant analysis

To investigate the differences between h.all.v7.4. symbols.gmt

gene set among the high- and low-risk groups in the E dataset, we

conducted GSVA for all genes in the TCGA-STAD dataset.

Subsequently, we selected the top 10 positively and negatively

enriched pathways with p values < 0.05 and log2FC rankings and

analyzed the differential expression of the 20 pathways among the

high- and low-risk groups, visualizing the results via a heatmap

(Figure 7A). We then performed differential validation based on the

Mann–Whitney U test and created a grouped comparison chart to

display the results (Figure 7B).
FIGURE 3

Differential Gene Expression Analysis. (A-C) Volcano plot of DEGs analysis between STAD and Control groups in the TCGA-STAD, GSE19826 and
GSE54129 datasets. (D) The DEGs in the TCGA-STAD dataset and IL-36RGs Wayne figure. (E) Heatmap of the expression of IL-36RDEGs in the
TCGA-STAD dataset.
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3.7 Prognostic analysis of the prognostic
risk model for GC

Based on the findings of the LASSO regression analysis, LASSO

regression was performed to explore the correlation between the
Frontiers in Oncology 08
LASSO risk score and clinical prognosis. The results of the

multivariate Cox regression analysis were visualized using a forest

plot (Figure 8A). To further support the significance of the GC

prognostic risk model, a nomogram was built using the LASSO risk

score and clinical details to display the interconnections among the
FIGURE 4

LASSO and Cox Regression Analysis. (A) Forest plot of the univariate Cox regression analysis of the prognosis of IL-36RDEGs. (B, C) Prognostic risk
model plot and variable trajectory plot of the LASSO regression model. (D) Risk factor plot of Model Genes prognostic LASSO model. (E) Prognostic
KM curves between high-risk and low-risk groups of LASSO risk score and OS in the STAD group. (F) Time-dependent ROC curve of STAD group in
the TCGA-STAD dataset. p value < 0.001, extremely statistically significant.
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genes (Figure 8B). The results revealed that the LASSO risk score

was significantly more effective in the GC prognostic risk model

than other factors. Moreover, we conducted a prognostic calibration

assessment for the GC risk model across 1, 2, and 3 years and
Frontiers in Oncology 09
plotted the calibration curves (Figures 8C–E). The outcomes

showed that the prognostic risk model for GC had the best

clinical predictive performance at the 3-year follow-up. Finally,

we evaluated the clinical utility of GC prognostic risk model
FIGURE 5

GO and KEGG Enrichment Analysis for Model genes. (A) The bubble chart displays the results of the GO and KEGG enrichment analyses for the
model genes: BP, MF, and KEGG. (B-D) The network diagrams show the results of the GO and pathway (KEGG) enrichment analyses for the model
genes: BP (B), MF (C), and KEGG (D).
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utilizing DCA for 1, 2, and 3 years (Figures 8F–H). The findings

indicated that the ranking of the clinical predictive performance of

our established multivariate Cox regression model was as follows: 3

years > 2 years > 1 year.
3.8 PPI interaction network and functional
similarity analysis

Using the STRING database to analyze the PPI interaction

network of the nine model genes, we retained only the genes that

were connected to other nodes and designated them as hub genes

for subsequent analysis. This resulted in the construction of a PPI

network consisting of six hub genes (IL-36A, AP1S3, IL1RAP,

CARD14, IL1A, and IRAK1), which were visualized using the

Cytoscape software (Figure 9A).

The correlation of the six hub genes with other genes was

analyzed using the GeneMANIA database (Figure 9B). The findings

indicated that the six hub genes primarily exhibited co-expression,
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predicted interactions, physical interactions, pathways, shared

protein domains, and co-localization with other genes.
3.9 Differential expression validation of hub
genes and ROC curve analysis

The differences in the expression of the six hub genes among the

STAD and control groups in the TCGA-STAD dataset were analyzed

and presented in a grouped comparison chart (Figure 10A). Analysis of

differences demonstrated that the expression of the six hub genes were

statistically significant (p < 0.001). Correlation analysis was conducted

on the expression of the six hub genes in the TCGA-STAD dataset, and

a correlation heatmap was generated (Figure 10B). Among these,

IL1RAP and IL1A showed the greatest positive association (r = 0.43,

p < 0.05). Finally, using the R package pROC, ROC curves were created

from the expression of hub genes in the TCGA-STAD dataset

(Figures 10C–E). The ROC curves indicated that the four hub genes

(AP1S3, IL1RAP, CARD14, and IRAK1) showed a notable level of
FIGURE 6

GSEA for TCGA-STAD. (A) Mountain map of GSEA 4 term in the TCGA-STAD dataset. (B-E) GSEA shows that all genes are significantly enriched in
HNF3B pathway (B), metabolism of fat soluble vitamins (C), folate metabolism (D) and metabolism of porphyrins (E).
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accuracy in distinguishing the STAD group from the control group

based on their expression (0.7 < AUC < 0.9).

The validation results are presented through group comparison

graphs, demonstrating the expression difference analysis results of

six hub genes in the STAD and control groups of the GSE19826 and

GSE54129 (Figures 10F, G). The differential results indicated that

the representation differences of the six hub genes in the dataset

GSE54129 were significant and statistically meaningful.
3.10 Immunohistochemical results

Among the six hub genes, previous studies have been conducted

on the roles of the other five hub genes in GC (43–51), except for
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IL-36A. Hence, IL-36A was selected for immunohistochemistry

(IHC) experiments to detect its expression in GC. In this study, a

sum of 46 STAD samples and 22 adjacent normal tissue samples

(controls) were collected. The specimens were embedded with

paraffin and sectioned into 0.5-mm thick pieces. The expression of

IL-36A protein was detected (Figure 11A), with positive expression

indicated by brownish-yellow or brown cytoplasmic granules. The

positive expression rate was assessed using the ImageJ software.

The IHC results showed that IL-36A was primarily expressed in

gastric foveolar glands and stroma in the control group tissues

(0.152 ± 0.04), while in the STAD tissues, IL-36A was mainly

expressed in the cytoplasm (0.181 ± 0.05). For IL-36A, a statistically

significant difference was found in comparison with the control

group (p = 0.0186, p < 0.05) (Figure 11B).
FIGURE 7

GSVA Analysis. (A, B) Heatmap (A) and group comparison of GSVA results between the high-risk and low-risk groups in the TCGA-STAD dataset (B).
*p value < 0.05, statistically significant; ** p value < 0.01, highly statistically significant; *** p value < 0.001, extremely statistically significant.
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3.11 Immune infiltration analysis

In the expression matrix of the STAD group in the TCGA-

STAD dataset, the ssGSEA algorithm was employed to assess the

immune infiltration abundance of 28 types of immune cells within

the high- and low-risk groups. First, a grouped comparison chart

(Figure 12A) was presented to display the discrepancies in immune

cell infiltration abundance across various groups. The grouped

comparison chart indicated that the 20 categories of immune cells

showed statistically significant differences (p < 0.05).

Finally, the correlation bubble plot showed the relationship

between hub genes and levels of immune cells (Figures 12B, C).
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The results of the correlation bubble plot indicated that certain hub

genes showed strong positive associations with specific immune cell

types in the high- and low-risk groups. In the low-risk group, IL1RAP

shows the strongest positive relationship with immature dendritic

cells (r = 0.337, p < 0.05), whereas in the high-risk group, IL1A shows

the highest positive association with neutrophils (r = 0.551, p < 0.05).
4 Discussion

GC has a complex etiology, is difficult to detect in its early stages,

has a poor prognosis after treatment, and remains a malignant tumor
FIGURE 8

Prognostic Analysis. (A, B) Forest plot (A) and Nomogram (B) of the LASSO risk score and clinical information in the multivariate Cox regression
model. (C-E) Calibration Curve for the GC prognostic risk model at 1 year (C), 2 years (D), and 3 years (E). (F-H) DCA plots for the GC prognostic risk
model at 1 year (F), 2 years (G), and 3 years (H).
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with a high mortality rate, imposing a heavy economic and

psychological burden on patients and their families. Patients with

GC generally have a poor prognosis and low 5-year survival rate (1, 52).

Important advancements have been made in recent years regarding

prognostic biomarkers and molecular targets for GC. For example,

prognostic risk models have been established using apoptosis-related

molecules like p53, BCL-2, and Caspases-3, along with seven identified

Anoikis-Related Long Non-Coding RNAs (ar-lncRNAs) (53–56).

Additionally, such as the immune checkpoint PD-L1 (57), and some

newer biomarkers like Human Epidermal Growth Factor Receptor 2

(HER2) (58, 59) and Fibroblast Growth Factor Receptor 2 (FGFR2)

(60) have also emerged. And others existing prognostic models for GC

that involve iron death-related genes (61), copper death-related genes
Frontiers in Oncology 13
(62), and mitochondrial-related gene models (63), these biomarkers

not only serve as prognostic predictors but also provide new avenues

for molecular targeted therapy. However, the efficacy and cytotoxic

effects of these biomarkers in relation to targeted drugs remain unclear,

there is a necessary to explore other prognostic model for GC. Our

study presents a novel prognostic model associated with IL36-RGs,

which has not been reported before. The IL-1 family is known to have

connections with inflammation, immunity, and cancer (64); however,

there has been no previous report documenting a GC prognostic model

specifically focused on IL-36. As previously mentioned, some studies

have confirmed a connection between the IL-36 family and the

occurrence and development of tumors. However, research has

typically focused on the regulatory mechanisms or predictive models
FIGURE 9

PPI interactions network and functional similarity analysis. (A) PPI network diagram. (B) The GeneMANIA website predicts the interaction network of
functionally similar genes for the Hub genes.
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of a specific factor corresponding to a single pathway. Disease

occurrence and development result from an interplay between

multiple factors. Therefore, this study constructed a prognostic

model using IL-36RDEGs through various bioinformatics analysis

methods. Firstly, the study identified 16 IL-36RDEGs. We utilized

univariate Cox regression and LASSO regression analyses to identify

nine feature genes, including IL-36A, AP1S3, IL1RAP, CARD14, IL1A,

and IRAK1 to build a prognostic risk model for GC, in which patients

with high-risk scores had a significantly reduced survival duration.

Calibration analysis and DCA showed that the accuracy of this
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prognostic risk model was sufficiently good, especially in clinical

predictions over 3 years, indicating that over time, the model’s

predictive ability in clinical applications gradually improved.

Regarding these nine model genes, we employed various

enrichment analyses to reveal their participation in important

biological processes and signaling pathways. GO and KEGG

functional enrichment analyses indicated that the nine model genes

primarily participate in BP that promote cytokine synthesis and

cytokine-mediated signaling pathways in GC. Cytokines activate a

series of intracellular signaling pathways by binding to their receptors,
FIGURE 10

Differential Expression Validation and ROC Curve Analysis of Hub genes. (A) Grouped comparison chart of hub genes between STAD and Control
groups in the TCGA-STAD dataset. (B) Correlation heatmap of hub genes in the TCGA-STAD dataset. (C-E) ROC curves for hub genes IL-36A and
AP1S3 (C), IL1RAP and CARD14 (D), IL1A and IRAK1 (E) in the TCGA-STAD dataset. (F, G) Grouped comparison chart of hub genes between STAD and
Control groups in the GSE19826 (F) and GSE54129 (G) datasets. * p value < 0.05; ** p value < 0.01; *** p value < 0.001.
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thereby triggering changes in the cell phenotype, metabolism, and

function. This study showed that the main MF of the model genes was

binding to interleukin-1 receptors and growth factor receptors, and

their enrichment was predominantly observed in the cytokine-cytokine

receptor interaction and the MAPK signaling pathway (KEGG). The

MAPK signaling pathway can regulate interactions between cells and

the microenvironment, promoting the generation of new blood vessels

in tumors and interactions between tumor and immune cells (65).

These observations suggest that the model genes potentially influence

the tumormicroenvironment of GC. Studies have shown that IL-36A is

an important predictor of unfavorable prognosis in patients with non-

small cell lung cancer (66). IL-36A is expressed in all types of immune

and non-immune cells including T cells, neutrophils, and epithelial

cells. Evidence reveals that IL-36A plays a significant pro-inflammatory

biological role in the communication between different cells, such as

dendritic cells, neutrophils, and epithelial cells, in the course of

initiating, sustaining, and amplifying inflammation. IL-36A can also

activate MAPKs and the NF-kB pathway, as reflected in the GO and

KEGG analyses of the model genes in this analysis. The function of IL-

36A in the tumor microenvironment is also receiving increasing

attention, with one of the main mechanisms being the enhancement

of immune cell infiltration through upregulation of the expression of

various chemokines (67). The connection between hub genes and

immune cell infiltration abundance in this study showed that IL36A

positively correlated with neutrophils in the low-risk group and

negatively correlated with regulatory T cells in the high-risk group.

Earlier research has indicated that IL-36A could be closely linked to the

tumor immune microenvironment (68). Thus, IL-36A is a potentially

effective target for clinical immunotherapy of GC. Our study revealed

that IL-36A, as a factor in the GC prognostic risk model, is being

reported for the first time. The validation of the differential analysis

results demonstrated statistical significance for the Hub genes in the

GSE54129 dataset. However, the differential analysis of IL-36A in the
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TCGA-STAD dataset showed no statistical significance, and there is

limited research on its expression in GC tissues. Given the existing

research background, it is crucial to further clarify its expression in GC

tissues. This study detected the expression of IL-36A in GC using

immunohistochemistry. The analysis demonstrated a statistically

significant difference in the expression between the STAD and

Control groups. In summary, this study provides a theoretical

foundation for studying the mechanism of immune action of IL-36A

in GC.

Research in GC indicated that AP1S3 plays a role in enhancing the

development of GC (43, 44). IL1RAP shows higher expression in GC

tissues than in non-cancerous tissues and is involved in the occurrence

of GC and regulation of the inflammatory process (45). The findings

on AP1S3 and IL1RAP were consistent with the analysis of

differentially expressed hub genes in this study, and the ROC curve

analysis showed good accuracy. In the diffuse GC group, elevated

CARD14 expression was significantly associated with worse patient

prognosis (46). Malignant cells, tumor-infiltrating immune cells, and

stromal cells can express IL1A (47, 69), which is overexpressed in GC

and is closely related to the clinical features of patients with GC (48, 49,

70). IRAK1 is associated with negative prognosis and invasiveness of

GC (50, 51). Research findings on CARD14, IL1A, and IRAK1 suggest

that they can serve as biomarkers for GC prognosis, which concurs

with the outcomes of this investigation. Western blotting and

immunohistochemical experiments have indicated that TNXB is

overexpressed in patients with gastric adenocarcinoma with lymph

node metastasis (71), which is linked to a lower survival rate in these

patients and can serve as a prognostic marker. CD276 and SLC44A4

have also been confirmed as prospective targets for immune

checkpoints, diagnosis, prognosis, and treatment of tumors (72–74).

In summary, the study reveals that all ninemodel genes were associated

with tumors or inflammation, highlighting their potential functions

and prognostic abilities in GC. This provides strong support for the
FIGURE 11

The expression levels of IL-36A protein. (A) The expression level of IL-36A in the Control and STAD group tissues was detected using the IHC
staining method (×200). (B) Quantitative analysis of the average optical density (IOD/Area) of IL-36A IHC images in the Control and STAD groups
was calculated using Image-J software, and the data are presented as mean ± standard deviation. * p < 0.05.
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reliability of this study and is consistent with the outcomes of the

prognostic risk model.

To better elucidate the interactions among model genes, we

created a PPI network and identified six hub genes. Hub genes

exhibit physical interactions, pathways, and co-expression. By

analyzing the relationship between hub genes and differential

immune cell infiltration abundance, it was observed that in the

low-risk group, IL1RAP exhibited a positive relationship with the

levels of immature dendritic cell infiltration. The innate immune

system, especially immature dendritic cells, can be activated by

recognizing DAMPs released by tumor cells through pattern

recognition receptors, triggering metabolic changes in dendritic

cells and playing a role in cancer immune surveillance (75). IL1A

levels were positively correlated with the abundance of neutrophil

infiltration in high-risk samples. Neutrophils are a major

component of the tumor microenvironment. Studies have shown
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that neutrophils interact with GC cells, promoting their invasion

and migration of GC cells through the induction of the epithelial-

mesenchymal transition (EMT) and activation of the ERK pathway

(76). Neutrophils may also support the development and

progression of GC by facilitating angiogenesis and reducing

antitumor T cell activity (77, 78), suggesting that neutrophils

contribute to the occurrence and development of GC. Hub genes

may influence the tumor microenvironment or patient prognosis by

affecting the abundance or activity of specific immune cells.

These findings provide important clues for personalization

of immunotherapy.

GSEA showed that all genes within the STAD group were

primarily focused on biological processes and signaling pathways

related to cell development and metabolism. Changes in cell

development and metabolism, which can trigger alterations in the

tumor microenvironment, have gained increasing attention
FIGURE 12

Risk Group Immune Infiltration Analysis by ssGSEA Algorithm. (A) Comparison of immune cells in the TCGA-STAD dataset between the high-risk and
low-risk group. (B, C) Correlation bubble plots of immune cell infiltration abundance and hub genes in the high-risk (B) and low-risk (C). ns p value ≥

0.05, non statistically significant; * p value < 0.05; ** p value < 0.01; *** p value < 0.001.
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(79–83). These pathways may be directly connected to and closely

related to the occurrence, development, and changes in the GC

microenvironment, thus providing important clues for mechanistic

research and potential therapeutic strategies for GC. The outcomes

of the enrichment analysis of these pathways through GSVA can

reveal biological processes or signaling pathways that exhibit

notable variations between the high- and low-risk groups, such as

angiogenesis, EMT, and inflammatory response pathways, which

could be linked to the onset and progression of GC. These findings

provide guidance for future research on these mechanisms.
5 Conclusion

The prognostic risk model constructed using IL-36RDEGs is an

independent prognostic risk factor for GC and can be used to assess

the prognosis of patients with GC. This model provides a powerful

tool for clinical practice, as it can identify high-risk patients and

optimize treatment strategies, thereby leading to a better overall

prognosis for patients with GC. The expression of critical genes was

initially validated through immunohistochemical staining.

However, some limitations remain unresolved. For instance, the

sample size was relatively small, and there is a deficiency of

extensive, multicenter clinical samples for further external

validation. Although we validated the expression of core genes

and their ability to distinguish GC from normal tissues using two

independent datasets, GSE19826 and GSE54129 from the GEO

databases, the public GEO datasets generally lack comprehensive

clinical prognostic follow-up data. Consequently, a systematic

assessment of the overall prognostic predictive ability of the

model using independent external cohorts is not yet possible.

Therefore, the generalizability and clinical applicability of the

model require further validation in independent cohorts with

complete prognostic information. Additionally, some potential

influencing factors may have been inadequately considered due to

limitations in data sources and the analytical methods employed.

The model achieved an AUC value of just 0.584 for the 3-year

overall survival rate, suggesting a constrained predictive capability.

It is necessary to optimize and enhance the prognostic predictive

efficacy of the model in the future by increasing sample sizes and

refining multi-center clinical cohort data. We intend to gather and

analyze independent cohorts with clinical prognostic information to

improve the model’s utility and generalizability. Overall, this study

provides new evidence for the prognostic direction of GC, which

can act as a potential therapeutic target for further mechanistic

validation and clinical evaluation.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Frontiers in Oncology 17
Ethics statement

The studies involving humans were approved by the Ethics

Committee of the Affiliated Hospital of Beihua University in Jilin

City, Jilin Province, China. The studies were conducted in

accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study. Written informed consent was

obtained from the individual(s) for the publication of any

potentially identifiable images or data included in this article.
Author contributions

YZ: Formal analysis, Resources, Visualization, Writing –

original draft. YaL: Conceptualization, Methodology, Project

administration, Supervision, Writing – review & editing. XG:

Conceptualization, Methodology, Supervision, Writing – review &

editing. MQ: Conceptualization, Methodology, Supervision,

Writing – review & editing. DW: Data curation, Formal analysis,

Investigation, Writing – review & editing. NL: Data curation,

Investigation, Resources, Writing – review & editing. ZL: Data

curation, Investigation, Writing – review & editing. YuL: Formal

analysis, Investigation, Software, Visualization, Writing – review &

editing. HW: Formal analysis, Investigation, Software,

Visualization, Writing – review & editing. LY: Conceptualization,

Formal analysis, Funding acquisition, Methodology, Project

administration, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by the Natural Science Foundation of Jilin (YDZJ202401033ZYTS,

YDZJ202201ZYTS194). Department of Science and Technology of

Jilin Province (20210402015GH). Education Department of Jilin

Province (JJKH20220068KJ, JJKH20230080KJ). The Health

Commission of Jilin Province (2022JC026). The Beihua

University College Student Innovation Program (202410201212).
Acknowledgments

The authors thank the TCGA network and the GEO network

for their contributions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1566993
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2025.1566993
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
Frontiers in Oncology 18
reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1566993/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36cancersin 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

2. Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric cancer:
epidemiology, risk factors, classification, genomic characteristics and treatment
strategies. Int J Mol Sci. (2020) 21:4012. doi: 10.3390/ijms21114012

3. Li P, Huang CM, Zheng CH, Russo A, Kasbekar P, Brennan MF, et al.
Comparisonof gastric cancer survival after R0 resection in the US and China. J Surg
Oncol. (2018) 118:975–82. doi: 10.1002/jso.25220

4. Chen K. Totally laparoscopic gastrectomy for gastric cancer: a systematic
reviewandmeta-analysis of outcomes compared with open surgery. World J
Gastroenterol. (2014) 20:15867. doi: 10.3748/wjg.v20.i42.15867

5. Li K, Zhang A, Li X, Zhang H, Zhao L. Advances in clinical immunotherapy for
gastriccancer. Biochim Biophys Acta Rev Cancer. (2021) 1876:188615. doi: 10.1016/
j.bbcan.2021.188615

6. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases.
Nat Rev Rheumatol. (2019) 15:612–32. doi: 10.1038/s41584-019-02778

7. van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea
MG, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells
similar to IL-36receptor antagonist. Proc Natl Acad Sci. (2012) 109:3001–5.
doi: 10.1073/pnas.1121534109

8. Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor
Rev. (2020) 55:70–9. doi: 10.1016/j.cytogfr.2020.06.006

9. O’Reilly S. Interleukin-36a is elevated in diffuse systemic sclerosis and may
potentiate fibrosis. Cytokine (Philadelphia Pa). (2022) 156:155921. doi: 10.1016/
j.cyto.2022.155921

10. Byrne J, Baker K, Houston A, Brint E. IL-36 cytokines in inflammatory and
Malignant diseases: not the new kid on the block anymore. Cell Mol Life Sci. (2021)
78:6215–27. doi: 10.1007/s00018-021-03909-4

11. Baker KJ, Brint E, Houston A. Transcriptomic and functional analyses reveal a
tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between
IL-36 signallingand665 the IL-17/IL-23 axis. Br J Cancer. (2023) 128:735–47.
doi: 10.1038/s41416-022-02083-z

12. Le N, Luk I, Chisanga D, ShiW, Pang L, Scholz G, et al. IL-36G promotes cancer-
cell intrinsic hallmarks in human gastric cancer cells. Cytokine (Philadelphia Pa).
(2022) 155:155887. doi: 10.1016/j.cyto.2022.155887

13. HuM, Tong Y, Fang H, Tang J, Liu L, Hu Y, et al. IL36 indicating good prognosis
inhuman Hepatocellular Carcinoma. J Cancer. (2020) 11:6248–55. doi: 10.7150/
jca.47106

14. Song Y, Chu H, Liu F, Guo W, Gao N, Chen C, et al. The pro-tumor biological
functionof IL- 36a Plays an important role in the tumor microenvironment of HCC.
Cancer Manag Res. (2023) 15:895–904. doi: 10.2147/CMAR.S407123

15. Baker K, O’Donnell C, Bendix M, Keogh S, Byrne J, O’Riordain M, et al. IL-
36signalling enhances a pro-tumorigenic phenotype in colon cancer cells with cancer
cell growth restrictedby administration of the IL-36R antagonist. Oncogene. (2022)
41:2672–84. doi: 10.1038/s41388-022-67702281-2

16. Sullivan GP, Henry CM, Clancy DM, Mametnabiev T, Belotcerkovskaya E,
Davidovich P, et al. Suppressing Suppressing IL-36-driven inflammation using peptide
pseudosubstrates for neutrophil proteases. Cell Death Dis. (2018) 9:378. doi: 10.1038/
s41419-018-0385-4

17. Roy S, Fitzgerald K, Lalani A, Lai C, Kim A, Kim J, et al. Autonomous IL-
36Rsignalingin neutrophils activates potent antitumor effector functions. J Clin Invest.
(2023) 133:1–17. doi: 10.1172/JCI162088
18. Zhao X, Chen X, Shen X, Tang P, Chen C, Zhu Q, et al. IL-36b Promotes CD8
+TCell activation and antitumor immune responses by activating mTORC1. Front
Immunol. (2019) 10:1803. doi: 10.3389/fimmu.2019.01803

19. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res. (2016) 44:e71. doi: 10.1093/nar/gkv1507

20. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al.
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