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The impact of Inter-observation
variation on radiomic features
of pulmonary nodules
Wenchao Zhu1,2†, Fangyi Xu1,2†, Kaihua Lou1,2, Xia Qiu1,2,
Dingping Huang1,2, Shaoyu Huang1,2, Dong Xie1,2

and Hongjie Hu1,2*

1Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,
Hangzhou, China, 2Medical Imaging International Scientific and Technological Cooperation Base of
Zhejiang province, Hangzhou, China
Objective: In this study, we aimed to comprehensively and systematically analyze

the radiomic features of pulmonary nodules and explore the influence of inter-

observation variation (IOV) in segmentation regions of interest (ROI) on radiomic

features, providing reference information for pulmonary nodule radiomics research.

Method: Six clinicians with varying experience and expertise manually outlined

ROIs for 232 pulmonary nodules, while an artificial intelligence (AI) algorithm was

trained for automated segmentation. The segmentation by themost experienced

cardiothoracic diagnostician (Doctor A) served as the reference standard. Inter-

observer variability was assessed through diameter measurements,

segmentation ROI consistency analysis, and radiomic features stability analysis.

Results: Of all radiomics features analyzed, 1071 (85.96%) demonstrated good

stability (overall concordance correlation coefficient [OCCC] ≥ 0.75), with 766

(61.48%) exhibiting very good stability (OCCC ≥ 0.90). Among the eight radiomic

feature types, Original _first-order, Original_GLCM, Original_GLRLM,

Original_GLSZM, LOG, and wavelet features all achieved stability rates

exceeding 80.00%, with 91.59% of the LOG features having good stability. The

Original features showed good stability (median OCCC: 0.92-0.95, IQR: 0.12-

0.19), both in the overall distribution and in the different feature categories. The

median OCCC value for the LOG features (median: 0.94, IQR: 0.08) was

significantly higher than that for the Wavelet features (median: 0.91, IQR: 0.13).

There was no statistically significant difference in stability between the Original

and LOG feature subgroups (P > 0.05). In contrast, statistically significant

differences were observed between the wavelet feature subgroups (P < 0.05),

with Wavelet_LLL and Wavelet_LLH transformation yielding higher stability.

Conclusion: Segmentation results indicated that while IOV influenced radiomic

features of pulmonary nodules, most (85.96%) of the features were well stabilized
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and relatively unaffected. Enhancing segmentation ROI consistency helps

minimize the impact of IOV on the radiomic features of pulmonary nodule

images. Original and LOG features demonstrated high stability, whereas

Wavelet features were more susceptible to IOV.
KEYWORDS

inter-observation variation (IOV), nodule segmentation, radiomics, overall concordance
correlation coefficient (OCCC), pulmonary nodules
1 Introduction

Radiomics, introduced by Lambin et al. in 2012, has revolutionized

the scientific and clinical applications of medical imaging by offering

new perspectives for research and practice (1, 2). It employs advanced

computer algorithms to process high-dimensional images, extract

numerous parameters undetectable by traditional methods, and

provide comprehensive insights for diagnosing and managing

clinical diseases (3–7). Radiomics has shown significant promise in

pulmonary nodule research, particularly in malignancy discrimination,

histopathological classification, and prognostic prediction (5, 8, 9).

Liu et al. analyzed imaging data from 875 patients with

pathologically confirmed pulmonary nodules, utilized the Least

Absolute Shrinkage and Selection Operator for feature screening,

and constructed a benign/malignant differentiation model based on

20 radiomic features. This model demonstrated superior

performance in the validation group cohort (area under the

curve: 0.809; 95% confidence interval (CI): 0.745–0.872) (10).

Another study explored the application of radiomics in predicting

the invasiveness of lung adenocarcinoma presenting as sub-

centimeter ground-glass nodules, finding a strong correlation

between the radiomic signature and invasiveness (P <0.0001)

(11). Despite the growing body of literature on radiomic and lung

nodules, challenges such as model robustness persist (12), and

significant variability exists in the imaging histologic features

identified across studies (5, 13, 14).

The radiomics workflow comprises four key steps: data

collection, data segmentation, feature selection and model

construction, and validation. Among these, data segmentation,

which involves delineating the region of interest (ROI) in the

original images for subsequent feature extraction, is crucial and

challenging. Segmentation methods include manual, semi-

automatic, and automatic approaches. Currently, pulmonary
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nodule radiomics studies rely on manual or semi-automatic

outlining involving human-computer collaboration to obtain

ROIs. However, manual outlining is both time-consuming and

laborious, with the subjectivity of operators introducing inter-

observation variation (IOV) in ROI delineation (15–17). This

variability in segmentation can alter radiomic feature values,

impacting the results of radiomics analyses.

Initial investigations have explored the relationship between

IOV and radiomic features (13, 15, 17). For example, Leo et al.

evaluated the effect of ROI segmentation variability on radiomic

features in non-small cell lung cancer (NSCLC), head and neck

squamous cell carcinoma, and malignant pleural mesothelioma.

Their findings revealed that the stability of radiomic features was

significantly correlated with the DICE coefficient (DC) of ROI

segmentation and that feature stability varied between tumor

types (18). Similarly, Haarburger et al. compared radiomic

features extracted using manual and algorithmic segmentation of

the lesions of the lungs, liver, and kidneys. Their results indicated

that shape and first-order features demonstrated the highest

stability despite segmentation ROI transformations (19).

In summary, IOV in ROI segmentation affects radiomic

features. Although radiomics have been widely applied to

pulmonary nodule research, studies specifically addressing the

impact of IOV on the radiomic features of pulmonary nodules

remain limited. The small sample size and heterogeneity of study

populations in these investigations further contribute to the lack of

objective and reliable conclusions. A comprehensive and systematic

analysis of IOV and its influence on radiomic features in pulmonary

nodule segmentation is therefore crucial. We aimed to

systematically analyze the radiomic features of pulmonary

nodules, evaluate the impact of IOV in ROI segmentation, and

provide reference information to advance radiomic research in

pulmonary nodules.
2 Materials and methods

2.1 Research object

This study retrospectively analyzed medical records of patients

who visited Sir Run Run Shaw Hospital, Zhejiang University School
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of Medicine, for pulmonary nodules and underwent chest

computed tomography (CT) in the radiology department between

July 2021 to August 2021. The CT images were retrieved from the

Picture Archiving and Communication System in the Radiology

Department on a case-by-case basis.

Case inclusion criteria:
Fron
[1] Complete clinical data available for the study at

our hospital.

[2] Chest CT performed at our hospital.

Case exclusion criteria:

[1] Lesions larger than 3 cm in diameter.

[2] Absence of nodular lesions.

[3] Poor quality CT images affecting lesion assessment.

[4] Lack of thin-layer lung window CT images.
Between July 2021 to August 2021, 112 patients met the

inclusion criteria. Among these, five patients had lesions

exceeding 3 cm in diameter, seven lacked identifiable nodular

lesions on CT images, 11 had poor-quality CT images due to

respiratory artifacts or other issues, and one patient lacked thin

lung window images with a 1-mm layer thickness. Based on the

above nadir criteria, 88 patients (28 males, 60 females; age range:

27–83 years; median age, 56 years) with 232 pulmonary nodular

lesions were enrolled in this study. Among them, 49 patients (14

males, and 35 females) had multiple nodules. The patient screening

and experimental procedures are shown in Figure 1.
2.2 Image acquisition

To exclude the influence of variations in scanning equipment,

protocols, and reconstruction parameters, all patients enrolled in

this study underwent chest CT scanning using the Siemens

SOMATOM Definition Flash scanner in the Department of
tiers in Oncology 03
Radiology, Shaw Hospital, Zhejiang University School of

Medicine. The scanning parameters were as follows: tube voltage

of 120 KV, automatic tube current modulation, rotation time of 0.5

s, scanning matrix of 512 × 512, and image reconstruction layer

thickness of 1.0 mm. Detailed scanning parameters are summarized

in Table 1. Thoracic spiral CT scanning was performed from the

lung apices to the lung base bilaterally. Before the procedures,

patients received a detailed explanation of the examination process,

including instructions on the precautions to be taken during the

examination. They were trained to exhale and hold their breath

during the scan. During the examination, patients were instructed

to listen to the doctor’s request, inhale deeply, and hold their breath

to complete the scan. The acquired images were reconstructed using

a standard algorithm in the lung window, and multi-planar

reconstruction was performed on a postprocessing workstation.
2.3 Image analysis

Six medical practitioners with varying specialties and work

experience (Doctors A–F) were invited for training, followed by a

blinded assessment of the same pulmonary nodule data. The

participants’ expertise ranged as follows: Doctor A was a

cardiothoracic diagnostician with 14 years of experience, Doctor

B was a non-cardiothoracic diagnostician with 10 years of

experience, Doctor C was a cardiothoracic diagnostician with 8

years of experience, Doctors D and E were diagnosticians with 3

years of experience, and Doctor F was a non-radiology clinician

with 3 years of experience.

2.3.1 Nodule assessment
2.3.1.1 Consensus evaluation

Each target nodule was evaluated on a diagnostic radiology

computer screen by three senior diagnostic imaging doctors

(Doctors A, B, and C). In cases of disagreement, the three doctors

deliberated to reach a consensus.
FIGURE 1

Schematic diagram of case screening and study flow.
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2.3.1.2 Type of nodule

Based on nodule density in the CT images, pulmonary nodules

were classified into three categories: solid nodules (SN), partially solid

nodules (pSN), and pure ground-glass nodules (pGGN). pSN may

also be referred to as mixed ground-glass nodules (mGGN) (20–22).

2.3.1.2 Location of nodule

Lung tissue was divided into five lobes according to the

interlobular pleural alignment: left-up lobe, left-down lobe, right-

up lobe, right-middle lobe, and right-down lobes. Pulmonary

nodules were classified by location into central and peripheral

pulmonary nodules (23, 24). Central-type pulmonary nodules

were defined as those occurring in lung segments or bronchial

locations above the lung segments, while peripheral-type

pulmonary nodules occurred in bronchial locations below the

lung segments (23, 24).

2.3.1.3 Diameter measurement

Three senior diagnostic imaging doctors, blinded to the

patients’ clinical information, independently reviewed the CT

images on a specialized diagnostic computer screen in the

radiology department. Each Doctor individually measured the

diameter in centimeters, which is the most commonly used

quantitative characteristic of nodules. The nodule diameter was

measured using the standardized long and short diameter method:

the maximum long diameter and the maximum short diameter,

perpendicular to the largest dimension of the nodule, were

measured, and their mean was taken as the nodule diameter. The

average of the measurement from the three senior diagnostic

imaging doctors was recorded as the final nodule diameter for

this study.
2.3.2 Nodule segmentation
2.3.2.1 Manual segmentation

Sweep thin-layer CT images of 232 pulmonary nodules

included in this study were loaded into the open-source image

processing software ITK-SNAP (www.itksnap.org) for image

segmentation (25). Six doctors performed precise contouring

along the boundaries of the nodule manually, ensuring that they

avoided including blood vessels, bronchial tubes, and adjacent

structures. In this study, original DICOM images were first

imported into ITK-SNAP. Then, the six doctors could zoom in
Frontiers in Oncology 04
and adjust the window width and level to clearly observe the lesion,

ensuring precise region of interest (ROI) delineation.

2.3.2.2 Fully automatic segmentation

In this study, an AI algorithm was synchronously trained to

automate the segmentation of the target pulmonary nodules

(Figure 2). Considering that most advanced medical image

segmentation networks use U-Net as the backbone network and

that pulmonary nodule segmentation involves three images, this

study adopted the standard 3D U-Net network as the baseline and

introduced improvements.

The Improved 3D U-Net network structure (Figure 3) consists

of two main components: the encoder and the decoder. The encoder

consists of a cascade of five convolutional blocks. In each

convolutional layer, the feature map undergoes a maximum

pooling operation, halving its size. The decoder comprises four

cascaded inverse convolution blocks, where the feature map doubles

during each inverse convolution operation. The feature maps from

corresponding layers of the encoder are jump-connected to the

decoder, enabling splicing to enrich decoder features. The number

of channels is adjusted using convolutional layers with a

convolutional kernel size of 1×1. Finally, the decoded feature

maps of the decoder are subjected to a convolution and softmax

operation to generate a final probabilistic prediction map with two

output channels. To enhance the richness of the encoded feature

information, improve segmentation accuracy and enrich the

features, attention mechanism convolution modules were

integrated after each convolutional layer of the network.

Additionally, deep supervision was incorporated at the side

output of each layer of the decoder (L2, L3, L4). This approach

addresses the issues of deep neural network training gradient

disappearance and slow convergence speed while also providing

regularization to further improve segmentation performance.

The pulmonary nodule training data used for the improved 3D

U-Net network were sourced from the LIDC-IDRI public dataset

(https://www.cancerimagingarchive.net). This dataset includes

chest medical image files (e.g., CT, X-ray) and the corresponding

lesion annotation information of diagnostic results. The

information was collected under the auspices of the National

Cancer Institute. Before training the network, pulmonary nodule

sites were extracted from the dataset. The extraction process

involved selecting a 3D CT image of size 64*64*32 centered on

the pulmonary nodule based on the provided annotations. The gray

values of the images were normalized to the range of 0–1, before

being input into the network for training.

2.3.3 Radiomic features extraction
This study utilized the Pyradiomics package to analyze all nodal

segmentation data and extract radiomic features (26). Before feature

extraction, segmentation data were normalized to minimize the

impact of confounding factors.

A total of 1,246 radiomics features spanning eight categories

were extracted for each nodule, as detailed in Table 2. Based on the

computational principle, the extracted radiomic features can be
TABLE 1 Check device and scanning parameters.

CT Model number Siemens Somatom
Definition Flash

Reconstruction layer thickness (mm) 1

Tube voltage (KV) 120

Tube current (mAs) Smart

Rotation time (s) 0.5

Scanning matrix 512*512
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broadly classified into four major categories (26–28): [1] First-order

features, which describe the voxel intensity distribution within the

ROI using basic statistical metrics, such as skewness, kurtosis, and

variance. [2] Shape features, which describe the two-dimensional

and three-dimensional dimensions and shape of the ROI, including

diameter, volume, and surface area. [3] Textural features: describes

the grayscale distribution patterns and structural arrangements

within the ROI. The computation of texture features is more

complex compared to first-order and shape features (29). Texture

features are second-order features that are not directly extracted

from the image. They are first extracted from the original image by

computational analysis and stored to form an intermediate matrix.

Subsequently, a series of texture features are computed based on this
Frontiers in Oncology 05
intermediate matrix. Texture features can be categorized into

different types depending on the intermediate matrices used.

In this study, the four most commonly used matrices for

radiomics analysis of pulmonary nodule images were calculated:

the gray level co-occurrence matrix (GLCM), the gray level run

length matrix (GLRLM), the gray level size zone matrix (GLSZM),

and the gray level dependence matrix (GLDM). Filtered features

include first-order and texture features obtained after applying

filters to modify the original image. The modified images are then

reanalyzed to extract features. In this study, we applied two widely

used filters for the radiomic analysis of pulmonary nodules: the

wavelet and Laplacian-of-Gaussian (LOG) filters. Features derived

from these transformations are referred to as Wavelet features and
FIGURE 3

Improved 3D U-Net network structure.
FIGURE 2

Doctors’ and AI algorithm’s lesion segmentation results. Six medical practitioners were invited for training (Doctors A-F), after which the same
pulmonary nodule data were blindly evaluated for outlining, and deep learning algorithms were synchronously trained for fully automated
segmentation. (A–F) Segmentation ROIs of Doctors A-F; (G) Segmentation ROIs of the AI algorithm. The subfigure displays the CT images with
pulmonary nodule levels and paired ROIs from left to right.
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LOG features respectively. When the image is transformed without

using filters, the first-order, shape, and texture features extracted

directly from the original image are categorized as original features.
2.4 Statistical analysis

Statistical analyses were conducted using R language (R-4.0.1)

and SPSS 25.0 (IBM, Armonk, NY, USA). Charts were created using

GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA, USA)

and WPS Office 2022. Statistical significance was defined as P < 0.05.
2.4.1 Consistency analysis
Intra- and interclass correlation coefficients (ICCs) were

calculated to evaluate the reproducibility of diameter

measurements. Thirty cases of pulmonary nodules were randomly

selected, and measurements were performed as follows: Doctors A

and B were invited to perform the diameter measurements. Doctor

B repeated the diameter measurements for the same 30 cases after a

3-week interval. The ICCs of the diameter measurements were

calculated to evaluate consistency. At P < 0.05, an ICC value > 0.75

represents a high degree of reproducibility.
2.4.2 Comparison of clinical baseline data
The chi-square test was used for count data comparison. If the

total sample size was <40 or the minimum theoretical frequency was

<1, the Fisher exact probability test was applied. For measured data,

a one-way analysis of variance was used when normality and

homogeneity of variance were satisfied. Otherwise, the Kruskal–

Wallis H test was applied. For correlation analysis, Pearson

correlation analysis was used for continuous variables that

followed a normal distribution. Otherwise, Spearman’s correlation

was used for non-normally distributed variables. Bonferroni

correction was applied for test-level adjustment.
Frontiers in Oncology 06
2.4.3 Segmented ROI coherence analysis
This study employed the DC to evaluate the variability of

observer segmentation of ROI. The DC is a widely used metric

for evaluating the similarity between two sets, particularly in image

segmentation tasks. The DC ranges from 0 to 1, with values closer to

1 indicating greater similarity. The formula for calculating DC is as

follows:

Dice(A,B) =
2 A ∩ Bj j
Aj j + Bj j

To compare the differences in segmentation ROIs between the

six doctors and the AI algorithm, we selected the segmentation ROI

of Doctor A, the most senior cardiothoracic diagnostician as the

reference. The DC was calculated for the segmentation ROIs of the

other five doctors and the AI algorithm was compared to Doctor A

to enable between-group comparisons. To further explore the

impact of segmentation ROI variations on radiomic features, the

seven segmentation groups (six doctors and an AI algorithm) were

paired for two-by-two comparisons. The median DC from these

pairings was used as the final segmentation result for

subsequent analysis.

2.4.4 Stability analysis of radiomic features
The overall concordance correlation coefficient (OCCC) was

employed to quantify the effect of IOV of segmentation ROIs on

radiomic feature stability (30). The OCCC, suitable for assessing

measurement consistency across large samples involving three or

more observers, ranges from 0 to 1. Higher values indicate better

inter-observer measurement consistency (30–32).

In this study, OCCC <0.5 indicates poor feature stability,

significantly affected by segmentation ROI differences; 0.5 ≤

OCCC < 0.75 suggests average feature stability, moderately

affected by segmentation ROI differences; 0.75 ≤ OCCC < 0.90

indicates good feature stability, minimally affected by segmentation

ROI differences; OCCC ≥ 0.90 indicates very good feature stability,

negligibly affected by segmentation ROI differences. If the OCCC of

a feature is ≥0.75, the feature is considered to have good stability in

this study.
3 Results

3.1 Observer Reliability

In this study, 30 randomly selected pulmonary nodular lesions

were analyzed to validate the reproducibility of diameter

measurements. The ICC value for measurements between Doctor

A and Doctor B was 0.960 (95% CI: 0.919–0.981). After a 3-week

interval, Doctor B repeated diameter measurements for the same 30

lesions, yielding an ICC value of 0.951 (95% CI: 0.899–0.976). These

findings demonstrate that the diameter measurements in this study

were highly reproducible and reliable.
TABLE 2 Distribution of radiomic features.

Feature N

Total 1246

Original First order features 18

Original 2D/3D Shape features 14

Original GLCM based features 24

Original GLRLM based features 16

Original GLSZM based features 16

Original GLDM based features 14

Filtered LOG based features 440

Filtered Wavelet based features 704
GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM,
Gray Level Size Zone Matrix; GLDM, Gray Level Dependence Matrix.
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3.2 Baseline and imaging data

Following rigorous screening, 88 patients with 232 nodular

lesions were included in the study. Detailed clinical and imaging

data for all nodular lesions are presented in Table 3. Among the 232

pulmonary nodular lesions, 81 (34.91%) were SN, 40 (17.24%) were

pSN, and 111 (47.84%) were pGGN. The median age of the patients

was 57 years (interquartile range [IQR]: 14 years), with the majority

being female (68.97%). No statistically significant differences were

observed in age distribution among the SN, pSN, and pGGN

groups. The median ages for these groups were 61 years (IQR: 14

years), 54 years (IQR: 15 years), and 55 years (IQR: 11

years), respectively.

The median diameter of all nodules was 0.56 cm (IQR: 0.40 cm)

(Table 3). Notably, the median diameter of pSN was significantly

larger than that of SN/pGGN (median, 0.94 cm vs. 0.49 cm/0.54 cm,

respectively; P < 0.001). Regarding positional distribution, the

nodules were located as follows: 58 (25.00%) in the left-up lobe,

41 (17.67%) in the left-down lobe, 63 (27.16%) in the right-up lobe,

58 (25.00%) in the right-down lobe, and 12 (5.17%) in the right-

middle lobe. Of the total nodules, 99.14% (230 cases) were

peripheral pulmonary nodules.
3.3 Segmented ROI coherence analysis

To evaluate the consistency of the segmentation ROIs between

observers and the AI algorithm, the segmentation result of Doctor

A, the cardiothoracic diagnostician, was selected as the reference.

The DC for the segmentation ROIs of the other five doctors and the

AI algorithm were calculated and analyzed for between-group

comparisons. As summarized in Table 4, statistically significant
Frontiers in Oncology 07
differences were observed between the DC distributions of the other

five doctors and the AI algorithm (p < 0.001). This trend was

consistent across all nodules and within each subtype of nodules,

when the DCs were calculated using the segmentation ROIs of

Doctor A as a reference. Notably, the segmentation results of the AI

algorithm were similar to those of the trained non-radiology

clinician, Doctor F.

Figure 4A illustrates the variability in the median DC

distributions across different pulmonary nodule types. The

median DC values for pGGN (median: 0.75, IQR: 0.09) were

significantly lower compared to SN (median: 0.78, IQR: 0.08) and

pSN (median: 0.80, IQR: 0.08). A moderate positive correlation was

identified between nodule diameter and the median DC (rs = 0.466,

P <0.001). As shown in Figure 4B, the median DC increased by

0.055 for each unit increase in nodule diameter.
3.4 Stability analysis of radiomic features

In this study, we utilized the Pyradiomics package for radiomic

feature extraction. A total of 1246 radiomic features were extracted

from each nodule ROI, including 102 original features, 440 LOG

features obtained from LOG-transformed images, and 704 wavelet

features obtained from wavelet-transformed images. The original

features included 18 original_first order features, 14 original_shape

features, 24 original_GLCM features, 16 original_GLRLM features,

16 original_GLSZM features, and 14 original_ GLDM features.

3.4.1 Stabilization rate of radiomic features
Table 5 displays the OCCC distribution of the radiomic

features. Of the total features, 1071 (85.96%) demonstrated good

stability (OCCC ≥ 0.75), with 766 (61.48%) exhibiting very good
TABLE 3 Distribution of baseline and imaging data for all pulmonary nodules.

Total SN pSN pGGN P-Value

232 81 (34.91%) 40 (17.24%) 111 (47.84%)

Gender Male 72 (31.03%) 40 (49.38%)a 10 (25.00%)b 22 (19.82%)b <0.001

Female 160 (68.97%) 41 (50.62%)a 30 (75.00%)b 89 (80.18%)b

Age (years) 57 (14) 61 (18) 54 (15) 55 (11) 0.135

Nodule size 0.56 (0.40) 0.49 (0.25)a 0.94 (0.78)b 0.54 (0.24)a <0.001

Nodule location 1 the left-up lobe 58 (25.00%) 9 (11.11%) 10 (25.00%) 39 (35.14%) –

the left-down lobe 41 (17.67%) 24 (29.63%) 8 (20.00%) 9 (8.11%)

the right-up lobe 63 (27.16%) 14 (17.28%) 8 (20.00%) 41 (36.94%)

the right-middle lobe 12 (5.17%) 7 (8.64%) 2 (5.00%) 3 (2.70%)

the right-down lobe 58 (25.00%) 27 (33.33%) 12 (30.00%) 19 (17.12%)

Nodule location 2 peripheral 230 (99.14%) 81 (100.00%) 39 (97.50%) 110 (99.10%) 0.437*

centralized 2 (0.86%) 0 (0.00%) 1 (2.50%) 1 (0.90%)
a, bshow the results of inter-group comparisons: identical letters indicate no statistically significant difference, while different letters indicate a statistically significant difference. *Fisher’s exact
probability method: Each subscript letter indicates a subset of the lesion type category, and the proportions of columns in these categories are not significantly different from each other at a level
of 0.05. Count data were expressed as numbers of cases (percentages), and measures were expressed as medians (interquartile spacing) unless otherwise specified. pSN, partially solid nodule;
pGGN, pure ground glass nodule.
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stability (OCCC ≥ 0.90). Among the eight types of radiomic

fea tures , the or ig ina l _fi r s t_order , o r ig ina l_GLCM,

original_GLRLM, original_GLSZM, LOG, and wavelet features all

had stable feature rates exceeding 80.00%. Notably, (91.59%) of the

LOG features showed good stabi l i ty . The shape and

original_GLDM features both had stable feature rates of 78.57%.
3.4.2 Comparison of radiomic features OCCC
Figure 5 illustrates the OCCC analysis results of the 1246

radiomic features. The original features exhibited good stability

(median OCCC: 0.92–0.95, IQR: 0.12–0.19), both in the overall

distribution and in the different feature categories. Overall, the

median OCCC values for the LOG features (median: 0.94, IQR:

0.08) were significantly higher than those for the wavelet features

(median: 0.91, IQR: 0.13). Specifically, the stability of the LOG

features, particularly the first-order, GLCM, and GLRLM features

was better than that of the wavelet transform (P < 0.05).
FIGURE 4

Nodal DC Analysis. (A) Comparison of median DC distribution between different types of nodules. (B) Results of correlation analysis and linear
regression analysis between nodule diameter and median DC. SN, solid nodule; pSN, partially solid nodule; pGGN, pure ground glass nodule.
TABLE 5 Distribution of radiomic features characteristics.

Total OCCC<0.5 0.5≤OCCC<0.75 0.75≤OCCC<0.90 OCCC≥0.90

Total 1246 28 (2.25%) 147 (11.80%) 305 (24.48%) 766 (61.48%)

Original First order features 18 1 (5.56%) 2 (11.11%) 5 (27.78%) 10 (55.56%)

Original 2D/3D Shape features 14 1 (7.14%) 2 (14.29%) 1 (7.14%) 10 (71.43%)

Original GLCM based features 24 1 (4.17%) 2 (8.33%) 5 (20.83%) 16 (66.67%)

Original GLRLM based features 16 0 (0%) 3 (18.75%) 2 (12.50%) 11 (68.75%)

Original GLSZM based features 16 0 (0%) 3 (18.75%) 4 (25.00%) 9 (56.25%)

Original GLDM based features 14 1 (7.14%) 2 (14.29%) 1 (7.14%) 10 (71.43%)

Filtered LOG based features 440 4 (0.91%) 33 (7.50%) 96 (21.82%) 307 (69.77%)

Filtered Wavelet based features 704 20 (2.84%) 100 (14.20%) 191 (27.13%) 393 (55.82%)
GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size Zone Matrix; GLDM, Gray Level Dependence Matrix.
TABLE 4 Consistency analysis of ROIs for pulmonary nodules.

Total
Solid
nodule

Part
solid
nodule

pGGN

Doctor A — — — —

Doctor B 0.75 (0.13) 0.78 (0.11) 0.78 (0.16) 0.72 (0.14)

Doctor C 0.76 (0.12) 0.77 (0.13) 0.79 (0.11) 0.75 (0.10)

Doctor D 0.80 (0.11) 0.81 (0.12) 0.79 (0.10) 0.80 (0.10)

Doctor E 0.72 (0.16) 0.70 (0.19) 0.75 (0.14) 0.72 (0.16)

Doctor F 0.66 (0.18) 0.67 (0.17) 0.70 (0.22) 0.64 (0.15)

AI algorithm
(automatic)

0.69 (0.17) 0.70 (0.16) 0.75 (0.16) 0.66 (0.17)

P-value <0.001 <0.001 <0.001 <0.001
Count data were expressed as the number of cases (percentage), and measures were expressed
as medians (interquartile spacing) unless otherwise specified.
pGGN, pure ground glass nodule.
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The median OCCC value of the Wavelet_GLSZM features

(median: 0.91, IQR: 0.15) obtained after wavelet transformation

image extraction was higher than that of LOG_GLSZM features

(median: 0.89, IQR: 0.13); however, the difference was not

statistically significant (P > 0.05). There was no statistically

significant difference in stability between the subgroups of

original and LOG features (P > 0.05). In contrast, there was a

statistically significant difference in the distribution of feature

stability for wavelet feature subgroups (P < 0.05) (Figure 6), with

radiomic features extracted from the Wavelet_LLL and

Wavelet_LLH transformation modalities showing relatively high

stability (Figure 6B).

The stability of the radiomic features varied among the different

types of nodules (Figure 7B), with SN exhibiting the best stability

(median OCCC: 0.93, IQR: 0.13), followed by pSN (median OCCC:
Frontiers in Oncology 09
0.90, IQR: 0.10), and pGGN showing the lowest stability (median

OCCC: 0.85, IQR. 0.15). A significant positive correlation was

observed between median DC and characteristic OCCC values.

As the median DC increased, the characteristic OCCC also

increased gradually (Figure 7A).
4 Discussion

Data segmentation is a crucial aspect of radiomics research, as

IOV can significantly influence the values of radiomic features,

thereby affecting the outcomes of radiomics research (5, 19). While

some studies have investigated the impact of outlining ROI

variability on radiomic features, these have primarily focused on

different types of tumor lesions with small samples, resulting in
FIGURE 5

OCCC analysis of radiomic features of pulmonary nodules. GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM,
Gray Level Size Zone Matrix; GLDM, Gray Level Dependence Matrix.
FIGURE 6

OCCC analysis of radiomic features of subgroups. (A) Comparison of OCCC distributions of 6 types of radiomic features in Original feature; (B)
Comparison of OCCC distributions between groups of radiomic features obtained by 8 transformations in Wavelet feature; (C) Comparison of
OCCC distributions between groups of radiomic features obtained by 5 transformations in LOG feature. GLCM, Gray Level Co-occurrence Matrix;
GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size Zone Matrix; GLDM, Gray Level Dependence Matrix.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1567028
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1567028
inconsistent and subjective conclusions. Moreover, although there

are many studies on the radiomics of pulmonary nodules, few have

specifically addressed the IOV analysis of the radiomic features and

segmentation results of pulmonary nodules. This gap in the

literature underscores the need for a systematic analysis of the

radiomic characteristics of pulmonary nodules, exploring the

influence of IOV on these features. Such an analysis could

provide valuable reference information for selecting appropriate

segmentation modalities in future radiomics studies. It would also

contribute to the standardization of radiomics and facilitate the

clinical application of radiomics-based techniques, offering

significant clinical and scientific insights.

In this study, we included 232 pulmonary nodule lesions and

enlisted six doctors with varying levels of experience and expertise

in different medical specialties to outline the lesions. Additionally,

we employed the modified 3D-U-Net for fully automated

algorithmic segmentation of pulmonary nodule lesions, enabling a

comprehensive and systematical evaluation of the impact of IOV in

segmentation ROI on the radiomic features of pulmonary nodules.
4.1 Segmented ROI consistency

In a study by Leo et al, 11 radiologists with varying experience

were tasked with outlining lesions, including liver cancer, lung

cancer, intracranial hematomas, and renal contours. A total of 3,193

ROIs were collected and analyzed, revealing that the IOV in

segmentation results was influenced by the type of lesion. The

highest variability in ROI volume was observed in lung cancer

lesions, with a 20.8% variation [-8.8, +10.2%] (17). Similarly, Matea

et al. analyzed the DC values of segmentation results for NSCLC,

head and neck squamous cell carcinoma, and malignant pleural

mesothelioma. Their findings suggested a significant correlation
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between the stability of radiomic features and the median DC of the

segmentation results, with variability in the stability of radiomic

features (18). In alignment with previous studies, our findings

demonstrated significant differences in the segmentation ROI

consistency between doctors, both for all nodules and for lesions

in different subgroups (SN, pSN, and pGGN). The results suggested

that the median DC was significantly higher for SN and pSN

compared to pGGN. The pGGN had a higher segmentation IOV

that could be attributed to its distinctive characteristics, such as

ground-glass-like changes and generally smaller diameter, which

can blur the tumor-pulmonary interface, making it more

challenging to assess. In contrast, PSN lesions typically have

higher density and more distinctive boundaries between the

lesion and normal lung tissue, making outlining relatively less

difficult. Moreover, we found a moderately positive correlation

between nodule diameter and median DC (rs=0.466, P <0.001),

with median DC increasing by 0.055 for each unit increase in

nodule diameter (Figure 4B). This suggests that larger-diameter

pulmonary nodules are easier for doctors to assess and outline. The

significantly large diameters of pSN lesions compared to pGGN in

this study may explain the better segmentation ROI concordance

observed in pSN lesions. Taken together, our results indicate that

IOV during segmentation of pulmonary nodules is influenced by

both nodule size and type, with smaller pGGNs being more difficult

to segment and exhibiting greater IOV.
4.2 Stability analysis of radiomic features

Gargi et al. conducted a study using CT images from 20 patients

with lung cancer to explore the relationship between IOV in

segmentation results and the stability of NSCLC radiomic features

(18). Their results showed that most of the radiomics features were
FIGURE 7

Nodal OCCC analysis. (A) Median DC versus OCCC distribution; (B) Comparison of OCCC distribution between different types of nodules. SN, solid
nodule; pSN, partially solid nodule; pGGN, pure ground glass nodule.
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well stabilized and were not significantly affected by IOV (33).

Another study analyzed tumor information from different sites and

found that 90% of the radiomic features exhibited good stability

across 11 NSCLC lesions (18). Christoph et al. examined three

different public datasets, including the Lung Image Database

Consortium (LIDC-IDR): Kidney Tumor Segmentation Challenge

and Liver Tumor Segmentation Challenge. A total of 92 radiomic

features were extracted and analyzed, revealing that 85% of these

radiomic features exhibited good stability with an ICC greater than

0.80 (19).

In this study, we analyzed 232 cases of pulmonary nodules and

extracted 1246 radiomic features from each nodule ROI. The

analysis of the degree of influence of IOV on the radiomic

features revealed that 85.96% (1071/1246) of the features were

well stabilized (OCCC ≥ 0.75) and not easily affected by

segmentation IOV. Furthermore, 766 (61.48%) of these features

exhibited very good stability (OCCC ≥ 0.90). Although the research

subjects and the number of features with good stability differ from

those in previous studies, the general conclusion remains consistent:

most radiomic features are stable and less affected by IOV in

segmentation results.

4.2.1 Original features
Previous studies have analyzed the radiomic features of tumors

across different sites and found that shape, first-order, and GLCM

features had the best stability, with average ICC values of 0.93, 0.91,

and 0.92, respectively (19). Another study showed that GLDM,

GLRLM, and GLSZM features had the best stability and lower

sensitivity to the IOV associated with lesions outlining in patients

undergoing lung cancer radiotherapy (33).

In this study, Original_GLCM had the highest feature

stabilization rate, 87.50% (21/24). Other original features,

including original_First_order, original_Shape, original_GLRLM,

original_GLSZM, and original_GLDM, all demonstrated feature

stabilization rates ranging from approximately (78.57%–83.34%).

Although the stabilization rates varied across feature types, the

between-group feature stability analysis showed no statistically

significant difference in the distribution of OCCC values among

the original feature categories (Figure 6A). Overall, the original

features extracted in this study exhibited good stability.

4.2.2 LOG features and wavelet features
The introduction of filters in radiomics increased the number of

features, subsequently boosting the number of stable features. Ruben

et al. analyzed CT images of 46 patients with NSCLC and found that

the stability of wavelet features was poor (34). In contrast, this study

observed that both LOG and wavelet features demonstrated better

stability, with feature stability rates of 91.59% (403/440) and 82.95%

(584/704), respectively. However, when analyzing the OCCC values,

the median OCCC values for the LOG features were higher than

those of the wavelet features across the first-order, GLCM, GLDM,

and GLRLM features (Figure 5).
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Although the median OCCC values of the wavelet features were

higher than those of the LOG features in the GLSZM category, the

differences were not statistically significant (P > 0.05). Additionally,

feature stability varied significantly among the eight transform

subgroups of wavelet features, with the Wavelet_LLL and

Wavelet_LLH features showing greater stability compared to the

Wavelet_HHH and Wavelet_HHL features (P < 0.05). The

distributions of OCCC values among the five transformed LOG

features subgroups were similar (Figure 6C). In summary, the LOG

features were better stabilized than the wavelet features in this

study. The fluctuations in OCCC values among different wavelet

transform subgroups suggest that an appropriate selection of

wavelet features should be considered in future radiomic studies

of pulmonary nodules.
4.3 DICE and OCCC

Gargi et al. found that a higher DC, which indicates greater

consistency in segmentation results, correlates with a higher rate of

radiomic feature stabilization (33). In this study, a positive

relationship was observed between the median DC and the

median OCCC of the pulmonary nodules, with both values

increasing together. This finding is consistent with previous

research. Additionally, this study observed that the stability of

radiomic features varied across different types of nodules, with

the highest OCCC values observed in SN and the lowest in pGGN.

This may be attributed to the lower segmentation ROI consistency

of pGGN, as discussed earlier, reaffirming the critical role of

segmentation result consistency in radiomic feature stability.

Lesion segmentation is a crucial step in radiomics studies, and

both previous studies and the present study have confirmed that

improving the consistency of segmentation results can enhance the

stabilization rate of radiomic features. Therefore, strategies to

reduce IOV in segmentation results should be implemented to

ensure the stability of radiomic features and improve the

reproducibility of study findings. First, standardized guidelines for

lesion segmentation should be formulated, and all personnel should

receive training before performing segmentation. Clear and

objective requirements can help reduce the influence of subjective

biases. Second, post-processing techniques, such as algorithms

designed to exclude unnecessary structures (bones, air, etc.), may

further enhance segmentation consistency.

However, despite rigorous training and careful post-processing,

manual segmentation is inevitably affected by subjectivity, with

variations in work experience and expertise potentially leading to

differences in how segmenters’ perceptions of lesions. The use of

computerized segmentation algorithms has been shown to help

improve the consistency of segmentation results (13, 35). Chintan

et al. found that automated segmentation methods yielded an ICC

value of 0.85 ± 0.15 for radiomic features, significantly higher than

the ICC of manual segmenters (ICC=0.77 ± 0.17) (35). While
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algorithmic segmentation is objective and reproducible, its accuracy

still lags behind that of manual segmentation, which remains a key

concern regarding its clinical application. The AI algorithm

constructed in this study has a relatively simple structure, but its

segmentation results after training with the LIDC-IDRI dataset are

comparable to those of trained clinicians, meeting the needs of this

study. With ongoing improvements in algorithms and the

expansion of training data, the efficiency and accuracy of

computerized segmentation algorithms have steadily improved.

Some AI software are now equipped with advanced automatic

segmentation tools designed for pulmonary nodules (36–38).

Both previous and present studies have demonstrated that most

radiomics features are stable, with the impact of segmentation IOV

being relatively limited. Furthermore, improving the consistency of

segmentation results further enhances the reproducibility of

radiomics analysis. In conclusion, the use of computerized

algorithms for lesion segmentation improves the efficiency of

radiomic studies and also reduces the impact of IOV on radiomic

features by providing relatively high objectivity and reproducibility

in segmentation results. Therefore, computerized algorithms should

be considered for ROI outlining in subsequent radiomic studies of

pulmonary nodules, based on specific research requirements.
4.4 Research limitations

Firstly, this study included data from 232 pulmonary nodules,

which, although larger than previous studies, remains relatively small

compared to the number of radiomics features analyzed. Further

expansion of the sample size and repeated validation experiments are

necessary. Secondly, to minimize the influence of scanning

parameters on the results, case images in this study were obtained

from a single device. Future experimental validation using different

devices is needed. Lastly, radiomics is influenced by many factors.

This study focused solely on the effect of segmentation differences on

the radiomics of pulmonary nodules, without analyzing other

potential influencing factors, such as image reconstruction

parameters. In the future, we will expand the sample size and

collect relevant information for a more comprehensive analysis.
5 Conclusions

In this study, we investigated the effect of (IOV) in

segmentation results on the radiomic features of pulmonary

nodules and assessed the stability of these features. Our findings

indicate that IOV in segmentation results influences the radiomic

features of pulmonary nodule images; however, most (85.96%)

features were well stabilized and minimally affected by IOV.

Enhancing segmentation ROI consistency helps reduce the impact
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of IOV on the radiomic features of pulmonary nodules. We

observed variability across different radiomic features, with

original and LOG features showing good stability, while wavelet

features were more susceptible to IOV influence and exhibited

relatively lower stability.
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