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Introduction: This study aims to evaluate the effectiveness of conventional

metabolic parameters and radiomic features from 18F-deoxyglucose(FDG) PET

in predicting Ki-67 expression status in patients with non-Hodgkin’s lymphoma.

Methods: We analyzed clinical, immunohistochemical(IHC), and 18F-FDG PET/

CT data from 197 patients diagnosed with non-Hodgkin’s lymphoma at our

institution between May 2018 and July 2023. Patients were randomly assigned to

a training set (60%) and a validation set (40%) to develop PET image-based

radiomics, clinical, and combined models. The models’ predictive abilities were

evaluated using receiver operating characteristic (ROC) curves and a nomogram

was created to estimate high Ki-67 expression probabilities.

Results: Among the patients, 70 exhibited low Ki-67 expression while 127 had

high Ki-67 expression (113 males, 84 females, aged 5–85 years). The high Ki-67

group showed a higher proportion of fever(75.9% vs. 24.1%, P < 0.05) and tumor

SUV max value/mediastinal SUV max value (T/MB) (P < 0.01). Five radiomic

features formed the radiomics score (AUC: training 0.827; validation 0.883).

The combined model showed the highest AUC(training 0.921; validation 0.916),

indicating strong predictive capability.

Conclusion: The radiomics model derived from 18F-FDG PET demonstrates

superior predictive performance for Ki-67 expression status compared to T/

MB. The combined model further improves prediction accuracy, highlighting its

potential clinical applicability.
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Introduction

Lymphomas are a group of malignant tumors originating in the

lymph nodes or other lymphoid tissues and are classified as

Hodgkin’s disease (HD) and non-Hodgkin’s lymphoma (NHL).

Non-Hodgkin’s lymphoma accounts for 90% of all new lymphoma

cases in China each year. The incidence of NHL varies according to

age, gender, race, and geographic region. It is characterized by a

higher incidence in males than in females, a higher incidence in

Caucasians than in other races, a significantly higher incidence in

urban than in rural areas, and a higher incidence in developed

countries than in developing countries (1–3). Its pathogenesis is

associated with environmental factors, lifestyle, immune function

abnormalities, viral infections, and genetics (4–6). NHL has been

classified into clinically significant aggressive and non-aggressive

subtypes (7). Non-aggressive lymphomas, also known as indolent

lymphomas, have a slow clinical course and may remain stagnant

for years after diagnosis, with an excellent prognosis (8). Although

indolent lymphoma is still classified as a malignant tumor,

traditional radiotherapy and chemotherapy have limited benefit,

and can even have counterproductive effects (9). Aggressive

lymphoma progresses rapidly and has a short natural survival

period. While there is curative potential through radiotherapy,

tumors are prone to recurrence and are difficult to treat (10).

Therefore, early identification of lymphoma aggressiveness,

precise risk stratification of patients, and risk-based treatment

planning can lead to comprehensive, individualized treatment

(11, 12).
18F-deoxyglucose positron emission tomography/computed

tomography (18F-FDG PET/CT) not only reveals tumor lesion

size but also reflects the metabolic activity within the tumor.

Previous studies have demonstrated that measuring semi-

quantitative parameters with 18F-FDG PET/CT is a simple, non-

invasive, and useful method for assessing the proliferative potential

of tumor cells (13). In NHL, 18F-FDG PET/CT is a clinically

recognized and widely used imaging tool for staging and

therapeutic evaluation (14–16), and it also plays a valuable role in

detecting recurrent disease (17). Non-Hodgkin’s lymphomas are a

highly heterogeneous group of malignant tumors of the lymphatic

system, and studies on the proliferation and apoptosis of tumor cells

have helped to clarify the mechanisms underlying their

development. It has been proposed that the varying degrees of

FDG uptake in different tumors are related to the differing

proliferative activities of the lesions. In lymphomas with low

proliferative activity, such as Follicular Lymphoma (FL), chronic

lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL),

and mucosa-associated lymphoid tissue (MALT), where nuclear

division is rare, cellular metabolic activity is low, and 18F-FDG

uptake is minimal. In contrast, lymphomas with high proliferative

activity, such as diffuse large B-cell lymphoma (DLBCL), T-cell

lymphomas, and lymphoblastic lymphoma, exhibit markedly

divided nuclei and high levels of cellular metabolism (18). Ki-67

is a cytosolic antigen expressed only in the nuclei of proliferating

cells. In the classification and clinical behavior of lymphoma, Ki-67

serves as an early predictor, not only reflecting tumor aggressiveness
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and mass size but also showing significant variation in positivity

rates across low-, intermediate-, and highly-malignant NHLs. The

expression of Ki-67 progressively increases with the degree of

malignancy in NHLs (19). In the context of precision diagnosis

and treatment, it is crucial to accurately assess Ki-67 expression in

diseased lymph nodes by immunohistochemistry before treatment.

However, the current clinical approach for detecting Ki-67

expression levels heavily relies on histopathological examination

of biopsies or surgical specimens, which is a complex, time-

consuming process with many potential interfering factors. This

method may lead to biased results due to issues such as insufficient

or excessive fixation, antigen repair, and variability in antibody

sensitivity during the procedure. Therefore, the need for a non-

invasive, simple, comprehensive, and stable assay to predict Ki-67

expression status is a major clinical concern. Unlike biopsy, which is

typically limited to a single location, imaging can compare all

different lymph node sites throughout the body non-invasively

and in multiple consecutive sessions. For example, some low-

grade malignant FL may transform into highly malignant DLBCL,

which requires immediate identification and initiation of

immunotherapy. If an imaging modality can accurately predict

the Ki-67 index, it would allow for timely detection and eliminate

the limitations of sampling errors. Based on the hypothesis that

proliferating tumor cells require more glucose than cells in a resting

state, tumors with higher Ki-67 expression may also exhibit higher

FDG uptake, as quantified by SUV values. 18F-FDG PET and the

proliferative index Ki-67 may therefore be correlated (20).

However, there is considerable controversy regarding studies on

the correlation between FDG uptake and clinical aggressiveness in

NHL. Schoder et al. reported that FDG uptake is lower in indolent

lymphomas than in aggressive lymphomas, and that patients with a

standardized uptake value (SUV) >10 for NHL are more likely to

have aggressive disease (21). Luo et al. analyzed 52 NHL patients

and concluded that the optimal cutoff value of SUVmax for

diagnosing aggressive lymphoma was 12.14 (22). In contrast,

Newman et al. found no significant differences in SUV between

different sites or grades of NHL across all histologic types in their

study (23). There is a lack of sufficiently large validation studies and

a need for harmonized methods to define reproducible thresholds.

Radiomics features serve multiple functions, including tumor

classification, survival prediction, and treatment response

assessment, and play a key role in developing imaging biomarkers

for personalized therapy. Radiomics, which is largely independent

of the radiologist’s level of experience, can objectively extract

additional imaging information to reveal tumor biomarkers, guide

specific treatments, track treatment response, detect recurrence, and

predict prognosis (24–27). The interdisciplinary field of imaging

genomics, which integrates imaging with genomic and molecular

data, seeks to analyze the association between genomic variables

responsible for phenotypic differences and the corresponding

imaging features, providing insights that surpass the limitations of

traditional cancer assessment methods (28). Radiomics genomics

aims to explore the link between genomic variables and

corresponding imaging features. In radiomics, a large volume of

quantitative data is extracted from medical images, which may
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more accurately represent tumor status in vivo than SUV alone (29).

Recently, new PET texture parameters for histologic assessment and

prognosis prediction have emerged, based on the spatial

distribution of 18F-FDG uptake by lesions (30, 31). Relevant

studies exploring how imaging features support histological

diagnosis and better report tumor heterogeneity have been

reported in breast, lung, gastrointestinal, and renal cancers (32–

35). Recently, several studies have highlighted the potential of

radiomics features and machine learning-based radiomics models

in distinguishing lymphoma from other tumor types in differential

diagnosis (36, 37). However, the number of studies focusing on PET

to differentiate histologic subtypes of lymphoma and tumor marker

expression at the molecular level is limited, and none have

elaborated on clinical characteristics (38, 39). Hasan et al.

investigated the prediction of lymphoma type using low-dose CT

imaging histology obtained from FDG PET-CT, but the study did

not evaluate PET data (39). Moreover, the current understanding of

Ki-67 expression in lymphomas is limited to conventional PET

metabolic parameters, and the predictive value of imaging histology

for Ki-67 expression remains unknown. This study aims to develop

and validate a radiomics-based PET model for predicting Ki-67

expression, offering a potential non-invasive alternative to biopsy

for assessing NHL aggressiveness.
Materials and methods

Study design and patients

Imaging data and clinical information of lymphoma patients

who underwent 18F-FDG PET/CT imaging at the First Affiliated

Hospital of Zhengzhou University fromMay 2018 to July 2023 were

retrospectively collected. The patients were divided into a training
Frontiers in Oncology 03
group and a validation group in a 6:4 ratio using simple random

sampling. Patients were screened based on the following enrollment

criteria: (1) all cases were pathologically confirmed as NHL; (2)

there was clear histopathological typing; (3) all patients were

diagnosed by pathological and immunohistochemical

examination, with a report of Ki-67 enzymatic staining for tumor

proliferative antigen; (4) 18F-FDG PET/CT was performed before

pathological sampling, with an interval of no more than 4 weeks; (5)

there was no history of other malignant tumors; (6) all patients had

primary NHL and had not received prior treatment. Exclusion

criteria included: (1) incomplete clinical or pathological data; (2)

missing imaging data that prevented the extraction of metabolic

parameters after post-processing. A flow diagram of patient

selection is shown in Figure 1. The study was approved by the

institutional review board.
Data collection and definition

Clinical information was collected for each patient, including

gender, age, fever, lymph node involvement, smoking history, and

laboratory test results. Superficial lymph node involvement refers to

the neck, axilla, and inguinal regions, while deep involvement

includes the abdominal cavity, retroperitoneum, mediastinum,

and the periphery of the great vessels. The presence or absence of

extra-nodal involvement, including bone marrow invasion, was

determined through pathological diagnosis. Fever was defined as

a temperature >37.3°C before consultation and/or on admission.

The normal range for white blood cell count was (4-10) × 109/L;

none of the included patients had received treatment, so elevated or

decreased white blood cell counts were considered abnormal.

Neutropenia was defined as an absolute neutrophil count <1.5 ×

10^9/L. Elevated C-reactive protein (>10 mg/L), elevated calcitonin
FIGURE 1

Patient selection and grouping.
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(>0.046 ng/mL), and elevated blood sedimentation rate (>20 mm/h)

were also considered abnormal.

The resu l t s o f Ki -67 enzymat ic s ta in ing on the

immunohistochemistry report were evaluated based on the degree

of nuclear staining of tumor cells and the percentage of positive

cells. The percentages were classified into five grades, from least to

most: 0 (no stained tumor cells), 1 (1%-4% positive cells), 2 (5%-

19% positive cells), 3 (20%-49% positive cells), and 4 (≥50% positive

cells). A score of 4 was considered high expression, while scores ≤3

were considered low expression.
PET/CT imaging and data processing

All patients underwent 18F-FDG PET/CT using a Siemens

Biograph TruePoint (52-ring) PET/CT scanner from Germany. The

radiotracert, 18F-FDG, was prepared by the Department of Nuclear

Medicine at the First Affiliated Hospital of Zhengzhou University,

with a radiochemical purity ≥95%. Patients fasted for more than 6

hours and maintained blood glucose levels ≤11.1 mmol/L before 18F-

FDG PET/CT scanning. 18F-FDG was injected intravenously at a

dose of 3.70-4.44 MBq/kg (0.10-0.12 mCi/kg), and scanning was

performed 45–60 minutes after injection while the patient rested in a

quiet, light-protected environment. Whole-body scanning was

performed. The bladder was emptied before scanning, and the

patient was positioned supine. The acquisition area ranged from

the top of the skull to the middle and upper part of the femur. CT

scanning was performed first, with the following parameters: tube

voltage of 120 kV, tube current of 380 mA, and layer thickness of 3

mm. 3D PET acquisition followed immediately after CT scanning,

covering the same area, with a scanning time of 3 minutes per bed for

the head and 2.5 minutes per bed for the body, for a total of 4–6 beds.

PET data were iteratively reconstructed using the CT data for

attenuation correction, and whole-body transverse, coronal, and

sagittal CT, PET, and PET/CT fusion images were obtained.

PET/CT images were analyzed, and metabolic parameters,

including SUVmax of lymph nodes, metabolic tumor volume

(MTV), and total lesion glycolysis (TLG), were measured using a

Syngo.via workstation from Siemens, Germany. All PET/CT images

were independently analyzed and manually corrected for automatic

segmentation results by two nuclear medicine physicians with three

and five years of experience, respectively. In cases of disagreement,

the final judgment was made by another nuclear medicine physician

with more than 10 years of experience in interpreting PET/CT

images after review. SUVmax was used to analyze the maximum

SUV value across all lesions in the patient’s body. The maximum

SUV value of the blood pool in the aortic arch and mediastinal great

vessels was also determined, and the T/MB (tumor SUVmax value/

mediastinal SUVmax value) ratio was calculated. Two methods

were used to outline the regions of interest (ROIs) of the lesions: (i)

absolute threshold method (Th2.5): all voxels with standard uptake

value (SUV) >2.5 were considered as ROIs; (ii) relative threshold

method (Th42%) was used to outline the ROIs of the lesions: all

voxels with SUV >42% of SUVmax were considered as ROIs. The

dual-threshold approach aimed to validate robustness across
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methodologies and assess both total tumor burden and high-

activity tumor cores. MTV and TLG were calculated using the

program provided with the workstation. The total MTV for each

patient’s lymph node lesions was defined as the sum of the MTVs of

all lymph node lesions (TMTV). The TLG for each lymph node

lesion was defined as the product of the SUVmean and MTV of that

lesion (TLG = SUVmean × MTV), and the total TLG for a patient’s

lymph nodes was defined as the sum of the TLGs of all lymph

nodes (TTLG).
Extraction of PET radiomics parameters

The dcm2niix software

(https://www.nitrc.org/projects/dcm2nii/)

was used to convert the DICOM files of PET/CT image data

from all collected cases into NIfTI (nii) format files. The volume of

interest (VOI) for the lesion regions in the PET images was

outlined, and the VOI was adjusted using the CT images as a

reference. Only the PET radiomics features were used for analysis.

3D Slicer (http://www.slicer.org) software was used to segment the

lesion areas volumetrically on sagittal, transverse, and coronal PET

images using the semi-threshold segmentation method. The lesion

areas were outlined to coincide with the biopsy site (Figure 2).

Radiomics features were extracted using the Radiomics module.

The original image was processed using a Log (Laplacian of

Gaussian) filter and wavelet, and further radiomics features were

extracted from both the filtered and original PET images.

Additional types of features could be extracted from both the

derived and original images, while shape features were extracted

exclusively from the original image.
Screening and modeling of radiomics
parameters

(1) Radiomics features with significant differences were

calculated using the Mann-Whitney U rank sum test, with the

significance threshold set at P < 0.001. (2) The correlation (R)

between pairs of radiomics features was calculated to remove high-

dimensional feature redundancy. A redundant feature was defined

as the one with the smaller AUC of the ROC curve among two

correlated radiomics features with R > 0.8. (3) The least absolute

shrinkage and selection operator (LASSO) regression was used to

filter combinations of radiomics features with high predictive

efficacy. The l value in the LASSO regression analysis was

validated using 10-fold cross-validation (l refers to the number of

parameters included in the radiomics model). The optimal l value

is the one that results in the fewest and most stable model

parameters. (4) The retained features and their corresponding

weights were analyzed using multi-parameter logistic regression

to derive the regression formula and calculate the Radiomics score

(Rad_Score) for each patient. A stepwise backward multifactor

logistic regression algorithm was used to construct the joint

model by integrating imaging histology labels and clinical variables.
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Statistical analysis

SPSS v26.0 software (IBM, Armonk, NY, USA) was used for

analyses. Measurement data conforming to normal distribution were

expressed as mean ± SD, while data not conforming to normal

distribution were expressed as M (Q1, Q3). Counting data were

expressed as the number of cases or percentage. The comparison of

measurement data conforming to normal distribution was performed

using the two independent samples t-test, and for data not conforming

to normal distribution, theMann-Whitney U rank-sum test was used.

Comparison of counting data was performed using the c2 test. The

Mann-Whitney U rank-sum test was applied to compare the

differences in parameter values between the Ki-67 high expression

and low expression groups. One-way logistic regression analysis was

used to predict the independent factors influencing high Ki-67

expression. Based on the results of logistic regression, parameters

with statistically significant differences were selected to build a

comprehensive prediction model. ROC curves were plotted using

MedCalc statistical software (Version 15.2.2), and the Delong test
Frontiers in Oncology 05
was used to compare the AUCs between different models. Since

composite models based on clinical variables and radiomics labels

have better predictive efficacy, this study constructed column line plots

to visualize the individualized predictive models and tested model fit

using calibration curves and the Hosmer-Lemeshow test (with the

bootstrap method repeated 100 times). The predictive accuracy of the

column-line diagrams was assessed using decision curve analysis

(DCA), and correction curves were plotted using prediction

probabilities and accuracy probabilities. A p-value < 0.05 was

considered statistically significant.
Results

Clinical characteristics and PET-CT
imaging of the enrolled cases

A total of 197 patients were enrolled, including 70 cases with low

Ki-67 expression and 127 caseswithhighKi-67 expression. The cohort
FIGURE 2

ROIs were outlined layer by layer along the boundary of the lesion, and the figure shows the VOIs outlined in coronal, sagittal, and
transverse positions.
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consisted of 113 males and 84 females, with ages ranging from 5 to 85

years and a mean age of 52 years. Males predominated in the Ki-67

high-expression group (c2 = 4.635, P = 0.031), and there was no

significant difference in age between the two groups (t = 1.371, P =

0.172). Regarding systemic symptoms, the Ki-67 high-expression

group was more likely to present with fever (c2 = 4.246, P = 0.039).

The Ki-67 high-expression group also showed a higher incidence of

deep lymph node invasion and extra-nodal infiltration compared to

the low-expression group; however, the difference was not statistically

significant (both P > 0.05). There was no significant difference in

smoking history between the two groups (all P > 0.05). In laboratory

examinations, the differences in abnormal leukocytes, neutrophils,

C-reactive protein, calcitoninogen, and blood sedimentation rates

between the two groups were not statistically significant (all P >

0.05). The comparison results of clinical manifestations and

laboratory examinations are presented in Table 1.
18F-FDG uptake and its predictive efficacy

The T/MB of lymph nodes in the Ki-67 low expression group

ranged from 0.9 to 11.7, while the T/MB in the Ki-67 high-

expression group ranged from 1.2 to 32.9. T/MB, TLG2.5, and

TLG42% in the Ki-67 high-expression group were significantly

higher than in the Ki-67 low-expression group (all P < 0.05). The

differences in MTV2.5 and MTV42% between the two groups were

not statistically significant (see Table 1).

When T/MB had a cut-off value of 4.7, its area under the curve

(AUC) for predicting high Ki-67 expression was 0.811 (95% CI:

0.759-0.863). When TLG2.5 had a cut-off value of 185.0, its

predicted AUC for high Ki-67 expression was 0.670 (95% CI:

0.605-0.716). When TLG42% had a cut-off value of 127.9, its

AUC for predicting high Ki-67 expression was 0.668 (95% CI:

0.592-0.753). The difference between the AUCs of TLG2.5 and

TLG42% was not statistically significant (Z = 0.143, P = 0.886).
Extraction and screening of radiomics
parameters and creation of radiomics
models and combined models

From the PET images, 1,225 radiomics features were extracted,

of which 410 features with significant differences were selected. The

optimal l value of 0.016 was derived through LASSO regression,

and based on this l value, the dimensionality of the radiomics

parameters was reduced to 13 (Figure 3).

These parameters were included in the logistic regression

equation, and 5 parameters were found to be statistically

significant. The formula for the Rad_Score was obtained:

Rad _ Score = 12:114 − 0:031� original _ shape _Maximum2DDiameterSlice

−0:001� log : sigma:2:0:mm:3D _ firstorder _Median

−17:757� log : sigma:2:5:mm:3D _ glszm _ SizeZoneNonUniformityNormalized

+0:0003607� original _ firstorder _ 10Percentile

−0:001� wavelet :HHL _ firstorder _ 10Percentile
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(Formula notes: original original image, Laplace operator of log

Gaussian filter with sigma as its specified parameter; low sigma

emphasizes fine textures, high sigma values emphasize coarse

textures. wavelet wavelet filtering; HHL denotes that the image is

filteredwith ahigh-pass function in the x-direction, high-pass function

in the y-direction, and low-pass function in the z-direction.)

TheRad_Score of theKi-67high expressiongroupwashigher than

that of the Ki-67 low expression group (both P < 0.001) (Table 2).
Building clinical predictive models and
combined

In the multivariate logistic regression analysis, fever and T/MB

were identified as independent factors in predicting high Ki-67

expression (Table 3). Based on this study, the specific formula for

the clinical model predicting high Ki-67 expression was:
TABLE 1 Comparative results of clinical manifestations, laboratory tests
and metabolic parameters in Ki-67 low expression group and Ki-67 high
expression group.

Ki-67 low
expression
(n=70)

Ki-67 high
expression
(n=127)

P

Gender (cases)

male 33 (29.2%) 80 (70.8%) 0.031

Age (years) 54.2 ± 12.5 50.8 ± 18.6 0.172

Fever (cases) 13 (24.1%) 41 (75.9%) 0.039

Area of lymph node
involvement (cases)

0.950

Superficial 19 (27.1%) 2 (72.9%)

Deep 35 (27.6%) 96 (72.4%)

Extra-lymph node
involvement (cases)

20 (42.6%) 27 (57.4%) 0.249

smoking history(cases) 14 (30.4%) 32 (69.6%) 0.409

Abnormal WBC
count (case)

17 (41.5%) 24 (58.5%) 0.373

Neutropenia (cases) 7 (41.2%) 10 (58.8%) 0.611

Elevated CRP 23 (29.9%) 54 (70.1%) 0.183

Elevated calcitonin 20 (27.4%) 53 (72.6%) 0.067

Elevated ESR 15 (44.1%) 19 (55.9%) 0.250

metabolic parameter

T/MB of lymph nodes 2.9 (1.9,4.5) 7.3 (4.0,11.5) <0.001

wbMTV2.5 32.1 (9.7,91.5) 52.4 (17.7,101.8) 0.064

wbTLG2.5 88.4 (26.1,198.73) 230.2 (66.4,655.0) <0.001

wbMTV42% 30.1 (10.5,74.9) 36.1 (14.4,72.7) 0.382

wbTLG42% 33.8 (29.0,172.8) 197.0 (74.1,439.9) <0.001
frontie
Continuous variables are expressed as median (P25, P75) and categorical variables are
expressed as numbers (%).WBC, White Blood Cells; CRP, C Reactive Protein;
ESR, Sedimentation.
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Clinic _Model = −2:552 + 1:182� Fever + 0:226� T=MB

Each case obtained its Clinic-score by applying the above

formula. In both the training and validation groups, the Clinic-

score of the Ki-67 high-expression group was higher than that of the

Ki-67 low-expression group (both P < 0.000) (see Table 2 for details).

Building a combined model:

Combined _Model

= −2:281 + 0:136� T=MB + 2:084� Fever + 1:035� R

The composite score for each case was calculated using the above

formula. In both the training and validation sets, the composite score

of the Ki-67 high-expression group was higher than that of the Ki-67

low-expression group (both P < 0.000). Table 2 presents the

composite scores for each case in the training and validation sets.
Frontiers in Oncology 07
Predictive performance of radiomics
models, clinical models and combined
models

In both the training and validation cohorts, the radiomics

model demonstrated significantly better predictive ability for Ki-

67 expression status compared to T/MB and the clinical model (Z =

3.002, P = 0.003; Z = 2.822, P = 0.005), with AUCs of 0.890 (95% CI:

0.825-0.955) and 0.883 (95% CI: 0.804-0.938), respectively. In

addition, the AUC of the combined model in the training and

validation cohorts was 0.921 (95% CI: 0.883-0.986) and 0.916 (95%

CI: 0.862-0.980), respectively, which was not statistically different

from the predictive ability of the radiomics model (Z = 1.324, P =

0.186). The sensitivity, specificity, and accuracy of the predictions

for each model are presented in Table 4.
FIGURE 3

LASSO regression path diagram of each imaging histological feature and screening of the best imaging histological parameters Visualization of the Lasso
model downscaling process. (A)Mean square error plot for 10-fold cross-validation. The vertical axis represents the mean square error value of each fold
model, while the horizontal axis represents the logarithmic value of the parameter l for each foldmodel. The Lasso model determines the optimal l value
based on the smallest mean square error, and the vertical dashed line in the graph indicates the optimal l value. (B) Dimensionality reduction process of the
Lasso model. The Lasso model constructs the penalty function using the optimal l value and compresses the coefficients of unimportant variables to zero.
TABLE 2 Differences between Clinic-score, Rad_Score and Clinic_R in each group.

Training cohort Validation cohort

Ki-67 (0-49%) Ki-67 (≥50%) P Ki-67 (0-49%) Ki-67 (≥50%) P

Clinic-score -1.173 (-1.512,-0.495) 1.184 (-0.224,3.173) <0.001 -0.760 (-1.671, -0.250) 1.426 (-0.647,2.940) <0.001

Rad_Score -0.172 (-1.127,0.446) 3.656 (1.879,5.345) <0.001 -0.510(-1.114,0.395) 3.812(2.244,6.505) <0.001

Clinic_R -1.411 (-2.209, -0.547) 4.049 (1.323,6.832) <0.001 -1.052 (-2.048, -0.714) 4.650 (1.319,8.301) <0.001
fro
Rad_Score: imaging histology score; Clinic: clinical parameter score; Clinic_R: combined score of Rad_Score and clinical parameters.
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Creating column line diagrams

Since the combined model had the highest absolute AUC, the

risk value for each case diagnosed with high Ki-67 expression was

calculated based on the weights of each factor (fever, T/MB,

Rad_Score) in the combined model. The weight of each factor in

predicting the disease was illustrated using column graphs. A

column graph of the combined model was created using data

from the training set (Figure 4A). The risk value for high Ki-67

expression for each case in the validation group was calculated

based on the column-line graph created for the training group. The

calibration curves for both the training and validation groups

showed the correlation between the predicted and actual

probabilities of cases within each group (Figures 4B, C). The

Hosmer-Lemeshow test was applied to assess the goodness-of-fit

(GOF) of the regression line to the test values. This revealed no

statistical difference between the joint model in the training group

(P = 0.942) and the validation group (P = 0.765), suggesting a good

fit. The decision and calibration curves of the combined model

demonstrated excellent fit and clinical utility.
Discussion

The results of this study showed that the radiomics model not

only demonstrated superior predictive ability in both the training

and validation sets but also significantly outperformed the

conventional metabolic parameter T/MB. Furthermore, the joint

model, consisting of imaging radiomics features, fever, and T/MB,

exhibited enhanced predictive ability.

In this study, the clinical data and 18F-FDG PET/CT images of

197 lymphoma patients were retrospectively analyzed. Ki-67
Frontiers in Oncology 08
expression status was categorized with a 50% cut-off, where ≥50%

was considered the high-expression group, characterized by high

invasiveness, rapid proliferation, and a high degree of malignancy

(40–43). To ensure a thorough and accurate diagnosis of systemic

lesions in patients, the highest metabolic lesions in the body were

used to measure SUVmax, TMTV, and TTLG. Additionally,

following international recommendations, the mediastinal blood

pool radioactivity was used as a reference background, and the ratio

of SUV to mediastinal blood pool (T/MB) was applied as an

evaluation index. This approach helped to minimize imbalances

caused by variations in SUV resulting from differences in

radiopharmaceutical injection amounts, waiting times for

scanning, and individual blood circulation characteristics during

the examination. This study also identified differences in gender,

fever, T/MB, and TLG between lymphoma patients with different

Ki-67 expression statuses. Specifically, the incidence of fever was

higher in the high Ki-67 expression group than in the low Ki-67

expression group. This may be due to the vigorous metabolism of

tumor cells with high proliferative activity, prompting the immune

system to counteract tumor growth through mechanisms such as

fever. Additionally, tumor cells with high proliferative activity are

more likely to undergo necrosis, releasing inflammatory mediators

such as tumor necrosis factor, which can induce fever. The results of

a previous study have shown that the proliferative potential of

lymphomas can be estimated using SUVmax from FDG-PET (43),

but there are significant contradictions between different studies.

Watanabe et al. found that all indolent lymphomas had a SUVmax

<8, but 23% of aggressive lymphomas were also below this

threshold, suggesting that 8 is insufficiently specific as a cut-off

value (43). However, other studies used higher thresholds: Schoder’s

team used SUVmax=10 as the critical value (21), while Luo Yao

Guo et al. proposed an optimized threshold of SUVmax=12.14 (22).

This heterogeneity in threshold selection has led to divergent

conclusions between different studies on the correlation between

FDG uptake and clinical aggressiveness, highlighting the limitations

of a single parameter, SUVmax, in lymphoma staging. This study

highlights the limited utility of PET-derived metabolic parameters

(T/MB and TLG) in predicting Ki-67 expression in lymphoma, with

T/MB demonstrating poor accuracy (<0.5) and TLG failing to serve

as an independent predictive marker. These findings suggest that

standalone PET metrics may inadequately reflect tumor

proliferative activity, warranting further exploration of

multimodal approaches for reliable Ki-67 assessment.
TABLE 3 Multivariate analysis to predict high Ki-67 expression.

Characteristic Multifactorial analysis

OR (95%CI) P

Gender 2.72 (0.996, 7.947) 0.057

Fever 3.261 (1.075, 11.075) 0.044Δ

T/MB 1.254 (1.148, 1.403) 0.000Δ
ΔP<0.05, Indicates a statistically significant difference in logistic regression analysis.
TABLE 4 Predictive power of the model.

Training cohort Validation cohort

AUC
(95%CI)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC
(95%CI)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Clinic model 0.827
(0.745-0.909)

0.721
(0.693-0.750)

0.854
(0.831-0.876)

0.767
(0.754-0.781)

0.803
(0.709-0.897)

0.681
(0.561-0.800)

0.835
(0.743-0.927)

0.732
(0.643-0.821)

Radiomics
Model

0.890
(0.825-0.955)

0.817
(0.806-0.827)

0.976
(0.970-0.981)

0.872
(0.865-0.879)

0.883
(0.804-0.938)

0.818
(0.724-0.912)

0.975
(0.926-0.997)

0.872
(0.810-0.934)

Combined
model

0.921
(0.883-0.986)

0.869
(0.862-0.875)

0.951
(0.944-0.958)

0.897
(0.893-0.902)

0.916
(0.862-0.980)

0.870
(0.814-0.925)

0.950
(0.885-0.998)

0.898
(0.864-0.902)
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Although PET/CT provides a wealth of information, there is

growing evidence that the naked eye often overlooks important

details within medical images (17, 32), highlighting the need for a

more objective and quantitative method to evaluate these images.

Radiomics offers a method to objectively quantify tumor

heterogeneity in medical images. This study emphasizes the

superiority of 18F-FDG PET/CT over conventional CT/MRI for

tumor delineation, particularly in addressing overestimation errors

caused by irregular morphology or necrosis. By integrating

metabolic activity (reflecting tumor biology) with structural

imaging, PET enhances accuracy in defining tumor load and

heterogeneity. The choice of PET for radiomics modeling is

justified by its ability to capture biologically relevant texture

features (e.g., proliferation, hypoxia), offering deeper insights into

tumor heterogeneity compared to CT-derived radiomics alone (44).
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This study demonstrates the robust predictive potential of PET-

based radiomics for evaluating Ki-67 expression and lymphoma

aggressiveness. By integrating multi-dimensional features

(morphology, density, texture) derived through advanced filtering

and wavelet transformations, the radiomics model achieved high

diagnostic accuracy (AUCs: 0.903–0.883), outperforming

conventional PET metabolic parameters. Notably, the synergy of

clinical data, metabolic parameters, and radiomics features further

enhanced predictive performance, highlighting the importance of

multimodal integration to account for biological and clinical

interactions. These findings position radiomics as a promising

tool for refining risk stratification in lymphoma management.

In recent years, with the rapid development of radiomics

technology, the application of radiomics in predicting the Ki-67

expression level of tumors has garnered increasing attention. In a
FIGURE 4

Column-line diagram and calibration curve creation. (A) The RAD-score value for each patient was calculated according to the imaging histology
labeling formula. A vertical line was drawn for each variable to obtain the corresponding score, and then the scores for each factor were summed to
get the total score. The risk probability of the patient having high Ki-67 expression was determined by drawing a vertical line according to the total
score value. (B, C) Model calibration curves. The calibration curves show the predicted versus actual probability of high Ki-67 expression in non-
Hodgkin’s lymphoma for the training cohort (B) and the validation cohort (C).
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lung cancer study, a model was established to predict the Ki-67

expression level by extracting and analyzing texture features from CT

images. This model demonstrated high predictive accuracy and

provided strong support for the clinical diagnosis and treatment of

lung cancer (34). Additionally, 18F-FDG PET/CT-based radiomics

has gradually gained traction in predicting molecular subtypes and

Ki-67 expression levels in breast cancer. A study involving 134 breast

cancer patients showed that a composite model combining PET/CT

radiomics and clinical factors could more accurately predict

molecular subtypes and Ki-67 expression levels, providing a solid

foundation for individualized treatment (45). Beyond lung and breast

cancers, PET/CT radiomics has shown promise in predicting Ki-67

expression levels in other tumors, such as renal and cranial tumors

(35, 46). PET radiomics also holds potential for predicting Ki-67

expression in non-Hodgkin’s lymphoma. However, there are still

limitations in current studies within this field, including differences in

sample sizes, research methods, and image processing techniques,

which contribute to variability in results. While some studies have

achieved positive preliminary validation, the lack of large-scale

clinical validation means their feasibility and effectiveness in

practical applications require further evaluation. Moreover,

combining radiomics information with patient-specific conditions

to develop personalized treatment plans remains an area that needs

further exploration and refinement.

There are several major limitations in this study: (1) this is a

retrospective, single-center study, which may introduce bias in patient

selection and needs to be validated by multicenter studies; (2) we did

not follow up with the patients, and this limitation should be addressed

in future research; (3) only one imaging modality was used. The

inclusion of additional modalities, such as the ADC value from MRI

examinations of lymphoma, could provide valuable insights. In future

studies, we aim to combine macroscopic and microscopic parameters

from multimodal imaging to offer comprehensive information for

lymphoma diagnosis and treatment from different perspectives; (4)

due to the variability of PET measurements, interference of technical

variability on model performance needs to be reduced in the future

through rigorous standardized protocols (e.g., device calibration,

feature stability testing), dynamic metabolic assessment, and multi-

center large sample validation.
Conclusions

In this study, the radiomics model based on 18F-FDG PET images

demonstrated higher predictive value for Ki-67 high expression status

in non-Hodgkin’s lymphoma. The combined model, which integrates

both macro- and micro-parameters from imaging and clinical

features, provides information from multiple perspectives, enabling

more accurate prediction of Ki-67 high expression. These models can

aid in triaging patients, especially in light of increasing workloads,

and offer supportive opinions to assess lymphoma aggressiveness,

particularly in cases where IHC examination may be inconclusive due

to poor pathology sampling or other factors.

To further understand the role of radiomics in distinguishing

tumor heterogeneity, prospective studies are needed to explore the
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biological and clinical differences in lymphomas of various

histopathological subtypes and their corresponding therapeutic

approaches. It is hoped that, in the near future, more studies will

confirm the potential role of 18F-FDG PET radiomics in selecting

stable and reliable imaging biomarkers. Future research should also

focus on the use of different imaging agents.
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