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1Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China, 2Thoracic
Surgery Department of Fujian Provincial Hospital, Fuzhou, Fujian, China, 3Thoracic Surgery
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Background: Prognostic models for esophageal cancer based on contrast-

enhanced chest CT can aid thoracic surgeons in developing personalized

treatment plans to optimize patient outcomes. However, the extensive

lymphatic drainage and early lymph node metastasis of the esophagus present

significant challenges in extracting and analyzing meaningful lymph node

characteristics. Previous studies have primarily focused on tumor and lymph

node features separately, overlooking spatial correlations such as position,

direction, and volumetric ratio.

Methods: A total of 285 patients who underwent radical resection surgery at

Fujian Provincial Hospital from 2018 to 2022 were retrospectively analyzed. This

study introduced a tumor–lymph node projection plane, created by projecting

lymph node ROIs onto the tumor ROI plane. A ResNet-CBAM model, integrating

a residual convolutional neural network with a CBAM attention module, was

employed for feature extraction and survival prediction. The PJ group utilized

tumor–lymph node projection planes as training data, while the TM and ZC

groups utilized tumor ROIs and concatenated images of tumor and lymph node

ROIs, respectively, as controls. Additional comparisons were made with

traditional machine learning models (support vector machines, logistic

regression, and K-nearest neighbors). Survival outcomes (median, 1-year, 3-

year, 5-year) were used as target labels to evaluate model performance in

distinguishing high-risk patients and predicting both short- and long-

term survival.

Results: In the PJ group, the ResNet-CBAM model achieved accuracy rates of

0.766, 0.981, 0.883, and 0.778 for predicting median, 1-year, 3-year, and 5-year

survival, respectively. Its corresponding AUC values for 1-, 3-, and 5-year survival

were 0.992, 0.913, and 0.835. Kaplan–Meier survival analysis revealed significant

differences between high- and low-risk groups identified by the model. The

ResNet-CBAM model outperformed those in the TM and ZC groups in

distinguishing high-risk patients and predicting both short- and long-term
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survival. Compared to machine learning models, it demonstrated superior

performance in long-term survival prediction.

Conclusion: The ResNet-CBAM model trained on tumor–lymph projection planes

effectively distinguished high-risk esophageal cancer patients and outperformed

traditional models in predicting survival outcomes. By capturing spatial relationships

between tumors and lymph nodes, it demonstrated enhanced predictive efficiency.
KEYWORDS

esophageal cancer, prognostic prediction, deep learning, ResNet, CBAM, cross-
plane projection
1 Introduction

Esophageal cancer, as a complex gastrointestinal tumor with a

poor prognosis, has become a major global disease burden (1).

Patients with esophageal cancer often require complex, multimodal

treatment regimens, including surgery, chemotherapy, and

radiotherapy. Therefore, tailoring individualized treatment plans

based on the specific condition of each patient is essential for

maximizing clinical outcomes and improving prognosis. Machine

learning and deep learning models have been shown to improve

doctors’ ability to predict the prognosis of esophageal cancer. Simpler

models rely on clinical history data from public databases to predict

the clinical stage and survival prognosis of esophageal cancer (2, 3).

Convolutional neural networks enable models to extract image

features from esophageal cancer CT and digital pathology, which

have been shown to better predict the risk of survival (4–7). As

research has advanced, studies have increasingly focused on the

critical role of lymph node characteristics in esophageal cancer. For

surgical treatment and radiation therapy, deep learning models have

demonstrated the ability to accurately identify and segment

malignant lymph nodes (8–10) or predict lymph node metastasis

based on tumor images (11–13). While deep learning and machine

learning have performed exceptionally well in these tasks, most

approaches still extract tumor and lymph node images separately

and included them in models as independent features. This method

disrupts the spatial relationships between tumors and lymph nodes,

potentially limiting prognostic accuracy (14).

Esophageal cancer is characterized by early lymph node

metastasis, and the imaging features of lymph nodes in the

esophageal drainage area are crucial for assessing survival risk and

predicting prognosis. However, esophageal lymphatic drainage is

extensive and complex, with frequent occurrences of skip metastases
Convolutional Block
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and contralateral metastases. Suspicious metastatic lymph nodes on

CT images are often distributed across multiple sectional planes.

Effectively extracting and analyzing lymph node features in

esophageal cancer is crucial for advancing CT imaging-based

prognostic predictions; however, it remains a significant challenge.

The imaging characteristics of tumors and lymph nodes can be

categorized into local and global features. Local features, such as

image texture and boundary morphology, are closely associated

with the pathological classification and histological characteristics

of tumors (15). To analyze these features effectively, Convolutional

Neural Networks (CNNs) have been widely applied in medical

image analysis, including the diagnosis and prognosis of esophageal

cancer. CNNs can effectively extract local features and high-

dimensional representations from computerized tomography

(CT) images. However, they often overlook global features of

tumors and lymph nodes, such as volume proportions, relative

positions, and morphologies. These global features may offer

insights into tumor invasiveness, metastatic pathways, and other

behavioral characteristics. Therefore, developing a method to

transform spatial relationship features into more easily extractable

planar features is essential.

Interestingly, in fields such as computer vision, effectively

modeling and preserving the spatial relationships of regions of

interest (ROI) extracted from different planes is a critical task.

Projection-based techniques provide robust methods for integrating

spatial features across multiple planes, enabling more comprehensive

analysis and feature representations. In this study, the original CT

images were transformed into the tumor–lymph projecting plane.

This process involved extracting tumor and lymph node ROIs from

different CT scan slices and projecting the lymph node ROIs onto the

tumor ROI slice along the vertical axis. The projection plane

combined tumor and lymph node images while preserving their

spatial relationships in the sagittal and coronal axes. A deep learning

model of residual CNN Residual Network (ResNet) with the self-

attention module Convolutional Block Attention Module (CBAM)

was trained to predict postoperative survival based on follow-up data.

ResNet50 hierarchically extracted local features through convolution

operations, while CBAM efficiently aggregated spatial and global
frontiersin.org
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features. Since the spatial relationships between tumors and lymph

nodes are associated with postoperative prognosis, the ResNet-

CBAM model was well-suited for capturing these features.
2 Materials and methods

2.1 Data source

Data from 300 patients who underwent radical resection

surgery (endoscopic esophageal cancer segment + upper digestive

tract reconstruction + operative lymph node dissection) were

retrospectively collected at Fujian Provincial Hospital from 2018

to 2022. All procedures complied with the ethical standards of the

ethics committee on human experimentation at Fujian Provincial

Hospital (K2022-09-025).
2.2 Exclusion criteria

The exclusion criteria include the following:
Fron
1. Pathological types of nonesophageal squamous cell

carcinoma or esophageal adenocarcinoma, as confirmed

by histopathology;

2. Receiving preoperative radiotherapy or combined

preoperative radiotherapy and systemic chemotherapy;

3. Multiple primary esophageal cancers, upper cervical

esophageal cancer, suspected distant metastasis, or

complicated with other tumors;

4. Artifacts or noise in the enhanced image that remain

difficult to eliminate after filtering; and

5. Missing clinical, pathological, or follow-up data.
2.3 Sample statistics

Three patients had poor-quality CT images (with noticeable noise

persisting after median filtering or noise cancellation optimization). In

addition, eight patients and their families could not be contacted, and

four deceased patients had uncertain survival times due to inconsistent

reports from family members during the follow-up. Ultimately, a total

of 285 patients were included in this study (Table 1).
2.4 Image acquisition and
preprocessing procedure

A GE Lightspeed 64-slice spiral CT was used to obtain a 512-

pixel × 512-pixel matrix for every 3 mm scan. The scanning range

extended from the thoracic entrance to the lower edge of both

kidneys. Contrast-enhanced scanning was performed by injecting a

contrast agent (1–1.5 ml/kg, iopromide injection) with a high-

pressure syringe at a flow rate of 3.0 ml/s.
tiers in Oncology 03
Image segmentation was performed using 3D Slicer software

(version 5.0.2) on Digital Imaging and Communications in Medicine

(DICOM) format files of primary CT images. A median image filter

was applied for denoising, and ROIs were delineated on images with

inappropriate windows, referencing enhanced scanning. Threshold

procedures were applied to remove pixels with CT values below − 50
TABLE 1 Clinical and pathological data of the included samples.

(category)
N=285 [mean ± std
or n (%)]

Age (year) 61.00 ± 8.90

Gender
Male 209 (73.33%)

Female 76 (26.67%)

Tumor Location

Upper esophagus 42 (14.74%)

Middle esophagus 169 (59.30%)

Lower esophagus 74 (25.96%)

Pathology Grade

Grade I 20 (7.02%)

Grade II 221 (77.54%)

Grade III 44 (15.44%)

Vascular Invasion
Occur 179 (62.81%)

None 106 (37.19%)

T stage

T1 4 (1.40%)

T2 58 (20.35%)

T3 218 (76.50)

T4 5 (1.75%)

N stage

N0 130 (45.62%)

N1 92 (32.28%)

N2 50 (17.54%)

N3 13 (4.56%)

TNM stage

Ib 3 (1.05%)

IIa 64 (22.46%)

IIb 64 (22.46%)

IIIa 13 (4.56%)

IIIb 125 (43.86%)

IVa 16 (5.61%)

Radiotherapy
Occur 225 (78.95%)

None 60 (21.05%)

Chemotherapy
Occur 122 (42.81%)

None 163 (57.19%)

Dead event
Dead 154 (54.04%)

Survival 131 (46.96%)

Survival time/
Follow-up
time (month)

53.00 ± 30.84
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HU and above + 300 HU, minimizing interference from surrounding

tissues and esophageal contents. Areas where the esophageal wall

exceeded 5 mm were considered tumor ROIs. Megascopically

enlarged lymph node groups were delineated as lymph ROIs,

excluding vascular connective tissue with similar morphology. The

preprocessing procedures were independently performed by a senior

thoracic surgeon (with more than 10 years of experience in

diagnosing esophageal cancer) with the help of automatic

delineation tools. Contoured images were then reviewed by another

senior surgeon under a blinded assessment.

Data reading and model building were conducted in a Python-

based PyTorch environment. The pynrrd package was used to read

DICOM files of CT images, extracting pixel grayscale matrices and

ROI masks. All grayscale matrices were resampled to 224-pixel ×

224-pixel matrix for every 3 mm scan. Tabulated medical record

data were imported using the NumPy package.
2.5 Tumor–lymph projecting plane

The tumor–lymph projection plane extracted all lymph node

ROIs from each patient’s CT image and projected them onto a

specific slice containing the tumor ROI. Since the initial delineation

using 3D Slicer had already differentiated between tumor and

lymph node ROIs, the main challenge in the projection process

was resolving instances where the same lymph node appeared in

different scan planes. To address this, the breadth-first search

algorithm was employed to identify all ROIs within a complete

lymph node group (16). These ROIs were then assigned a new value

different from the original marker before being masked. This

process was repeated several times until all lymph node ROIs

were successfully overwritten. In certain series of CT images,

lymph node groups were sorted according to the total amount of
Frontiers in Oncology 04
pixels of the ROIs in each group. Subsequently, the max-sized ROI

from each group was extracted and sequentially placed in a list. The

slice containing the max-sized tumor ROI was designated as the

datum plane. The projection prodecure involved creating a mask for

the blank areas of the datum plane, cropping the lymph node ROIs

according to this mask, and then adding the processed lymph ROIs

onto the datum plane (Figure 1). As all lymph ROIs in the list were

projected onto the datum plane in sequence, ROIs from different

CT slices were combined into a single two-dimensional image,

preserving the majority of image features and spatial information.

The images processed using this method formed the projecting

group (PJ group).
2.6 Image preprocessing in control groups

The sets containing only tumor ROIs were designated as

training data for the tumor group (TM group). Meanwhile, to

evaluate the impact of projection planes on model performance, a

control set containing only local features was required. Using the

breadth-first search algorithm, all lymph node ROIs were identified

as described above. Lymph node ROIs and tumor ROIs from a

series of CT images were then cropped to the center of each slice

and resized to a uniform scale. These ROIs were sequentially

stitched together onto the same image, effectively eliminating

differences in spatial features within the zooming and centering

group (ZC group) (Figure 2).
2.7 Dataset and ResNet-CBAM model

The training images for the PJ, TM, and ZC groups were created

following the aforementioned image preprocessing procedures. The
FIGURE 1

Construction of the projection plane. (A) The slice containing the max size tumor ROI was set as the datum plane, and lymph ROIs from different
slices were sequentially projected onto it. (B) On the datum plane, the relative size and position features between the tumor ROI and lymph ROIs
were preserved. (C) After masking, the final training image contained only the ROIs.
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model training tasks in this study primarily involved predicting

survival risk and survival prognosis. For the task of predicting

patient survival risk, samples were categorized into high- and low-

risk groups based on the median survival time of the total sample.

Specifically, samples with a survival time exceeding the median

survival time were labeled as “1”, while the remaining samples were

labeled as “0”. For the survival prognosis prediction task, samples

were classified according to survival durations of 1, 3, and 5 years

and were similarly labeled as “1” and “0”. Image enhancement was

applied using random flipping (50% probability) and random

rotation (− 60° to +60°). Following this procedure, the number of

positive samples was doubled. Negative samples were scaled

accordingly to maintain a balanced composition between positive

and negative samples. Based on the universal patient coding used in

both CT notes and medical records, each patient’s sample image

was set as the input, while the corresponding label in tensor form

was assigned as the output label. The total dataset was randomly

split into a training set and a testing set at a 7:3 ratio using the cross-

validation method.

The main model was a 50-layer ResNet CNNwith an incorporated

CBAM module (Figure 3). ResNet50 is a commonly used

convolutional neural network that optimizes gradient descent

through a residual mechanism (17). Meanwhile, CBAM serves as an

enhancementmodule to improve themodel’s attention to both channel

and spatial information (18), addressing the limited ability of CNN to

extract global and spatial features effectively. For the feature maps

extracted by the CNN, CBAM applied two consecutive weight

enhancement operations. First, global average pooling and global

maximum pooling are used to extract features along the channel

dimension. The two parts of channel features were fused into

channel weights through a fully connected layer. In the second step,

feature maps underwent max pooling and mean pooling similarly but

were then processed by a convolutional layer to obtain spatial weights.

Feature maps sequentially receiving channel and spatial weight

adjustments were then passed through a fully connected network
Frontiers in Oncology 05
with nonlinear activation. The cross-entropy function was used to

compute the loss value, with L2 regularization applied at a coefficient of

1e−4. The Adaptive Moment Estimation (ADAM) optimizer was

employed for parameter updates, with learning rate set at 5e−5.

Given the complexity and robustness of the concatenated model,

ridge regularization was used to mitigate overfitting. Considering the

small sample size, a smaller batch sizes was selected (for batch size = 4).

The model underwent 50 training epochs, and results were recorded.
2.8 Preprocessing and training on a
mechanical model

In further studies, the training model used by the PJ group was

compared horizontally with other machine learning models. The

comparison models adopted labels calibrated using the same

methods described above as fitting targets, with ResNet50 trained

as the feature extractor. Imaging feature scores were extracted using

the trained ResNet50 network for tumor ROIs and the three largest

lymph node ROIs. For samples in which no suspected positive

lymph nodes were identified in the CT images, blank images were

used to supplement the training images, and feature scores were

similarly obtained. These four imaging scores for each sample

formed a feature vector, which served as the independent variable

for the machine learning models, while the target labels remained

consistent with the objectives of ResNet50. The machine learning

models used as controls included support vector machines (SVM),

logistic regression (LR), and K-nearest neighbors (KNN), all

imported from the scikit-learn library.
2.9 Model evaluation

Scores (including accuracy, precision, specificity, recall, and F1-

score) evaluating the outputs on the testing set were calculated using
FIGURE 2

Image preprocessing of all groups.
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the confusion matrix. For the task of predicting median survival,

samples were divided according to the prediction results of the

model, and the Kaplan–Meier (K-M) survival curve was generated

using RStudio based on the original survival events and survival

time of the samples. The log-rank test was used to assess whether

there was a statistically significant difference in survival risk

between the high- and low-risk groups classified by the model.

For the task of predicting survival time (1, 3, and 5 years), the ROC

curve, plotted using RStudio, provided a more visual presentation.
3 Results

3.1 ResNet-CBAM model trained on PJ,
TM, and ZC group datasets for predicting
median survival

From Table 2, it is evident that the accuracy of the model

trained on the PJ group dataset was significantly higher than that of

models trained on the TM and ZC group datasets (Table 2). This

suggests that the PJ group model more accurately differentiated

between patients with low survival risk (survival time exceeding the

median survival time) and high survival risk (survival time below

the median survival time). Meanwhile, considering the performance

of each group in terms of precision, specificity, recall, and F1-score,

the PJ group model also demonstrated superior sensitivity and

specificity compared to other models.
Frontiers in Oncology 06
The superiority of the PJ group model was more intuitively

reflected in the K-M curves (Figures 4–6). The Log-rank test

demonstrated that the PJ group model effectively distinguished

between high- and low-risk patients. Although the TM and ZC

group models also achieved a statistically significant level of

distinction, the survival risk differences between the stratified

groups predicted by the PJ group model were visually more

pronounced than those of the other two groups. This indicated

that the PJ group model exhibited significantly stronger

discriminatory power in identifying high-risk patients compared

to the other models. Notably, under the PJ group model, no patients

with a potential survival time exceeding 100 months (approximately

8 years) were misclassified as high-risk.
3.2 ResNet-CBAM model trained on PJ,
TM, and ZC group datasets for predicting
1-, 3-, and 5-year survival

According to Table 3, the ResNet-CBAM model demonstrated

significantly better training performance in the PJ group compared

to the TM and ZC groups for both short- and long-term survival

predictions (Table 3). The ZC group, intentionally designed as a

control group, exhibited unsatisfactory performance even for short-

term survival prediction (1-year survival; accuracy: ZC 0.810 vs. PJ

0.980, TM 0.937). This suboptimal performance was attributed to

the ZC group’s training images, which retained local features of

tumors and lymph nodes but deliberately removed spatial

relationships and relative weights between the two. The results

suggested that the inclusion of lymph node features, when

misrepresented, hampered model performance and introduced

noise. Moreover, as the survival prediction timeline extends,

confounding factors increase, and the number of effective training

samples decreases, leading to performance declines across all groups

in 5-year survival predictions. Nevertheless, the PJ group, which

incorporated lymph node features and tumor–lymph node spatial

relationship features, achieved commendable results compared to

the TM group (accuracy: PJ 0.778 vs. TM 0.719) in long-term

survival prediction.
TABLE 2 Performance of ResNet-CBAM in predicting median survival in
the PJ, TM, and ZC groups.

PJ group TM group ZC group

Accuracy 0.849 0.765 0.635

Precision 0.847 0.822 0.670

Specificity 0.845 0.852 0.732

Recall 0.853 0.678 0.538

F1-score 0.850 0.743 0.597
FIGURE 3

Structural diagram of ResNet-CBAM model.
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The ROC curve indicated that (Figures 7–9), for the 1-year

short-term survival prediction task, the performance of the PJ group

model was quite similar to that of the TM group (AUC: PJ 0.992 vs.

TM 0.985). However, the ZC group demonstrated significantly

poorer performance compared to the other two groups (AUC: ZC
Frontiers in Oncology 07
0.896). The PJ group model maintained a high level of

discriminative ability for long-term survival predictions (3-year

AUC: PJ 0.913; 5-year AUC: PJ 0.835). In contrast, the TM and

ZC group models showed a considerably weaker ability to predict

long-term survival.
FIGURE 4

K-M curves of samples classified by ResNet-CBAM in the PJ group.
FIGURE 5

K-M curves of samples classified by ResNet-CBAM in the TM group.
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3.3 Performance of SVM, LR, and KNN for
predicting 1-, 3-, and 5-year survival

The machine learning models demonstrated satisfactory

performance in predicting short-term survival, with AUC scores

consistently exceeding 0.95 (Figures 10–12). However, similar to the

results observed in the TM group, these models were unable to

maintain high discriminative power when tasked with long-term

survival predictions. For instance, in the PJ group, the ResNet-

CBAM achieved an AUC of 0.913 for predicting 3-year survival,

while all machine learning models had AUCs below 0.9. Likewise,

the ResNet-CBAM in the PJ group attained an AUC of 0.835 for 5-

year survival prediction, whereas the AUCs of all machine learning

models were close to or below 0.75. These findings suggest that

while machine learning models can generally match the predictive

accuracy of the PJ group’s ResNet-CBAM for short-term survival,

they perform worse than the latter in long-term survival

prediction tasks.
Frontiers in Oncology 08
4 Discussion

With advancements in endoscopic technology, early-stage

esophageal cancer cases identified through screening can now be

resected without the need for additional treatment, significantly

improving patient outcomes (19). However, substantial proportion

of cases are still diagnosed at an advanced stage and typically require a

comprehensive treatment approach combining surgery, radiotherapy,

and chemotherapy (20). For these patients, the primary challenge lies

not in diagnosis but in the systematic design of optimal treatment

strategies and accurate prognosis evaluation. Existing clinical

guidelines provide standardized measures for managing specific

clinical manifestations or symptoms at different treatment stages,

offering key treatment recommendations (20). Consequently, two

patients with similar clinical manifestations treated at the same

clinical center often receive closely aligned treatment plans and

share comparable prognoses. Building on this foundation, deep

learning models trained on real-world data show promise in
TABLE 3 Performance of ResNet-CBAM in predicting 1-, 3-, and 5-year survival in the PJ, TM, and ZC groups.

1-Year survival 3-Year survival 5-Year survival

PJ TM ZC PJ TM ZC PJ TM ZC

Accuracy 0.981 0.937 0.810 0.833 0.755 0.691 0.778 0.719 0.667

Precision 0.994 0.931 0.870 0.856 0.671 0.730 0.815 0.783 0.677

Specificity 0.994 0.930 0.872 0.861 0.630 0.843 0.817 0.821 0.783

Recall 0.969 0.943 0.756 0.805 0.906 0.509 0.742 0.621 0.532

F1-score 0.981 0.937 0.809 0.830 0.771 0.600 0.776 0.692 0.596
FIGURE 6

K-M curves of samples classified by ResNet-CBAM in the ZC group.
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predicting patient outcomes. By leveraging preoperative CT images

and other initial diagnostic materials, these models could aid in

delivering personalized prognostic predictions, potentially improving

the precision of treatment planning in advanced esophageal

cancer cases.

Recognizing the importance of lymph node features in CT image

analysis for esophageal cancer, various studies explored ways to
Frontiers in Oncology 09
effectively incorporate these features into prognostic models

(21, 22). Malignant lymph node enlargement was a key indicator of

tumor metastasis, and lymph node ROIs provided complementary

information to tumor ROIs. However, past approaches neglected the

spatial relations between the two (23). The spatial distance between

esophageal cancer tumors and lymph nodes was an important factor

in evaluating the malignancy of the tumor. Enlarged or abnormally
FIGURE 7

ROC curves of ResNet-CBAM in predicting 1-year survival in the PJ, TM, and ZC groups.
FIGURE 8

ROC curves of models in predicting 3-year survival in the PJ, TM, and ZC groups.
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dense lymph nodes near the tumor often indicated that the tumor

might have undergone local lymphatic spread, while distant lymph

node metastasis potentially suggested a more advanced stage of the

disease. The unique longitudinal lymphatic drainage structure of the

esophagus meant that tumors not only could spread to nearby lymph

nodes but also could extend longitudinally to mediastinal, cervical,

and abdominal lymph nodes. This complex spatial relationship
Frontiers in Oncology 10
determined its distinct patterns of invasion and metastasis. When

the positional relationship between the tumor and lymph nodes

indicated extensive or multiple metastases, the prognosis was

generally poor. Additionally, significant lymph node enlargement

or the formation of clustered lymph node masses often suggested

strong tumor invasiveness and a high tumor burden. Imaging-based

textural features were also highly correlated with tumor behavior.
FIGURE 9

ROC curves of ResNet-CBAM in predicting 5-year survival in the PJ, TM, and ZC groups.
FIGURE 10

ROC curves of models for predicting 1-year survival.
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More irregular tumor textures and subtle microlesions along invasion

paths (e.g., subclinical micrometastases in lymph nodes) were

associated with worse prognoses (24).

To preserve spatial relationship features across ROIs from

different planes, we adopted a geometric projection method that

mapped ROIs onto a shared coordinate system. This approach
Frontiers in Oncology 11
enabled the retention of spatial positional relationships within a

unified framework. Specifically, a tumor–lymph projection plane

was constructed to extract the spatial relationship features between

tumors and lymph nodes. The key step involved projecting the ROIs

of potentially metastatic lymph nodes onto the cross-sectional

images where the tumor ROI reached its maximum size. This
FIGURE 12

ROC curves of models for predicting 5-year survival.
FIGURE 11

ROC curves of models for predicting 3-year survival.
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method effectively preserved most of the spatial relationships

between tumor nodules and lymph nodes while increasing the

proportion of relevant ROI areas in the training images. The PJ

group demonstrated superior performance in predicting long-term

survival prognosis (5-year survival) compared to other groups, such

as the TM group. The accuracy of the PJ group exceeded 0.77,

whereas the accuracy of the TM group was approximately 0.7.

Furthermore, the PJ group outperformed in other key metrics,

achieving a precision of 0.815, a specificity of 0.817, a recall of 0.742,

and an F1-score of 0.776. Even in challenging long-term prognostic

prediction tasks, the model trained on the PJ group dataset

effectively extracted critical features and aligned with the

prediction target. The superiority of the PJ group model was

more intuitively reflected in the K-M curves. The survival risk

differences between the stratified groups predicted by the PJ group

model were visually more pronounced than those of the other two

groups. This indicated that the PJ-group model exhibited

significantly stronger discriminatory power in identifying high-

risk patients compared to the other models.

In our study, the ZC group served as a control group with notable

design flaws. Spatial information, such as the relative positions and

directions of tumor and lymph node ROIs, was eliminated. Additionally,

lymph node ROIs were artificially enlarged to match the size of tumor

ROIs, disrupting the natural size-weighting ratio between the two. These

modifications not only diminished the potential of spatial features but

also overemphasized lymph node characteristics, leading to interference

in the model’s training. Performance metrics clearly illustrate the

limitations of the ZC group. For 3-year survival prediction, the

accuracy of the ZC group was only 0.691, compared to the PJ-group

and TM group, which achieved accuracies of 0.833 and 0.755,

respectively. Similarly, the AUC for the ZC group was just 0.710,

significantly lower than that of the other groups. As prediction periods

lengthen and task complexity increases, the ZC group model becomes

less effective. Overemphasis on lymph node features, combined with the

elimination of spatial relationships, impeded the model’s ability to

improve its prognostic performance.

Esophageal cancer is a highly malignant tumor characterized by

early lymph node metastasis. The number and extent of lymph node

metastases, along with the shape and volume of metastatic lymph

nodes, directly impact the prognosis (25, 26). However, whether

traditional CT, contrast-enhanced CT, or PET-CT is used, all these

imaging methods rely on the principle of computed tomography. The

extensive lymphatic drainage of the esophagus results in lymph nodes

being distributed across different imaging slices. This presents

significant challenges for thoracic surgeons and radiologists in

image interpretation and comprehensive evaluation. Notably, the

spatial relationship between lymph nodes and the tumor offers

valuable insights into the tumor’s behavioral characteristics and

malignancy level. Thoracic surgeons only need to outline the

enlarged lymph nodes and tumor regions on different imaging

slices. With the assistance of the model, they can evaluate tumor

malignancy and survival risk. In this study, lymph node ROIs from

different slices were projected onto the slice containing the tumor

ROI within a specific CT image series. This projection method

captured key tumor features, secondary lymph node features, and
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their spatial relationships. The results highlighted the importance of

these spatial relationships in predicting the prognosis of esophageal

cancer. Additionally, feature scores of tumors and lymph nodes

extracted using the ResNet model were learnable by machine

learning models, highlighting their potential relevance to survival

prognosis (27). However, machine learning models exhibited

unsatisfactory performance in long-term prognosis prediction due

to the significant loss of original image information in the feature

scores. In contrast, ResNet-CBAM effectively extracted hidden spatial

features and fundamental local features from the tumor–lymph node

projection plane. By leveraging convolutional networks and fully

connected neural networks, it successfully mapped these features to

survival prediction targets. The ResNet-CBAM model trained on the

projection plane demonstrated robust performance in predicting

both short- and long-term survival. Future plans included

conducting multicenter clinical experiments to evaluate the efficacy

and robustness of ResNet-CBAM, based on the tumor–lymph node

projection method, across diverse patient populations. With this

model, such assessments could even be integrated into preoperative

examinations, enabling physicians to personalize treatment plans and

closely monitor patients at higher survival risk.
5 Conclusion

The ResNet-CBAM model, trained on tumor–lymph projection

planes, accurately distinguished esophageal cancer patients at high

or low risk of death and predicted both of long- and short-term

survival with superior performance compared to traditional models.

By extracting features of spatial relations between the tumor and

lymph nodes, it provided insights into tumor invasiveness,

metastatic pathways, and other behavioral characteristics.
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