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Grzanka D (2025) The role of DNA
methylation and demethylation in bladder
cancer: a focus on therapeutic strategies.
Front. Oncol. 15:1567242.
doi: 10.3389/fonc.2025.1567242

COPYRIGHT

© 2025 Strasenburg, Borowczak, Piątkowska,
Jóźwicki and Grzanka. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 26 June 2025

DOI 10.3389/fonc.2025.1567242
The role of DNA methylation and
demethylation in bladder cancer:
a focus on therapeutic strategies
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DNA methylation is the best-known epigenetic mechanism regulating gene

expression without altering the DNA sequence. Its counterpart, known as DNA

demethylation, is equally important and enables the activation of previously

silenced genes. DNA demethylation has attracted interest in the scientific

community following the landmark discovery that Ten-Eleven Translocation (TET)

proteins can convert 5-methylcytosine to 5-hydroxymethylcytosine. A growing

body of research indicates that changes in TET protein levels and 5-

hydroxymethylcytosine content are hallmarks of cancer. These epigenetic

changes appear to play a critical role in the development of malignancies

characterized by high levels of somatic mutations and genetic instability. Bladder

cancer is among the most common cancers worldwide and, despite aggressive

treatment, remains associated with high mortality and poor prognosis. The lack of

reliable diagnostic and prognostic markers poses a significant challenge in its

management, highlighting the urgent need for novel biomarkers to enable earlier

diagnosis and more accurate prediction of clinical outcomes. This review examines

epigenetic alterations associated with bladder cancer and their clinical implications.

We focus on the impact of DNA methylation and demethylation on oncogene

regulation, summarize scientific evidence supporting their role in bladder cancer

development and progression, and briefly explore novel therapeutic strategies

targeting those epigenetic mechanisms.
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1 Introduction

Bladder cancer (BLCA) is one of the most prevalent malignancies worldwide,

accounting for over 550,000 new cases and more than 200,000 deaths each year (1, 2).

The number of individuals living with bladder cancer in the United States is projected to

exceed 800,000 by 2030 (1). The disease predominantly affects older adults and occurs three

to four times more frequently in men than in women, largely due to exposure to risk

factors, such as smoking and occupational carcinogens, including aromatic amines. Among
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these, tobacco smoking is the most significant, contributing to over

50% of cases in men and nearly 40% in women (2). The

carcinogenic effects of tobacco smoke and other exposures are

mediated through both genetic and epigenetic alterations,

including the accumulation of DNA methylation changes and the

generation of reactive oxygen species that induce DNA damage.

Other risk factors for bladder cancer include chronic bladder

inflammation, such as that caused by Schistosoma haematobium

infection, prolonged catheter use, pelvic radiation, and occupational

exposure to chemicals, like benzidine and b-naphthylamine (2, 3).

These molecular changes underlie the pathogenesis of urothelial

carcinoma (UC), the predominant histologic type of bladder cancer,

which accounts for over 90% of bladder cancer cases in developed

countries. UC can be classified into non-muscle-invasive (NMIBC;

stages Ta, T1, carcinoma in situ [CIS]) and muscle-invasive (MIBC;

stage T2 and higher) forms (2).

Clinically, bladder cancer presents with a range of symptoms

depending on the stage and extent of disease. In early-stage disease,

the most common manifestation is painless hematuria, reported in

up to 85% of patients. However, many early-stage tumors are

asymptomatic or associated with nonspecific urinary symptoms,

leading to delayed diagnosis. In advanced stages, patients may

experience pelvic pain, dysuria, or systemic symptoms such as

bone pain or unintentional weight loss (4).A significant challenge

in BLCA management is the lack of reliable diagnostic and

prognostic markers. Current methods, like urine cytology and

cystoscopy are commonly used for diagnosis and monitoring;

however, urine cytology lacks sensitivity in detecting low-grade

tumors, while cystoscopy, an invasive procedure, still misses up to

30% of malignant cases (3). This underscores the urgent need for

novel biomarkers for early cancer detection and prognosis.

Current treatment regimens vary depending on the disease

stage (5). NMIBC is usually managed by transurethral resection

followed by intravesical instillations of mitomycin C or Bacillus

Calmette–Guérin(BCG). Radical cystectomy with or without

neoadjuvant cisplatin-based chemotherapy remains the standard

of care for MIBC. Metastatic disease is treated with platinum-based

chemotherapy, followed by maintenance avelumab, an anti-PD-L1

agent, in patients without disease progression. Cisplatin-ineligible

patients with positive PD-L1 status, as well as those who progress

after platinum-based therapy, may receive atezolizumab or

pembrolizumab. Targeted therapies, such as enfortumabvedotin

and erdafitinib, are used in later lines and have expanded the

range of available options. However, many patients develop

resistance or experience treatment-related toxicity, highlighting

the need for alternative approaches (5).

Over the past decade, the cancer epigenome has come to the

forefront of oncogenesis, bringing significant implications for

cancer initiation and progression. Epigenetics delves into heritable

modifications that alter the expression of genes without changing

their sequences (6). Epigenetic mechanisms, including DNA

methylation and demethylation, play a key role in maintaining

genome integrity. Disruption of these mechanisms caused the

accumulation of genetic alterations, and leads to genetic

instability, a hallmark of cancer (7, 8).
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In this review, we present the impact of DNA methylation and

demethylation on BLCA and discuss novel therapeutic strategies.

We summarize the current state of knowledge and highlight future

directions in the field.
2 DNA methylation

DNA methylation is one of the first known epigenetic

modifications that regulates gene expression without changing its

sequence. This process involves transferring a methyl group from

S-adenosyl-L-methionine (SAM) to the 5′ position of cytosine,

forming 5-methylcytosine (5-mC). DNA methylation is catalyzed

by DNA methyltransferases (DNMTs), including DNMT1,

DNMT3a and DNMT3b. DNMT1 preserves the methylation

pattern during DNA replication. DNMT3a and DNMT3b are

active methyltransferases that play a role in establishing DNA

methylation patterns during early mammalian development and

in germ cells (9). DNA methylation typically occurs at CpG

dinucleotides, which are regions in the DNA sequence where a

cytosine is followed by a guanine, separated by a single phosphate

group in the 5′ to 3′ direction. In mammals, approximately 80% of

CpG sites are methylated and are strongly associated with gene

repression. CpG islands (CGIs), on the other hand, are genomic

regions characterized by a local increase in the density of CpG

dinucleotides. They are often found near promoter regions and

typically remain unmethylated (10, 11).It is well known that normal

epigenetic modifications are altered during the initiation and

progression of tumorigenesis, leading to widespread changes in

DNA methylation patterns. The cancer epigenome is characterized

by global hypomethylation (with methylation levels reduced from

around 80% to about 50%) and local DNA hypermethylation of

CGI promoters. CGI hypermethylation is often associated with the

silencing of tumor suppressor genes, genes that regulate cell growth,

and downstream signaling pathways (Figure 1) (12). Indeed,

numerous studies have identified several cancer-related genes that

undergo aberrant DNA methylation in tumor cells. An abnormal

methylation pattern in BLCA cells has recently been incorporated

into multigene predictive models. Panels identifying specific genes

like MYO3A, CA10, NKX6-2, and DBC1, which show high

diagnostic accuracy for BLCA detection (13) also highlight how

methylation states can serve as biomarkers. Additionally, the study

by Olkhov-Mitselet et al. on the methylation differences in GP5,

EOMES, and ZSCAN12 genes between low and high-grade BLCA

underscores the prognostic potential of these patterns (14).

Wolff et al. found that non-muscle invasive BLCA and muscle

invasive BLCA follow distinct epigenetic pathways in tumorigenesis.

The study revealed that invasive tumors exhibited widespread

hypermethylation, while non-invasive tumors exhibited

hypomethylation. The IPF1, GALR1, TAL1, PENK, and TJP2 genes

were significantly hypermethylated in tumor-derived samples

compared to both cancer-free urothelial samples and corresponding

normal-appearing tissues. Sequencing analysis confirmed the absence

of abnormal DNA methylation patterns in the urothelium of a BLCA-

free patient, with low levels of DNA methylation observed in normal-
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appearing tissue. In contrast, the urothelial tumor from the same

patient exhibited a high level of DNA methylation. These results

suggest that epigenetic alterations are early events in bladder

carcinogenesis and that changes in methylation patterns can be

detected in apparently normal cells before tumorigenesis occurs.

These findings have important implications for the earlier detection

of BLCA and the identification of patients at increased risk for

recurrence. A substantial body of research supports the use of

disease-related methylation changes as biomarkers for various

diseases, including BLCA (15).

Bladder EpiCheck is a post-treatment monitoring tool designed

to detect the recurrence of NMIBC in patients with a prior diagnosis.

This approach has the potential to reduce the frequency of follow-up

cystoscopies. The test analyzes 15 methylation biomarkers in urine to

identify BLCA. In a study involving 353 patients the test effectively

rules out high-grade tumors, with a negative predictive value of 99.3%

and shows a sensitivity of 91.7% for detecting their presence. The

authors conclude that the test can help reduce unnecessary

cystoscopy procedures in the follow-up of NMIBC, as it reliably

detects high-grade recurrences. By alternating cystoscopy and

cytology with Bladder EpiCheck, the burden of these procedures

could be significantly reduced (16).

The precise mechanisms underlying the reduction of DNA

methylation in cancer cells remain poorly understood. One

proposed explanation is the involvement of TET proteins,

essential enzymes that mediate active DNA demethylation.
Frontiers in Oncology 03
Alterations in TET activity and function have been linked to

malignant transformation. Understanding how TET proteins and

their regulators affect cancer development may provide valuable

insights into potential therapeutic strategies and diagnostics.
3 DNA demethylation

Since 2009, DNA demethylation has attracted considerable

attention due to the discovery that Ten-Eleven-Translocation

(TET) proteins convert 5mC to 5-hydroxymethylcytosine (5-

hmC) (17). Two distinct pathways for demethylation have been

identified: active demethylation and passive demethylation.

Active DNA demethylation can occur in both dividing and

nondividing cells, is initiated by the TET enzymes (TET1, TET2,

TET3) and requires a-ketoglutarate (aKG) as a co-substrate and

Fe2+ and vitamin C as co-factors; therefore, TET activity depends

on the availability of these factors. The first step of active

demethylation involves the gradual oxidation of 5-mC to 5-hmC,

5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC).

Subsequently, 5-fC and 5-caC are recognized by the thymine

DNA glycosylase (TDG), which activates the base excision repair

pathway (BER) and leads to the replacement of the modified

cytosine with an unmodified cytosine (18). The exact mechanism

by which TET enzymes convert 5-mC to unmethylated cytosine

during active DNA demethylation is shown in Figure 2.
FIGURE 1

DNA methylation (A) DNA methylation pathways. (B) DNA methylation pattern in cancer. Created with BioRender.com.
frontiersin.org
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Passive DNA demethylation occurs in dividing cells. The

maintenance of previously established DNA methylation patterns

requires continuous methylation of hemimethylated DNA, a

process ensured by the activity of DNMTs during DNA

replication. Inhibition or dysfunction of DNMTs allows newly

synthesized cytosines to remain unmethylated, leading to a

gradual reduction in overall DNA methylation levels with each

round of cell division (19).
3.1 DNA demethylation: 5-
hydroxymethylcytosine

5-hmC is a stable modification with much higher levels in the

genome than its oxidized derivatives (20). 5-hmC is not only an

intermediate of passive and active DNA demethylation but also

partakes in the regulation of gene expression through association

with various epigenetic regulators (21, 22). The level of 5-hmC is

relatively low in all cells, but the distribution of 5-hmC is cell type-

dependent and differs between specific tissues. For instance, its levels

are higher in the central nervous system (CNS) and embryonic stem

cells (ESCs) compared to peripheral tissues (23, 24). The highest levels

of 5-hmC were found in post-mitotic cells, especially within the CNS,

and significantly lower or undetectable levels in proliferating cells

(except ESCs) (24–26).Extremely reduced levels of 5-hmC were

detected in highly proliferating cancer cells and may contribute to
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worse patient prognosis (25).Despite numerous studies on cancer

epigenetics, the precise role and mechanism of 5-hmC in bladder

tumorigenesis remain unclear. We aim to highlight recent reports

exploring the involvement of 5-hmC in BLCA and its impact on

patient prognosis.

Peng et al. explored the role of 5-hmC in BLCA and

characterized its association with tumorigenesis, progression, and

patient outcomes. They used immunohistochemistry (IHC) to

compare the levels of 5-hmC in matched BLCA tissue (n=135)

and normal bladder tissue (n=135).

5-hmC levels were significantly lower in BLCA than in normal

bladder tissue. Moreover, patients with partial or complete loss of 5-

hmC had shorter overall survival (OS), higher tumor stage, and lymph

node metastases. The 5-hmC content was also reduced in BLCA cells

(T24, 5637, UMUC-3, and J82) compared to controls (SV-HUC-1 and

Hum-u007). Using a hydroxymethylated DNA immunoprecipitation

(hMeDIP) approach coupled with deep sequencing (hMeDIP-seq), the

authors found that 5-hmC is enriched in gene-rich regions in normal

bladder genome and is relatively low in the BLCA genome. They

mapped the hypomethylated genes revealing their close association

with cancer-related pathways. The authors’ findings indicate that the

loss of 5-hmC represents a novel hallmark of BLCA, with significant

implications for prognosis and patient outcomes (27).

Munari et al. investigated the cancer-specific loss and distribution

of 5-hmC in bladder urothelial cell carcinoma. They demonstrated

that 5-hmC nuclear staining levels in BLCA are lower than in normal
FIGURE 2

Active DNA demethylation. Created with BioRender.com.
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bladder tissue. However, this study showed no direct association

between 5-hmC distribution patterns, cancer cell proliferation index

measured by Ki-67 staining, and clinicopathological features of BLCA

or patients’ prognosis (28). The results of this study contrast reports

where 5-hmC levels were negatively correlated with tumor grade and

showed prognostic significance (29, 30). However, the authors

acknowledged that the overall number of progression and disease-

specific death events was low, so the study was underpowered to detect

small prognostic differences. Moreover, 5-hmC levels did not vary

between invasive and non-invasive carcinomas, suggesting that loss of

5-hmCmay occur early in bladder carcinogenesis. Notably, changes in

5-hmC levels were restricted to BLCA cells, whereas tumor-associated

stroma and adjacent benign bladder tissue showed robustly high 5-

hmC levels, suggesting that low 5-hmC may be useful as a biomarker

for cancer detection (28).

Qi et al. investigated changes in 5-hmC during genitourinary

(GU) carcinogenesis, focusing on prostate, urothelial, and renal

cancers. They confirmed the presence of tissue-specific 5-hmC

patterns in both healthy and cancerous GU tissues. Their findings

revealed that normal kidney tissues exhibited the highest levels of 5-

hmC, while normal urothelial tissues showed the lowest 5-hmC levels

at the gene body. Furthermore, the analysis revealed a significant loss

of 5-hmC in all three types of GU cancers compared to their matched

normal tissues. Specifically, they observed a consistent pattern of

hydroxymethylation at both the promoter and gene body of HOXB8

and HOXB9 in normal GU tissues. The promoter of the oncogene

WNT7B was uniformly hydroxymethylated in GU cancers but not in

normal tissues. Additionally, they demonstrated that both gain and

loss of 5-hmC occurred during GU tumorigenesis. Genes with

increased 5-hmC levels were predominantly involved in pathways

related to stemness, hypoxia, and immunity, while genes with

decreased 5-hmC levels were associated with pathways related to

proliferation, metabolism, and cell adhesion. Overall, these findings

suggest that 5-hmC alterations may serve as a hallmark of GU

tumorigenesis (31).

The cancer epigenome is characterized by global hypomethylation

with locus-specific hypermethylation. Variation in methylation

patterns can inactivate tumor suppressor genes and activate

protooncogenes, a hallmark of cancer. Bladder cancer is

characterized by a global loss of 5-hmC, suggesting an important

role in cancer development and progression. Several mechanisms may

underlie 5-hmC depletion in cancer, including mutation of TET

enzymes, reduction of TET activity by hypoxia, or IDHs mutations.

It seems important that only a few reports show an association with

clinical and pathological features. There is an urgent need for further

studies to explore the prognostic value of this marker.
3.2 DNA demethylation: TET family of
enzymes

There are three members of the TET family of enzymes, TET1,

TET2, and TET3, which act as iron(II)/a-ketoglutarate (Fe(II)/a-
KG)-dependent dioxygenases. TET proteins play a central role in

DNA demethylation, catalyzing the sequential oxidation of 5-mC to
Frontiers in Oncology 05
5-hmC, 5-fC, and 5-CaC (17, 32). Research increasingly shows the

importance of TET-mediated 5-mC oxidation in health and

diseases, including cancers. Dysfunctions of TET proteins, often

due to mutations or aberrant expression of their regulators, are

common in hematological disorders and less frequent in solid

cancers. This suggests other mechanisms are likely responsible for

the frequent loss of 5-hmC in solid tumors (33–35).The enzymatic

activity of TET strongly depends on the availability of Fe2+ as a

reaction cofactor and aKG as a co-substrate. aKG is generated from

isocitrate in the citric acid cycle catalyzed by the isocitrate

dehydrogenase (IDH). Alterations in DNA methylation resulting

from IDH mutations are common in a wide range of cancers,

including but not limited to acute myeloid leukemia, glioma, and

cholangiocarcinoma (Figure 3) (36–39).

Here, we summarize several studies on TET proteins and their

involvement in bladder tumorigenesis. It is important to emphasize

that data on TET proteins in BLCA are limited, despite their well-

established role in other cancers.

Zhu et al. identified a new signaling pathway that may be

responsible for the development of invasive BLCA. Although the

study does not directly address the topic of epigenetics, the findings

suggest that CD44s deregulation may be linked to the TET protein.

The authors revealed that overexpression of autophagy-related gene

7 (ATG7) promotes the degradation of AU-rich element RNA-

binding protein 1 (AUF1), which stabilizes TET1 mRNA.

Upregulation of TET1 contributes to the demethylation of the

ubiquitin-specific peptidase 28 (USP28) promoter, increasing

USP28 protein expression and leading to the accumulation of

CD44s protein. CD44s inhibits RhoGDIb degradation, which in

turn promotes the development of invasive BLCA and lung

metastasis. The interplay between ATG7, and its potential impact

on the stability and function of TET proteins represents a promising

avenue for future investigation (40).

Hu et al. reported a novel XIST-TET1-p53 regulatory network

in BLCA cells that affects cell proliferation, migration, and

apoptosis. The authors performed RNA immunoprecipitation

(RIP) and chromatin immunoprecipitation (CHIP) assays in T24

and 5637 cells. The RIP experiment showed that X-inactive specific

transcript (XIST) can bind to TET1. XIST knockdown in the T24

cell line significantly upregulated TET1 and p53 promoter binding

levels, whereas overexpression of XIST in the 5637 cell line

significantly downregulated TET1 and p53 promoter binding

levels. The results demonstrated that TET1 can promote p53

expression by binding to the promoter region of p53, while XIST

inhibits p53 expression by binding to TET1. These findings suggest

that XIST acts as an epigenetic regulator, directly interacting with

TET proteins and affecting their functions in BLCA (41).

Yan et al. reported that TET1 expression was downregulated in

BLCA samples compared to matched adjacent normal bladder

tissue and was inversely associated with tumor stage and overall

survival. The authors also demonstrated that adherens junction-

associated protein 1 (AJAP1) was downregulated in BLCA tissue,

particularly in muscle-invasive BLCA specimens, compared to non-

muscle-invasive BLCA specimens. AJAP1 levels negatively

correlated with T stage and grade, and patients with low AJAP1
frontiersin.org
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mRNA levels had shorter overall survival. To confirm that AJAP1

can be silenced by DNA methylation, the researchers treated T24

and J82 cell lines with the DNA methylation inhibitor 5-aza-dC.

After treatment, AJAP1 expression was significantly increased in

both cell lines, suggesting that AJAP1 is regulated by promoter

methylation. Furthermore, they found that TET1 maintained the

hypomethylation in the AJAP1 gene promoter. Downregulation of

TET1 in BLCA cells failed to maintain AJAP1 expression, leading to

the activation of the Wnt/b-catenin signaling pathway. These data

suggest that TET1 suppresses BLCA cell growth through regulation

of the b-catenin signaling pathway (42).

TET proteins may function as tumor suppressor genes, playing

a role in many signaling pathways associated with bladder

carcinogenesis. While current studies have revealed their

interactions with proteins and genes such as CD44s, XIST and

AJAP1, the full scope of TET’s functions in BLCA remains unclear.

Further research is needed to better understand these mechanisms

and the potential of TET as a therapeutic target.
4 Targeting DNA methylation in BLCA

While global hypomethylation of epigenome facilitates the

acquisition of somatic mutation and is a landmark of BLCA,

hypermethylation is a local event that affects predominantly the
Frontiers in Oncology 06
promoter regions of suppressor genes. It occurs early during BLCA

pathogenesis and enables cancer cells to bypass cell cycle control and

evade apoptosis (12, 43). Furthermore, as the disease progresses from

non-muscle invasive to muscle invasive BLCA, the prevalence of the

methylation pattern increases, indicating its role in aggravating cancer

clinical course (15). As such, drugs demethylating and reactivating the

promoter regions of suppressor genes or preventing their methylation

emerged as a promising therapeutic approach, with DNMT inhibitors

constituting the most frequently used type of drugs.

However, despite significant advances in the epigenetics of

BLCA, the armamentarium of available therapeutic agents is

limited. While BLCA patients are routinely treated with

intravesical BCG, intravesical chemotherapy, or cisplatin-based

chemotherapy, depending on the stage of the disease, no DNMT-

targeted strategy is currently used as a standard treatment approach.

Furthermore, most agents showed varied degrees of specificity to

DNMTs. Nucleoside analogues, such as 5-azacitidine and

decitabine have been approved by the FDA for the treatment of

multiple hematological malignancies, but their use is associated

with high toxicity related to low specificity to DNMT (44, 45). Non-

nucleoside analogues inhibit DNMT independently of DNA

incorporation, but bind to DNA, compete for its binding sites of

DNMTs, and seem to cause less side effects (46).

While DNMT inhibitors became a potential treatment modality

for BLCA, they have yet to enter phase III clinical trials.
FIGURE 3

Impact of IDH mutations on DNA methylation patterns. Mutant IDH1/2 generates oncometabolite 2-hydroxyglutarate (2-HG) instead of a-KG, which
inhibits the enzymatic activity of TET proteins. Thus, IDH1/2 play an important role in the regulation of 5-hmC. Inhibition of TET enzymes by 2-HG
leads to hypermethylation of CGIs at gene promoters, disturbs cell differentiation, and promote cancer transformation (36, 89).Created with
BioRender.com.
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Furthermore, despite the rapid development of novel drugs, most

recent studies have focused on adapting DNMT inhibitors with

proven clinical efficacy in other malignancies to BLCA. Particular

attention has been paid to studies incorporating DNMT inhibitors

into other therapeutic regimens and aiming to reduce therapy-

associated toxicities. Below, we organized recent reports regarding

studies targeting DNA methylation in BLCA and discussed their

potential use in clinical practice (Supplementary Table 1).
4.1 5-azacitidine

5-azacitidine (5-Aza) is a cytidine analog and a ribonucleotide

whose incorporation into RNA disassembles polyribosomes,

disturbs the functions of starter RNA, and stops protein

production. Although to a smaller extent, 5-Aza is also

incorporated into DNA and covalently binds to DNMTs,

preventing DNA synthesis. It evokes a dose-dependent

antineoplastic effect in two ways: at lower doses, 5-aza includes

DNA hypomethylation by inhibiting DNMT1 activity while causing

direct cytotoxicity at high doses (47).

In preclinical settings, 5-Aza inhibited the proliferation of

BLCA cells, suppressed cancer growth in mice, and increased the

susceptibility to cisplatin and docetaxel in T24 cells (48–50).

However, the combination of 5-Aza and phenylbutyrate lacked

clinical efficacy in patients with locally advanced and metastatic

BLCA (51). In recent phase II clinical trials, the overall response rate

to 5-Aza in patients with advanced solid tumors reached 4.8% (3/

62) and 12.5% (1/5) in patients receiving 5-Aza, pembrolizumab,

and epacadostat. No data regarding patient results in BLCA alone

were posted (52).

Two phase I clinical trials assessing the safety of CC-486, an oral

analog of 5-azacitidine, were completed in 2018. Von Hoff et al.

reported that CC-486 was well tolerated by patients either in

monotherapy or with carboplatin. Of 22 BLCA patients, 3

(13.6%) achieved partial remission, and the disease control rate

was 36.4% (53). The results of the second trial have not yet been

published (54).
4.2 FdCyd

5-fluoro-2′-deoxycytidine (FdCyd) is a fluoropyrimidine

nucleoside analog that is phosphorylated and incorporated into

DNA, binding to DNMT and inhibiting DNAmethylation. Its rapid

metabolism produces 5-fluoro-2′-deoxyuridine (FdUrd), a

cytotoxic inhibitor of DNA replication. FdCyd, unlike other

cytidine analogs, is stable in aqueous solutions (55, 56). In the

recent phase II clinical trial, 18 patients with urothelial carcinoma

received FdCyd with tetrahydrouridine (THU). One patient (5.6%)

achieved partial response, the median PFS was 3.6 months, and the

4-month PFS probability reached 42%. The treatment was well

tolerated, but the strata were terminated preemptively due to

slow accrual (55).
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4.3 Decitabine

Decitabine (5-aza-2’-deoxycytidine) is a DNMT1 inhibitor,

which, as a deoxyribonucleoside, can be incorporated into DNA

and affect its methylation (47). While decitabine is widely used to

treat leukemia, its potential use in BLCA is still under

investigation (57).

Preclinical studies showed that decitabine restores the

methylation landscape in BLCA (58). Multiple genes responsible

for antitumor and inflammatory response, such as p53, NOTCH1,

and p73, were hypermethylated in BLCA, and their expression

increased after treatment (59, 60). Those effects seemed dose-

dependent and resulted in the inhibition of proliferation,

migration, and invasion and enhanced apoptosis of cancer cells

(61–63). Decitabine demethylated the p16 gene and reactivated p16

activity, thus restoring cellular anticancer response. In T24 cells,

changes resulting from p16 reactivation, such as cell growth

inhibition and G1 cell cycle, persisted after cell division (64).

Other studies proved that those changes were associated with the

inhibition of DNMT1 and DNMT3b and the downregulation of

their mRNA transcript. Since de novomethylation of CGIs occurs in

dividing cells, DNA-demethylating agents require DNA replication

to be effective. However, the precise relationship between their

efficacy and proliferation rate and therapeutic efficacy remains to be

fully elucidated (65).

Decitabine increased cancer cells’ susceptibility to other

therapeutics and changed the activity of pathways traditionally

associated with carcinogenesis. Low doses of decitabine enhanced

the efficacy of cisplatin and gemcitabine in vitro and in vivo (66).

Mechanistically, the treatment increased caspase and the number of

cells entering subG1 and G2/M phases independently of p53 (67).

The inhibition of BLCA stemness may also occur via the activation

of interferon signaling and the suppression of ERK and STAT3

pathways (66, 68, 69). Decitabine increased the efficacy of cisplatin

and gemcitabine in basal-like BLCA cells and mice, while the

combination of gemcitabine, cisplatin, decitabine, and

trichostatinA (TSA) downregulated c-Myc and cyclin D1 genes

and the expression of the antiapoptotic BCL2L1 (66, 70). Pre-

treatment with decitabine and a histone deacetylase inhibitor

enhanced BLCA cells’ sensitivity to cisplatin. Still, this effect was

cell line-specific and lacked efficacy in the 97–1 cisplatin-resistant

cell line (71). Those results aligned with other studies describing

increased efficacy of cisplatin and doxorubicin when combined with

decitabine (60, 72). Wang et al. reported that while neither cisplatin

with entinostat, another histone deacetylase inhibitor, nor

decitabine could alleviate chemoresistance, decitabine with

entinostat synergistically induced apoptosis and cell cycle arrest in

BLCA cells (73).

Despite multiple preclinical studies, we found only two clinical

trials investigating the use of decitabine in BLCA. Kassouf et al.

reported that ten patients with advanced solid tumors were treated

with decitabine and genistein during a phase I/II clinical trial, and 5

of them (50%) achieved stable disease. Among them were patients

with BLCA (74). The results of the second study, a phase I clinical
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trial conducted in 2008, are still unavailable (75). The ability of

genistein to modify the activity of DNMT was recently investigated

to reduce the side effects of BCG treatment in superficial BLCA.

Genistein showed modest improvement in symptoms with no

significant differences in recurrence rates compared to controls.

However, the trial failed to meet the projected enrolment and its

statistical power is limited by small sample size (76).
4.4 Aza-T-dCyd

5-Aza-4’-thio-2’-deoxycytidine (aza-T-dCyd) is a nucleoside

analog and a novel, orally bioavailable DNMT1 inhibitor (77).

Compared to 5-Aza and decitabine, aza-T-dCyd more selectively

depletes DNMT1, allowing for effective therapy while limiting drug-

associated toxicities (78). Aza-T-dCyd showed antitumor activity

alone and in combination with THU in leukemia-bearing mice,

which was attributed to the simultaneous inhibition of DNMT1 and

DNMT3B (79). In BLCA patients, xenograft aza-T-dCyd delayed

tumor growth, inhibited DNMT1 expression, and upregulated the

expression of tumor suppressor p21 (80).
4.5 Guadecitabine

Guadecitabine (or S110) is a second-generation dinucleotide of

decitabine and deoxyguanosine. As a prodrug, it is metabolized to

decitabine and has a longer half-life and activity time than

intravenous (81). Upon activation, guadecitabine inhibits DNMT1

and causes non-specific DNA hypomethylation (82). Combined

with anti-PD-L1 and CTLA-4 agents, guadecitabine reduced the

growth and metastases in the B16F10 murine melanoma model,

which occurred via enhancing effector memory CD8+ T cells and

spleen NK cells while also decreasing the activity of cancer-

associated lymphocytes in the tumor microenvironment (81).

In T24 cells, guadecitabine caused dose-dependent demethylation

at concentrations similar to 5-Aza, but the effect decreased when the

dose exceeded 10 mmol/L (83). Guadecitabine demethylated the p16

promoter, increasing its expression and stopping mouse tumor growth.

The treatment was also better tolerated than 5-Aza (84). In patients

with locally advanced, non-metastatic BLCA, guadecitabine reduced

the dose intensity of gemcitabine without causing excessive toxicities or

compromising radical treatment options post-chemotherapy (85). In a

recent phase II clinical trial, guadecitabine with atezolizumab, an

anti-PD-L1 antibody, failed to achieve a clinical response. However,

the treatment was associated with longer survival (86).

An overview of treatment-induced DNMT inhibition in cancer

cells is presented in Figure 4.
4.6 TET-targeting therapies

The expression of immune checkpoints and their receptors is

extensively modulated by epigenetic mechanisms. Preclinical studies

have shown that loss of TET function enables cancer cells to evade
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antitumor immunity and resist anti–PD-L1 therapy. In colon and

melanoma tumors, TET2 deletion leads to reduced chemokine

expression and decreased tumor-infiltrating lymphocytes, facilitating

immune evasion and therapy resistance. Furthermore, vitamin C can

stimulate TET activity, increasing chemokine expression and

lymphocyte infiltration, which enhances antitumor immunity and

improves the efficacy of anti–PD-L1 treatment (87). Similar findings

were reported in another study, which demonstrated that vitamin C

enhances immunotherapy efficacy, while loss of TET2 function enables

renal cell carcinoma cells to evade antitumor immunity and resist anti–

PD-L1 therapy (88). While these effects have been demonstrated in

multiple cancer models, research specifically focusing on bladder cancer

remains limited.

Vitamin C, a well-established cofactor for iron- and a-
ketoglutarate-dependent dioxygenase enzymes, plays a key role in

the regulation of TET enzymatic activity. Numerous studies

exploring its role in epigenetic regulation have demonstrated that

vitamin C enhances the enzymatic activity of TET proteins.

Mechanistically, vitamin C directly interacts with the catalytic

domain of TET proteins, thereby promoting their enzymatic

function. Preclinical studies have demonstrated that vitamin C

treatment can reduce malignant phenotypes of bladder cancer

both in vitro and in vivo by increasing the global levels of 5hmC

(25, 39). A single-arm, two-stage phase I/II trial evaluated the safety

and efficacy of intravenous vitamin C (IVC) combined with

gemcitabine and carboplatin as neoadjuvant therapy in cisplatin-

ineligible muscle-invasive bladder cancer. Twelve patients received

one cycle of carboplatin plus IVC over 21 days, followed by

cystectomy within 4–6 weeks. Pathological downstaging was

observed in 4 patients (36%), including 3 complete responses, one

of which occurred in a patient with the plasmacytoid variant.

Treatment was well tolerated with minimal adverse events. The

trial met criteria to proceed to stage two (87). Although the current

clinical evidence is limited, these promising findings suggest that

TET modulation via vitamin C could represent a novel therapeutic

approach for bladder cancer, warranting further investigation.

Alterations in DNA methylation caused by mutations in IDH1

and IDH2 are common in a wide range of cancers. Mutant IDH1/2

enzymes produce the oncometabolite 2-hydroxyglutarate (2-HG)

instead of a-KG. Due to its structural similarity to a-KG, 2-HG

inhibits the enzymatic activity of TET proteins (36, 89). Thus,

IDH1/2 may play an important role in the regulation of 5-hmC.

Inhibition of TET enzymes by 2-HG leads to hypermethylation of

CpG islands at gene promoters, disturbs cell differentiation, and

may promote cancer transformation (38, 39, 90, 91). FDA-approved

drugs such as ivosidenib and enasidenib, which target IDH1 and

IDH2 respectively, have shown clinical efficacy in treating IDH-

mutant AML, glioma, and cholangiocarcinoma, both as

monotherapies and in combination therapies (88, 92–95). There

are currently no scientific reports investigating the use of TET

protein inhibitors in bladder cancer treatment. However, since the

catalytic activity of TET enzymes plays a crucial role in suppressing

oncogenesis in bladder cancer, identifying agents that restore TET

function could offer a promising avenue for the development of

novel epigenetic cancer therapies
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4.7 Emerging therapeutics

Most of the above drugs have already been studied and used to

treat other malignancies. Nevertheless, the recent advances in

manufacturing technology has caused the emergence of novel

drug modalities that can soon expand our treatment arsenal.

Zebularine is a novel DNMT inhibitor and a cytidine analog

characterized by low toxicity in mice, even after prolonged

administration (96). In BLCA T24 cells, zebularine completely

depleted DNMT1 and decreased the expression of DNMT3a and

DNMT3b3 (97). It prolonged the doubling time of BLCA cells to a

similar degree to decitabine, but the effect was cell-line specific (98).

CM-272 is a dual-target quinolone inhibitor of G9a histone-

methyltransferase and DNMT1. High G9a expression was associated

with poor outcomes in BLCA, and targeting its activity was proposed as

a potential treatment strategy. Its efficacy improved when used with

anti-PD-L1 agents to treat BLCA in mice (99). Since the efficacy of

CM-272 was limited in a hypoxic environment, Liu et al. designed a

Fe3+-based nanoscale metal-organic framework (MIL-53) to accelerate

the release of CM-272 and improve its clinical utility (100). This study

paved the way to alleviate BLCA resistance to therapy.

Novel DNMT inhibitors are undergoing clinical trials to test their

efficacy in BLCA. The safety profile of RX-3117, a cytidine analog and a

DNMT1 inhibitor, was recently evaluated in a phase I/II clinical trial.

Among patients taking 700mg of RX-3117 five times a week, only 10%

(8/10) had adverse events associated with treatment. 92 out of 114

patients (72%) had disease progression; the best overall response in the

BLCA cohort reached 45.2%, but no patients completed phase II (101).

The results of another phase I study investigating the use of NTX-301,

an oral DNMT1 inhibitor, with platinum-based chemotherapy in

patients with advanced BLCA, are yet to be published (102).

Many preclinical studies utilize short-hairpinRNAs (shRNA) to

investigate the role of the target. For instance, shDNMT3b, a shRNA

targeting DNMT3b, reduced the levels of miR-461 promoters, reducing
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the aggressiveness of cancer cells. Similarly, shDNMT3b

downregulated miR-34a, inhibiting epithelial-mesenchymal transition

and migration of BLCA cells (103). While clinical application of

shDNMTs seems unlikely, they can advance our understanding of

DNMTs biology and the development of their inhibitors. In 2020, Liu

et al. used shDNMT1–1 to investigate the role of miR-152 and

developed a miR-152 mimic that inhibited the proliferation and

migration of BLCA cells (104).
5 Perspectives and limitations

Epigenetic therapies hold significant promise, but their

application in solid tumors, such as BLCA, faces substantial

challenges. This section outlines key limitations of current

approaches and highlights strategies that may enhance their utility.

DNMT inhibitors have demonstrateda broad spectrum of

anticancer activity in both in vitro and in vivo studies, but data

regarding their use in BLCA are predominantly from preclinical

studies. The traditional DNMT inhibitors, especially 5-azacitidine

and decitabine, have shown great clinical efficacy in hematologic

malignancies, but lacked efficacy when used alongside

immunotherapy in BLCA. It appears that the complexity of the

bladder cancer tumor microenvironment, frequent occurrence of

hypoxia, dense stromal components, and intrinsic mechanisms of

therapeutic resistance complicate the clinical translation of epigenetic

therapies (105–107).For example, 5-aza with sodium phenylbutyrate

lacked clinical efficacy in locally advanced tumors, while the

combination of decitabine and genistein achieved only modest

activity in advanced solid tumors (51, 74). This is in line with

broader observations that epigenetic approaches have achieved

higher efficacy in hematological malignancies due to the lower

intratumor heterogeneity, greater reliance on epigenetic dysregulation

as a driver mechanism and better drug accessibility (108). On the other
FIGURE 4

DNA methyltransferase inhibitors and their effects on cancer cells. Created with BioRender.com.
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hand, the addition of 5-aza and decitabine to other therapeutic

regimens increased the sensitivity of cancer cells to therapy and

increased the efficacy of cisplatin, doxorubicin, and docetaxel (49, 72).

A number of factors may undermine the transition from

preclinical models to clinical settings. Cell lines and animal models

often fail to reflect the complexity of tumor microenvironment and

heterogeneity of the urothelial carcinoma. Furthermore, models like

NOD/SCID mice are commonly transected with human cancer cells

but lack the key components of the immune response system, such as

T and B lymphocytes (109). Hence, preclinical trials do not accurately

demonstrate the clinical efficacy of anticancer agents. This

shortcoming is not limited to the host immune system. Mouse

models rarely reflect the crosstalk within tumor immune

microenvironment and drug distribution within its stroma and into

tumor cells (110). Drug efficacy is also influenced by its

pharmacokinetics and metabolism, which may differ significantly

between mice and human subjects. Finally, tumors in mouse models

derive from a relatively homogenous population of cells collected

from human malignancies or specific cell lines (109, 111, 112).

BLCAs found in humans are highly heterogenous, hence specific

subsets of cancer cells vary in gene expression and sensitivity to

therapy (113, 114). Those factors may contribute to the frequent lack

of efficacy of epigenetic agents in humans, highlighting the

discrepancy between preclinical and clinical trials.

A new generation of DNMT inhibitors is emerging; however, their

clinical utility remains to be proven. Guadecitabine failed to increase

the efficacy of atezolizumab in severely ill patients resistant to PD-L1

therapy, but the low susceptibility to treatment in these patients makes

drawing conclusions challenging (86). Conversely, RX-3317

demonstrated an overall response rate of 45.2% in metastatic BLCA,

indicating potential for further investigation (101). Unfortunately, the

current arsenal of anti-methylating agents is limited primarily to

DNMT inhibitors and a few agents from other categories. Despite

the importance of TET proteins in the control and maintenance of

DNA methylation, no TET inhibitors or activators have been

developed. Additionally, hypotheses regarding the potential efficacy

of other agents are based on preclinical studies, which currently lack

sufficient justification to enter next phases of clinical trials.

The translation from research to clinical settings would require

their incorporation into the modus of precision oncology. This

process will likely consist of several steps. Firstly, the testing of

epigenetic drugs will likely benefit or even require predictive

biomarkers for specific epigenetic signatures. Hence, biomarkers

for patient selection will also be needed (108, 115). Due to rapid

acquisition of therapy resistance, multipathway targeting with

combination therapy—including for example DNMT inhibitors,

immune checkpoint inhibitors, and PARP inhibitors — is likely to

become the standard in clinical trials (116). Furthermore, combined

use of low doses of HDAC inhibitors and DNMT inhibitors might

alleviate chemoresistance by reversing epigenetic alterations that

drive the resistance phenotype (117–119).

Although epigenetic therapies continue to attract research interest,

their clinical impact in bladder cancer remains limited. Most available

data derive from preclinical studies, and while some trials have

provided signals of anticancer activity, they have failed to
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demonstrate robust efficacy in patients. Preclinical outcomes, such as

chemosensitization and modulation of immune response, have yet to

show clinical benefit. Moreover, other strategies, such as employing

artificial intelligence models in drug development, integration of

epigenetic data, 3D genome modeling, and identification of

synergistic drug combinations for further trials might enhance the

effectiveness of such therapeutic regimens (120, 121). Going forward,

the development of biomarker-driven strategies and combination

approaches will be critical to overcoming current limitations and

realizing the potential of epigenetic modulation in urothelial carcinoma.
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