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The segmentation and classification of breast ultrasound (BUS) images are crucial

for the early diagnosis of breast cancer and remain a key focus in BUS image

processing. Numerous machine learning and deep learning algorithms have

shown their effectiveness in the segmentation and diagnosis of BUS images. In

this work, we propose a multi-task learning network with an object contextual

attention module (MTL-OCA) for the segmentation and classification of BUS

images. The proposed method utilizes the object contextual attention module to

capture pixel-region relationships, enhancing the quality of segmentation masks.

For classification, the model leverages high-level features extracted from

unenhanced segmentation masks to improve accuracy. Cross-validation on a

public BUS dataset demonstrates that MTL-OCA outperforms several current

state-of-the-art methods, achieving superior results in both classification and

segmentation tasks.
KEYWORDS

breast ultrasound images, segmentation, classification, deep learning, multi-
task learning
1 Introduction

Breast cancer is the most common cancer among women worldwide and the leading

cause of cancer-related deaths in females globally (1–3). Therefore, early diagnosis of breast

cancer is crucial for reducing mortality, as more than 90% of cases can now be detected at

an early stage and treated before becoming metastatic (4). Among these technologies,

ultrasound imaging (USI) is one of the most widely used screening methods for early breast

cancer detection due to its high convenience, low cost, and high effectiveness. USI uses

sound waves to generate images of the body’s internal structures, which are subsequently
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analyzed by computer-aided diagnosis (CAD) systems to enhance

diagnostic accuracy (5). Automated segmentation and classification

are critical steps in CAD systems for interpreting breast ultrasound

(BUS) images, forming a foundation for further analysis and

treatment planning. In recent years, various image processing

tools have been developed for detecting and delineating affected

areas in ultrasound images, including segmentation, enhancement,

and classification techniques (6–8).

With advancements in computer technology, various machine

learning (ML) methods have been proposed Lu et al. (9)Liu et al.

(10) and successfully applied to medical image processing and

interpretation (11–13). ML methods have also shown great

potential in the segmentation and classification of breast

ultrasound (BUS) images (14–16). Techniques such as k-nearest

neighbors (17), support vector machines (18), and clustering

algorithms (19). For example, da Silva et al. applied several ML-

based methods, including multilayer perceptrons, k-nearest

neighbors, and support vector machines, for breast cancer

detection and diagnosis, and compared their performance in BUS

image segmentation and classification (20). Lyu and Cheung

proposed a hierarchical extreme learning machine (H-ELM) for

efficient breast cancer ultrasound analysis (21). Zhu et al. employed

random forest regression for the automatic measurement of fetal

femur length in ultrasound images (22) and compared their

approach with the widely used convolutional neural network

(CNN) model, SegNet (23).

Recently, state-of-the-art deep learning algorithms have been

proposed for various classification and segmentation tasks (24–28).

These algorithms include convolutional neural networks (CNNs)

(29, 30), Transformer (31–33), quantum-enhanced deep learning

(34–36), and ensemble learning (37, 38). Among these algorithms,

CNNs are some of the most widely used methods that is capable of

building strong non-linear relationships between training data and

labels (39–41). CNN-based architectures have been successfully

applied in medical image processing (42–44) and have been

employed for interpreting breast ultrasound (BUS) images (45,

46). For instance, Deawon et al. compared the performance of

various models in diagnosing breast cancer (47), including image

classification models (VGGNet19, ResNet50, DenseNet121,

EfficietNet v2) and image segmentation models (UNet, ResUNet+

+, DeepLab v3). Other notable deep learning algorithms for

processing BUS images include generative adversarial networks

(GANs) (48), edge enhanced model (49), and probability-based

optimal deep learning (50). However, many of these methods follow

a two-step approach: first segmenting the BUS images and then

classifying them. This two-step approach results in lower

computational efficiency and less accurate outcomes. To address

these challenges, multi-task learning (MTL) has been introduced,

enabling the joint segmentation and classification of BUS images

within a unified, end-to-end framework (51, 52). Despite this

advancement, most existing MTL methods rely on low-level

features learned from the down-sampling path of the network

(e.g., UNet’s encoder), which limits their ability to capture high-

level semantic information. MTL-COSA utilizes segmentation

masks to guide the classification task (53). However, MTL-COSA
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lacks a segmentation enhancement module to further

improve performance.

In this study, we present a novel multi-task learning network

(MTL-OCA) that integrates an object contextual attention module

for simultaneous segmenting and classifying breast ultrasound

(BUS) images. Our key contributions are as follows:
• We propose an innovative multi-task learning architecture

that simultaneously handles segmentation and classification

tasks for BUS images.

• We introduce an object contextual attention module that

refines segmentation masks by learning pixel-region

relationships. The high-level features extracted from

unenhanced segmentation masks are used to enhance the

classification performance.

• Our experimental results demonstrate that MTL-OCA

outperforms several state-of-the-art methods in both

segmentation and classification tasks.
The remainder of this paper is organized as follows: Section 2

introduces the deep learning framework, loss functions, and

evaluation metrics; Section 3 presents the experimental results

and analysis; Section 4 discusses the strengths and limitations of

our approach; and Section 5 concludes the paper.
2 Methodology

Figure 1 illustrates the architecture of our proposed multi-task

learning network (MTL-OCA). MTL-OCA uses Res-UNet as its

backbone to learn pixel-region relationships, which enables the

generation of highly accurate segmentation masks. The network

processes batches of 2D BUS images and produces both

segmentation masks and one-hot encoded classification results.
2.1 Overview of our model

Figure 1 illustrates the architecture of our proposed MTL-OCA,

which simultaneously predicts segmentation masks and

classification results. The network comprises three main

components: the backbone, the object contextual attention

module for segmentation, and the classification module for image

classification. The backbone is built on a widely used Res-UNet

(54), which effectively extracts feature maps from the input images.

This Res-UNet employs a three-layer UNet architecture with

residual connections, where both the encoder and its symmetric

decoder consist of three layers of convolutional blocks (Figure 2).

Each block in the encoder includes a Conv2D layer, a GroupNorm

layer, and a MaxPooling layer for feature extraction and down-

sampling. Similarly, each block in the decoder comprises an

Upsample layer, a Conv2D layer, and a GroupNorm layer. Unlike

previous multi-task learning approaches that typically rely on

features extracted solely from the encoder for classification, our

model leverages the complete feature maps from the backbone for
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both segmentation and classification tasks, thereby enhancing

performance in BUS image segmentation and classification.

The feature maps extracted from the backbone serve as inputs

to the object contextual attention module that learns pixel-region

relationships to generate enhanced segmentation masks. As

illustrated in Figure 1, the contextual pixels are partitioned into K

soft object regions, and each corresponds to one of the K

segmentation classes. Each soft object region quantifies the degree

to which a given pixel belongs to class k, denoted as dk (with K set to

2 in this study). These soft object regions are learned in a supervised

manner and essentially serve as coarse segmentation masks.

Subsequently, the pixel representations (i.e., the feature maps

from the backbone) are multiplied by the soft object regions to

produce the object region representations, defined as

fk =o
ieI
dkixi, (1)

where I denotes the set of pixels in the feature maps. xi
represents the feature of pixel pi and dki quantifies the degree to

which pixel pi belongs to the k
th object region. We obtain the pixel-
Frontiers in Oncology 03
region relation by multiplying the pixel representations by their

corresponding soft object regions as follows

wik =
el(xi ,fk)

oK
j=1e

l(xi ,fj)
, (2)

where l(x, f ) denotes the nonlinear transformation

implemented by the convolutional blocks. Subsequently, the

object regions corresponding to the same class are multiplied to

enhance the contextual representations, expressed as

yi = ð o
K

k=1

wikH(fk)

 !
, (3)

where ð( · ) and H( · ) denote nonlinear transformations

implemented by convolutional blocks. Finally, the augmented

representations, which produce accurate segmentation masks,

are generated by concatenating the contextual and pixel

representations. Equation 1 computes the object region

representations, Equation 2 establishes the pixel region relations,

and their combined outputs serve as inputs to Equation 3 for
FIGURE 2

The backbone of our proposed MTL-OCA model. Each rectangular block represents the network’s feature map at varying depths.
FIGURE 1

Framework of the proposed MTL-OCA Model. The black arrows present the data flows.
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generating contextual representations. Meanwhile, the classification

module performs the classification task on the same feature maps

extracted from the backbone. These features, which are derived

from the backbone rather than solely from the encoder, contain

richer high-level segmentation semantics that guide the

classification process. As indicated in the lower half of Figure 1,

the classification module is implemented using two layers of a

multilayer perceptron (MLP). In this work, the classification results

are categorized into three classes: benign, malignant, and normal.

So, the final layer consists of three neurons.

2.2 Loss function and implementation
details

Since the proposed network is designed to perform both

segmentation and classification simultaneously, the overall loss

function is formulated as a combination of the segmentation loss

and the classification loss as follows

L = Ls + Lc, (4)

where Ls and Lc represent the loss functions for the

segmentation and classification tasks, respectively. Moreover, the

segmentation loss is formulated as a weighted sum of the losses

computed on the soft object regions and the augmented

representations, written as

Ls = aLsoft + Laug , (5)

where, Lsoft and Laug are used to supervise the soft object

regions and the augmented representations, respectively. a serves as

the weighting factor and is set as 0.4 according to the discussions in

(55). All the loss functions described in Equations 4, 5 are

implemented as cross-entropy.

All deep learning neural networks in this study were

implemented and trained on a computer configured with CUDA

11.4, Python 3.7, and PyTorch 1.11, along with other essential

libraries. The computer’s hardware setup comprised an Intel 16-

core processor, 256 GB of system memory, and two NVIDIA RTX

3090 GPUs (each with 24 GB of dedicated memory). Our MTL-

OCA network was trained on the training dataset for 400 epochs

with a batch size of 16. Adam optimizer with an initial learning rate

of 1e−3 is adopted in the training process.
3 Results and discussions

3.1 Data introduction and preparation

In this study, we employ two BUS image datasets to evaluate the

effectiveness of our proposed model. The first dataset, OASBUD

dataset (56), comprises 780 BUS images collected from 600 women

aged between 25 and 75. These images are classified into three

categories: normal, benign, and malignant (Table 1). The second

dataset, UDIAT (57), which consists of 163 ultrasound images,

including 110 benign and 53 malignant cases. Due to different

image sizes, we resize all the images to 128 × 128 pixels.
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Note that all input images in both datasets, excluding the labels,

are three-channel, which increases the computational cost and load.

To reduce this complexity, we convert the BUS images to grayscale

prior to the training process. Additionally, we perform 5-fold cross-

validation on the datasets. We further augment the training data

through various image transformations, including random

rotations (ranging from -45° to 45°), random flips, and random

center cropping with a 50% probability. Moreover, we apply image

contrast enhancement techniques to enrich our dataset, enabling

the network to better handle images with varying contrast levels.
3.2 Data pre-processing

To enhance the segmentation results at tumor boundaries, we

incorporate the Gaussian derivatives of BUS images, which

highlight the edges of tumor boundaries. Let f (x,y) represent a

BUS image. The 2D Gaussian kernel function is defined as

G2D(x, y;s ) =
1

2ps 2 e
−x2+y2

2s2 , (6)

where s is the standard deviation that determines the width of

the Gaussian kernel function. Then Gaussian derivative of BUS

images is defined as

gx =
∂ (f ∗G2D)

∂ x ,

gy =
∂ (f ∗G2D)

∂ y :

(7)

The derivative of the Gaussian kernel function respective to x

and y can be expressed as

∂ (G2D)
∂ x = −x

2ps 4 e
−x2+y2

2s2 ,

∂ (G2D)
∂ y = −y

2ps 4 e
−x2+y2

2s2 :

(8)

The magnitude of the Gaussian derivative of the BUS image is

given by

m =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x + g2y

q
: (9)

Figure 3 displays several BUS images selected from OASBUD

detaset. The first row of Figures 3a, b show BUS images featuring an

early-stage tumor and a malignant tumor, respectively. Figure 3c

shows a normal BUS image. Their corresponding Gaussian
TABLE 1 Three classes of breast cases and the number of images in
each category of the OASBUD dataset.

Categories Image number

Benign 437

Malignant 210

Normal 133

Total 780
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derivative magnitude images, calculated using (Equations 6–9), are

presented in the second row of Figures 3a-c. Note that the Gaussian

derivatives enhance the distinctive features of these BUS images.

Notably, we use the computed magnitude as a boundary feature and

concatenate it with the original image to create a new input for the

network, thereby improving overall task performance.
3.3 Results and discussions

To validate the effectiveness of our proposed model, we

compare it against two widely used methods: UNet (58) and MT-

DUNet (59). UNet is a popular method for both segmentation and

classification tasks, while MT-DUNet is a well-established multi-

task learning model specifically designed for BUS image

segmentation and classification.

After training our models on the OASBUD dataset, we applied

all three models to a blind testing dataset. We randomly selected

several images from the blind testing dataset and performed image

segmentation using each model (Figure 4). The blue arrows in

Figure 4 indicate areas with inaccurate prediction while the red

arrows point to regions that are challenging to interpret yet

accurately predicted. Figure 4 demonstrates that both our method

and MTL-DUNet are more robust than the single-task UNet

(denoted as UNet (ST)). This improvement is likely due to the

shared features between segmentation and classification tasks (59).

We cannot observe the obvious difference between the
Frontiers in Oncology 05
segmentation results of MTL-OCA and MTL-DUNet. However,

their evaluation metrics differ from each other (Table 2). Compared

to MTLDUNet, the classification module of MTL-OCA improves

classification accuracy by fully leveraging the high-level semantic

information from the rough segmentation masks.

Figures 5a-c show the confusion matrices for the classification

results computed using UNet (ST), MTL-DUNet, and our proposed

method, respectively. Note that all models accurately classify the

normal class. However, the benign and malignant classification

accuracies of our method are notably higher than UNet (ST) and

MTL-DUNet. Table 3 summarizes the Precision, Sensitivity,

Specificity, and F1-score for these three methods. Table 3

demonstrates that the proposed method outperforms comparative

approaches across all evaluation metrics except for those in normal

cases. These quantitative parameters indicate the superiority of our

model over both UNet (ST) and MTL-DUNet for this classification

task. Additionally, to enhance the interpretability of our model, we

generated gradient-weighted class activation mapping (Grad-CAM)

heatmaps (Figure 6). The highlighted regions in these heatmaps

correspond well with the key areas of interest in the input images

during classification.

In addition, we trained and tested our model on the UDIAT

dataset. The first and second columns in Figure 7 show randomly

selected BUS images and their corresponding ground truth labels,

respectively. The third, fourth, and fifth columns show the

segmentation results that are computed using different methods.

The blue arrows indicate areas with inaccurate interpretations, and
a. b. c.
FIGURE 3

Randomly selected images from the OASBUD dataset and their corresponding Gaussian derivative magnitude images: (a) A representative BUS
image with a tumor at an early stage, followed by its Gaussian derivative magnitude image; (b) A representative BUS image with a malignant tumor,
followed by its Gaussian derivative magnitude image; (c) A representative BUS image without a tumor, followed by its Gaussian derivative
magnitude image.
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the red arrows point to regions that are challenging to interpret but

have been accurately predicted. A visual comparison of these results

demonstrates that our proposed method achieves superior

segmentation performance compared to UNet and MTL-DUNet,

particularly at the boundaries highlighted by the blue and red

arrows. Furthermore, we evaluated our method on the UDIAT

dataset using the same set of metrics (Tables 4, 5). The experimental

findings consistently confirm that our approach outperforms the

selected comparative methods across all key indicators.
FIGURE 4

Segmentation results for randomly selected images from the OASBUD dataset using different methods. The first and second columns show the
original BUS images and the ground truth labels. The third, fourth, and fifth columns display the segmentation results obtained using UNet, MT-
DUNet, and our proposed MTL-OCA, respectively. The blue arrows highlight areas with inaccurate interpretations, whereas the red arrows indicate
challenging regions that have been accurately predicted.
TABLE 2 The segmentation and classification results on the
OASBUD dataset.

Methods Dice (%) IoU (%) Acc (%)

UNet (ST) 77.92 63.83 89.74

MTL-DUNet 79.42 65.86 87.18

Proposed Method 83.75 72.03 91.67
Bold values in Tables indicate the bestperforming results.
a. b. c.
FIGURE 5

The confusion matrix of the classification results computed using (a) UNet(ST), (b) MTL-DUNet, and (c) our suggested method.
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3.4 Ablation study

Based on the OASBUD dataset, we conduct an ablation study on

the object contextual attention (OCA) module to evaluate its impact

on segmentation and classification performance. We test three

different configurations. The first configuration omits the OCA

module, which means the backbone generates the final

segmentation map. As a result, the classification task relies solely on

the results from this segmentation. The second configuration includes

the OCA module, and the classification task is based on the enhanced

segmentation map produced by the OCA. The third configuration is

our proposed architecture in this study. Table 6 presents the results of

the ablation study for these three different network architectures when

applied to the same testing dataset. Table 6 indicates that integrating

the OCA module improves segmentation performance in the second

configuration compared to the first. The result of the third

configuration shows that both segmentation and classification
Frontiers in Oncology 07
performance are inferior to our method when the classification

model is based solely on the OCA-enhanced segmentation maps.

Overall, the proposed MTL-OCA architecture yields the highest Dice

coefficient and classification accuracy. The highest accuracy

demonstrates that the optimal integration of the OCA module leads

to significant performance enhancement.
4 Discussions

The qualitative analysis of the results validates the effectiveness

of our proposed multi-task deep learning architecture for the

automatic joint segmentation and classification of BUS images.

However, we believe that special attention should be paid to three

key aspects of the implementation. First, the choice of backbone is

crucial for the successful application of a multi-task learning model.

In our research, we selected the widely used ResUNet as the

backbone. While we have not gone into extensive detail on this

choice, prior research has emphasized the importance of selecting

suitable neural network architecture. Several advanced models that

address various challenges could also serve as viable options for the

backbone. Exploring alternative architecture presents a promising

avenue for future work. Second, to address the class imbalance in

the dataset, we employed data augmentation techniques to modify

the class distribution in the training set. For future studies, we may

consider using specialized loss functions, such as focal loss (60), to

mitigate the issue of class imbalance more effectively. Lastly, while

our model performs well on the two datasets used in this study, its

performance may be constrained by the size and variety of the
TABLE 3 The Precision, Sensitivity, Specificity, and F1-score of UNet
(ST), MTL-DUNet, and MTL-OCA on the OASBUD dataset.

Label

UNet (ST)/MTL-DUNet/MTL-OCA

Precision Sensitivity Specificity F1-score

Normal
0.9/

0.818/0.871 1.0/1.0/1.0
0.977/

0.954/0.969
0.947/

0.899/0.931

Benign
0.938/

0.914/0.963
0.874/

0.851/0.885
0.928/

0.899/0.957
0.905/

0.881/0.922

Malignant
0.822/

0.833/0.867
0.881/

0.833/0.929
0.930/

0.939/0.947
0.850/

0.833/0.896
Bold values in Tables indicate the best performing results.
FIGURE 6

The Grad-CAM heatmaps generated by the proposed method. The first row is the input images and the second row is the corresponding Grad-
CAM heatmaps.
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training data. Future research will focus on expanding and

diversifying the dataset to improve the robustness and

generalizability of our approach.
Frontiers in Oncology 08
5 Conclusions

We propose a multi-task learning network with an object

contextual attention module (MTL-OCA) for simultaneous

segmentation and classification of BUS images. Numerical

experiments on two widely used datasets, namely OASBUD and

UDIAT, demonstrate that the object contextual attention module

enhances segmentation masks by effectively learning the pixel-

region relationships within BUS images. Additionally, the Grad-

CAM heatmaps demonstrate that high-level information extracted

from the unenhanced segmentation masks can improve

classification performance. The comparisons with UNet and MT-

DUNet confirm the effectiveness of our model for the joint

segmentation and classification of BUS images.
FIGURE 7

The segmented results for the randomly selected images from the UDIAT dataset using different methods. The first and second columns are the
original BUS images and ground truth labels, while the third, fourth, and fifth columns are the segmented results computed using UNet, MTL-DUNet,
and our MTL-OCA. The blue arrows highlight areas with inaccurate interpretations, while the red arrows point to regions that are challenging to
interpret but have been accurately predicted.
TABLE 4 The segmentation and classification results on the
UDIAT dataset.

Methods Dice (%) IoU (%) Acc (%)

UNet (ST) 81.37 68.57 91.33

MTL-DUNet 80.64 67.55 89.29

Proposed
Method

84.85 73.68 94.79
Bold values in Tables indicate the best performing results.
TABLE 5 The Precision, Sensitivity, Specificity, and F1-score of UNet
(ST), MTL-DUNet, and MTL-OCA on the UDIAT dataset.

Label UNet (ST)/MTL-DUNet/MTL-OCA

Precision Sensitivity Specificity F1-score

Benign 0.929/
0.877/0.958

0.946/
0.846/0.964

0.849/
0.796/0.913

0.937/
0.860/0.961

Malignant 0.872/
0.918/0.931

0.698/
0.896/0.943

0.953/
0.852/0.962

0.774/
0.907/0.937
Bold values in Tables indicate the best performing results.
TABLE 6 The ablation study on the testing dataset of the
OASBUD dataset.

Categories Dice (%) Acc (%)

Model without OCA 75.89 86.15

Model with OCA, classification based on OCA 80.01 90.37

Model with OCA, classification based
on backbone

83.75 91.67
fr
Bold values in Tables indicate the best performing results.
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