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Nontargeted metabolomics
uncovering metabolite
signatures in glioblastoma: a
preliminary study on candidate
biomarker discovery for IDH
subtyping and survival prediction
Peng Xu1†, Xiling Chen1†, Qun Li2†, Zheqing Dong1, Ji Zhu1,
Zhipeng Su2, Qifan Zhang1 and Kui Fang1*

1Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University,
Hangzhou, China, 2Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical
University, Wenzhou, China
Background: Currently, there are no established tumor-derived metabolic

biomarkers in clinical practice that can simultaneously differentiate among

nontumorous brain tissues, isocitrate dehydrogenase (IDH) wild-type

glioblastomas (GBMs), and IDH mutant GBMs, or accurately predict patient

survival. The aim of this study was to identify GBM biomarkers for molecular

classification and survival prediction via nontargeted metabolomics.

Methods: Brain tissue samples from nontumors, IDH-mutant GBMs, and IDH-

wild-type GBMs were analyzed via liquid chromatography-mass spectrometry

(LC–MS). Metabolites for molecular classification and survival prediction were

identified via sparse partial least-squares discriminant analysis (sPLS–DA) and

extreme gradient boosting (XGBoost) models, respectively. Both sets of

metabolites were then validated via bootstrap resampling. The biomarkers for

survival predict ion were further val idated using an independent

metabolomics dataset.

Results: In total, 185 human-derived metabolites were identified with high

confidence levels. Two non-overlapping sets of 11 candidate biomarkers for

molecular subtyping and survival prediction were screened out. In the validation

models for molecular subtyping, the random forest model achieved the highest

accuracy (0.787, 95% CI: 0.780–0.795) and a Kappa value of 0.681. The Cox

proportional hazards regression model established based on cholic acid and

citrulline had an AUC of 0.942 (95% CI: 0.920-0.956) at 84 days and an AUC of

0.812 (95% CI: 0.746-0.826) at 297 days.
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Conclusion: This exploratory study identified potential metabolic biomarkers for

GBM subtyping and prognosis prediction. However, further validation in large-

scale clinical studies and mechanistic investigations are needed to confirm their

applicability and reliability.
KEYWORDS

glioblastoma, isocitrate dehydrogenase, molecular classification, biomarkers, survival
risk prediction
Introduction

Glioblastomas (GBMs) constitute the most aggressive and

swiftly progressing form of malignant brain tumor, accounting

for the majority of deaths associated with brain cancer [1].

Progress in comprehending the genetic and epigenetic

modifications of GBM has revealed substantial heterogeneity,

characterized by distinct molecular subtypes, such as the isocitrate

dehydrogenase (IDH)-mutant (approximately 10%, originating

from low-grade glioma) and IDH-wildtype (approximately 90%)

subtypes (1). Different molecular subtypes of GBM exhibit distinct

potential therapeutic targets and prognoses, but even patients with

the same subtype demonstrate significant variations in prognosis

(2–7), indicating the need for personalized treatment regimens for

GBM. Nonetheless, the recommended treatment regimen for all

GBMs entails gross total resection (GTR) accompanied by

radiotherapy and chemotherapy, irrespective of the molecular

subtype and prognosis. Two critical factors that impede the

implementation of personalized treatment are the difficulty in

precisely determining the molecular subtype of GBM

preoperatively and the challenge in forecasting the patient’s

postoperative survival risk.

Metabolites can provide highly specific and sensitive indicators of

cellular processes and physiological states within GBM, making them

promising diagnostic and prognostic biomarkers. Numerous studies

have demonstrated significant metabolic heterogeneity among tumor

cells and immune cells within GBM tumor masses across different

molecular subtypes (8, 9). Even within the same molecular subtype of

GBM, heterogeneity has been observed (10). These metabolic changes

are closely related not only to the invasiveness, survival ability, and

drug resistance of glioblastoma (GBM) cells but also to patient

survival (8, 11, 12). Therefore, it is feasible to identify reliable

molecular and prognostic biomarkers from metabolites. Previously,

Ferrasi et al. identified a set of markers in serum associated with early-

stage GBM (13), whereas Shen et al. identified a set of markers related

to patient survival risk (14). These studies are highly important for

the early diagnosis and prognosis prediction of GBM. However, they

also noted that these metabolic changes might not be attributable to

tumor cells, potentially compromising the tumor specificity of these

diagnostic markers. Studies on 2-hydroxyglutarate (2-HG), a classic
02
marker of IDH-mutated GBM, have shown that this intracellular

biomarker also has excellent discriminative ability in cerebrospinal

fluid (15). The above research results demonstrate that markers

derived from tumor tissues have the potential to serve as

biomarkers in bodily fluids, and moreover, markers in tissues

exhibit greater tumor specificity.

The primary aim of this study was to screen preoperative

diagnostic biomarkers derived from tumors to distinguish

between nontumor brain tissues, IDH-mutant GBM, and IDH-

wild-type GBM through metabolomic analysis. Additionally, a

cohort of biomarkers has been identified to predict the survival

risk of patients after GTR. To our knowledge, this is the first study

to investigate biomarkers for three-category classification

(nontumor, IDH-mutant, and IDH-wild-type GBM) and survival

risk prediction via nontargeted metabolomic analysis of brain tissue

samples. These metabolites not only are crucial for elucidating the

metabolic characteristics of glioblastoma but also hold potential as

candidate biomarkers for large-scale validation in cerebrospinal

fluid and other body fluids in future studies.
Methods and materials

Patient selection

This study was approved by the Research Ethics Committee of

the First Affiliated Hospital of Wenzhou Medical University

(approval number 2022-643) and conducted in accordance with

the guidelines of the Declaration of Helsinki. All patients signed an

informed consent form before surgery. Thirty brain tissue samples

were randomly collected, including 10 from nontumor conditions,

10 from IDH-mutant GBM, and 10 from IDH-wildtype GBM, at

The First Affiliated Hospital of Wenzhou Medical University

between April 2016 and December 2023. The diagnosis and

classification of patients with glioblastoma were based on the

fourth edition of the WHO Classification of Tumors of the

Central Nervous System (WHO CNS4). All patients with GBM

underwent gross tumor resection (GTR). The brain tissue samples

were stored in liquid nitrogen (−196°C) until metabolite extraction

and analysis.
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Sample preparation

The samples were then ground in liquid nitrogen. To 20 mg of

the ground sample, 400 mL of a solution (methanol:water = 7:3, v/v)

containing an internal standard was added, and the mixture was

vortexed at 1500 rpm for 5 min. After incubation on ice for 15 min,

the samples were centrifuged at 12,000 rpm for 10 min at 4°C. A 300

mL aliquot of the supernatant was collected and stored at -20°C for

30 min. The sample was then centrifuged again at 12,000 rpm for 3

min at 4°C. Finally, a 200 mL aliquot of the supernatant was

transferred for liquid chromatography-mass spectrometry (LC–

MS) analysis.
LC and MS conditions

The samples were analyzed in a blinded manner via two LC–MS

methods: one under positive-ion conditions and the other under

negative-ion conditions. Both methods employed a Waters

ACQUITY Premier HSS T3 column (1.8 µm, 2.1 mm × 100 mm)

with a gradient elution of 0.1% formic acid in water (solvent A) and

0.1% formic acid in acetonitrile (solvent B). The analytical

conditions included a column temperature of 40°C, a flow rate of

0.4 mL/min, and an injection volume of 4 µL. MS analysis was

conducted in information-dependent acquisition (IDA) mode via

Analyst TF 1.7.1. The source parameters were set as follows: GAS1/

GAS2 at 50 psi, CUR at 25 psi, TEM at 550°C, DP at ± 60 V, and

ISVF at ± (5000/4000) V for positive/negative modes, respectively.

The TOF–MS scan parameters included a mass range of 50–1000

Da, an accumulation time of 200 ms, and dynamic background

subtraction. The product ion scan parameters included a mass

range of 25–1000 Da, accumulation time of 40 ms, collision energy

of ±30 V, collision energy spread of 15 V, resolution of UNIT,

charge state of 1, intensity threshold of 100 cps, isotopes excluded

within 4 Da, mass tolerance of 50 ppm, and a maximum of 18

candidate ions monitored per cycle. Detailed information on the

instruments, reagents, and conditions used in this study are

provided in S2 Supplementary Tables S1–S4.
Data preprocessing

The raw mass spectrometry data were preprocessed via

ProteoWizard, and peak detection, alignment, and retention time

correction were performed using the XCMS program. Peaks with a

missing rate exceeding 50% across all samples were filtered out, and

missing values were imputed via the K-Nearest Neighbors (KNN)

method. The peak areas were normalized via support vector

regression (SVR). Metabolites with a combined identification score

greater than 0.5 and a coefficient of variation (CV) of less than 0.3 in

the quality control (QC) samples were accepted for further analysis.

The mass spectrometry data were first subjected to log

transformation, correlation filtering (threshold = 0.9), and zero-
Frontiers in Oncology 03
variance filtering to minimize unnecessary computations.

Only human-derived metabolites that had been explicitly identified

at level 1 were used to screen for biomarkers. The origins of the

metabolites were determined via the MetOrigin 2.0 platform (18),

which retrieves information from seven widely recognized databases.
Identification of candidate biomarkers for
molecular subtypes

This was accomplished by tuning and establishing a sparse

partial least squares discriminant analysis (sPLS-DA) method using

the package mixOmics version 6.26.0 (19). All analyses were

conducted via R software (version 4.4.2). During the tuning

process, the optimal number of components and variables

(metabolites) within each component were determined through a

grid search that explored all possible parameter combinations.

Metabolites were selected as biomarkers based on their

contribution to the model. The performance of the biomarkers

was validated via six classic algorithms: Decision Tree, Random

Forest, Neural Network, Conditional Inference Tree, C5.0 Decision

Tree, and Support Vector Machine (using the caret 6.0.94 package).

The validation process was completed by 1,000 bootstrap

resampling iterations. The confusion matrices, receiver operating

characteristic (ROC) curves, and area under the curves (AUCs)

were used to evaluate the performance of the validation models.

Note that when the predicted value represents a probability, a

threshold of 0.5 is typically employed to differentiate between

positive and negative outcomes.
Identification of candidate biomarkers for
survival risk prediction and validation

Survival analysis was conducted using the extreme gradient

boosting (XGBoost) algorithm, with the Cox proportional hazards

regression model serving as the objective function and negative log-

likelihood as the evaluation metric (using the package XGBoost

1.7.8.1). The model was trained until the negative log-likelihood

coefficient failed to decrease for ten consecutive training epochs. To

comprehensively evaluate the impact of the biomarkers, Cox

models were established separately via ordered combinations of

the top biomarkers, and the C-index of each model was calculated

to assess its predictive performance. Additionally, time-dependent

ROC curves were used to evaluate the performance of the Cox

model, which was fitted by the top two candidate biomarkers, via

200 bootstrap resampling iterations. The Top markers significantly

associated with survival risk were validated using an independent

metabolomics dataset of GBM (MTBLS3873 from Metabolights

database). Twenty-five patients diagnosed with glioblastoma

(Grade IV) were filtered out from the validation dataset, among

whom 1 patient had an IDH mutation and 24 patients were of the

wild-type.
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Characteristic metabolite analysis

The Games–Howell method was employed for significance testing

of biomarkers across different groups, accommodating data that were

not normally distributed and exhibited unequal variances. The Holm–

Bonferroni method was used to adjust the P values for multiple

comparisons. In the analysis of the impact of biomarkers on overall

survival (OS), cutoff values for marker levels were determined via the

maximally selected rank statistics method tailored to OS outcomes

(using the R package survival 3.7). The survival function was estimated

via the Kaplan–Meier method, and survival curves were plotted using

the survminer package (version 0.4.9). Time-dependent ROC curves

were estimated via the inverse probability of censoring weighting

(IPCW) method, without considering competing risks, to evaluate

the performance of the Cox proportional hazards regression models.

The variation in the analysis results is represented via a 95% confidence

interval (95% CI).
Result

Patients characteristics

The control (CTRL) group comprised three female and seven

male nontumor patients aged between 30 and 75 years (median age:

52 years). Diagnoses in the nontumor group included cerebral

hemorrhage, vascular malformations, moyamoya disease, and

epilepsy. The IDH mutation (IDH) group consisted of four male

and six female patients with IDH-mutant GBM, with a median age

of 37.5 years (range: 30–52 years). The IDH-wild-type (WT) group

included eight male and two female patients with IDH-wild-type

GBM, with a median age of 59 years (range, 43–75 years). The male-

to-female ratio among patients ranged from 60% to 40%. The

median OS was 99 weeks (95% CI: 29.3–395.5). Other clinical

information of the patients is presented in S1 Supplementary

Table S1.
Metabolites identification

A total of 2533 metabolites were identified from the 30 samples,

of which 549 were unequivocally identified at level 1. Among the

549 metabolites, 185 were of human origin. The detailed quality

control results for LC–MS are provided in S2 Supplementary

Figures S1–S3, and Supplementary Table S5. The top three

categories in positive ion mode were amino acids and their

derivatives (22.5%), benzene and its substituted derivatives

(14.02%), and heterocyclic compounds (10.56%). The top three

categories in negative ion mode were organic acids and their

derivatives (16.75%), benzene and its substituted derivatives

(14.2%), and amino acids and their derivatives (13.69%). The

additional categories are presented in S2 Supplementary Figure

S4. For ease of reference, all metabolite names used in subsequent

analyses were assigned continuous IDs prefixed with “M_.”
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Candidate biomarkers for molecular
classification

Based on the tuning results, the optimal configuration for the

final model comprised two components (Figure 1A), with

component 1 utilizing six variables and component 2 utilizing

five variables (Figure 1C). These biomarkers were as follows:

Glycerophosphocholine (M_22), 5-aminolevulinic acid (M_124),

asparagine (M_43), dulcitol (M_29), gamma-glutamylcysteine

(M_118), ictaconic acid (M_154), L-aspartic acid (M_49), L-

tryptophan (M_110), L-valine (M_106), lysophosphatidylcholine

(18:0/0:0) (M_178), and sarcosine (M_76). Visualization of the

samples demonstrated that the final model exhibited robust

discriminative power among nontumor, IDH-mutant, and IDH-

wild-type patients (Figure 1B). Specifically, the metabolites in

component 1 were primarily distinguished between the WT and

CTRL groups, whereas those in component 2 were mainly

responsible for subclassifying the IDH and WT groups

(Figures 1C, D). Clear separation of all three groups was observed

in the unsupervised-clustered heatmap of the metabolites,

characterized by distinct metabolic signatures (Figure 1E).

Detailed information on these metabolites, including their

abundances, is provided in S1 Supplementary Table S2, and the

significance of the differences between the groups is illustrated in S2

Supplementary Figure S5.

The performance of six validation models was established using

top 3 biomarkers, itaconic acid, dulcitol, and 5-aminolevulinic acid,

and was evaluated using confusion matrices (Figure 2). The

Random Forest model demonstrated the highest accuracy of

0.787 (95% CI: 0.780–0.795), followed by the Neural Network

(0.723, 95% CI: 0.715–0.732), C5.0 (0.723, 95% CI: 0.714– 0.731),

SVM (0.717, 95% CI: 0.708–0.725), Decision Tree (0.615, 95% CI:

0.606–0.625), and Conditional Inference Tree (0.603, 95% CI:

0.594–0.613). The Random Forest model also exhibited the

highest Kappa value (0.681), indicating better agreement beyond

chance, while the Conditional Inference Tree had the lowest (0.405).

Sensitivity, specificity, and F1 scores varied across models and

classes, with the Random Forest generally showing superior

performance in these metrics as well. There was significant non-

randomness in the prediction errors of all models (p value of

McNemar’s Test < 2.2e-16) (Table 1).
Candidate biomarkers for survival risk
prediction

Patient No. 1 in the IDH group was lost to follow-up and was

thus excluded from this analysis. Nineteen samples (9 from the IDH

group and 10 from the WT group) were used for this analysis. After

88 epochs, the XGBoost model stopped converging, and 44

biomarkers were identified. Due to the sample size constraints,

the model could not converge effectively when incorporating more

than 11 variables. In the time-dependent ROC curve analysis, the

metabolites were restricted to 7 because 5-fold cross-validation was
frontiersin.org
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employed. Iterative modeling revealed that the top 11 biomarkers

had a C-index of 0.962 (95% CI: 0.934-0.991) (Figure 3A). The 11

biomarkers were cholic acid (M_91), citrulline (M_108), L-tyrosine

(M_38), nicotinamide-adenine dinucleotide (M_107), uric acid

(M_80), xylose (M_26), creatine (M_17), L-histidine (M_45),
Frontiers in Oncology 05
hydrocortisone (M_16), uridine-5’-diphosphoglucuronic acid

(M_111), and butanoic acid (M_1). The differences in these

metabolites among each group are presented in S2 Supplementary

Figure S6. Additionally, SHapley Additive exPlanations (SHAP)

values and feature importance revealed that the importance of the
FIGURE 1

Results of model tuning and assessment. (A), Tuning results for the sPLS-DA model. Each colored line represents the balanced error rate (y-axis) for
each component across all tested variables (x-axis), with the standard deviation indicated. (B), Sample visualizations based on three components.
The samples are projected into the space spanned by the first three components, with 95% ellipse confidence intervals around each sample class.
(C), Contributions of characteristic metabolites. Metabolites are ranked according to their loading weights (most important at the bottom to least
important at the top), represented as a bar plot. The color indicates the group to which the biomarker primarily contributes. (D), Biplot from the
sPLS-DA model after variable selection. The plot highlights which metabolite is related to a specific group. (E), Clustered heatmap of the markers.
Clustering of samples was performed via an unsupervised method (Euclidean distance).
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biomarkers gradually decreased as the ranking increased

(Figures 3B–D). The significance tests of survival curves revealed

that all 11 biomarkers, except for M_1, M_16, and M_17, had

significant impact on the survival of patients with GBM (Figure 4).

Seven of these markers were successfully validated in an

independent dataset for their association with survival risk, and

five of these (M_38, M_45, M_91, M_107, and M_111) validated
Frontiers in Oncology 06
markers were consistent with the findings of our study

(Supplementary Figure S7). However, the validation dataset lacks

samples with IDH mutations, which could be an important reason

for the discrepancies. The final Cox proportional hazards regression

model was established using the top 2 biomarkers, cholic acid and

citrulline, through fivefold cross-validation. The time-dependent

ROC curve demonstrated that the Cox model achieved area under
FIGURE 2

Validation results of classical models. The confusion matrices (A) and the ROC curves (B) of six classical machine learning models (Decision Tree,
Random Forest, Neural Network, Conditional Inference Tree, C5.0 Decision Tree, and Support Vector Machine) applied to classification models built
using the top three ranked (by frequency) biomarkers. The validation process employed bootstrap resampling to ensure assessment stability.
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the curve (AUC) values of 0.942 and 0.826 at 84 and 297 weeks,

respectively (Figure 5).
Discussion

Similar studies have identified serum biomarkers for GBM

diagnosis and survival risk prediction, including arginylproline, 5-

hydroxymethyluracil, arginine, methionine, and kynurenate (13,

14). However, these metabolites were not detected in this study.

This discrepancy may be attributed to the heterogeneity between

plasma and tissue and variations in detection methods. Our

metabolomic results were derived directly from GBM tissues and

subjected to strict screening criteria, which increased the tumor

specificity of the identified biomarkers. However, further validation

is needed if these biomarkers are to be used in combination for

fluid-based diagnosis. Although several biomarkers exhibited

different mean abundances across the three groups (nontumor

patients, IDH-mutant GBM patients, and IDH-wildtype GBM

patients), their distributions significantly overlapped. This finding

indicates that single metabolites cannot meet the requirements for

trichotomous classification, and a classification model based on

multiple biomarkers needs to be established to obtain a more stable

prediction performance; this is also the reason why we used

multiple classic algorithms to validate the representativeness of

the biomarkers.

In this study, 11 metabolites were identified as suitable for

combined use in building a classification model. Several of these

metabolites were previously identified in GBM tissue metabolomics

studies, with their reported levels aligning consistently with our

findings, such as glycerophosphocholine (M_22) (16), L-tryptophan
Frontiers in Oncology 07
(M_110) (17), asparagine (M_43) (18), and LysoPC(18:0) (M_178)

(19). Although direct clinical evidence remains limited for the

abundance of other markers in glioma tissues, existing studies

demonstrate their significant associations with gliomas or other

tumor types. Asparagine (M_43) is synthesized from aspartate and

glutamine by asparagine synthetase. Its levels in the IDH group

were significantly lower than those in the WT group in this study,

which may partially explain why glioma patients with low

asparagine levels have better survival rates (20). Dulcitol (M_29)

participates in galactose metabolism. Currently, there is limited

clinical research on its abundance in human tumor tissues. In vitro

and animal experiments have shown that it has anti-tumor effects

(21, 22). Our results indicate that its levels are significantly elevated

in GBM tissues, including both the WT and IDH groups. The

mechanism of dulcitol elevation and its role in GBM require further

investigation. Bao et al.’s study demonstrated a significant positive

correlation between valine (M_106) in cerebrospinal fluid and the

incidence of glioblastoma (23). In this study, valine levels were

elevated in both the IDH and WT groups, further strengthening its

correlation with GBM. Sarcosine (M_76) levels are increased in

many types of tumors and associated with invasiveness (24, 25).

Nervertheless, there are currently no clinical studies clearly

investigating changes in sarcosine levels in GBM tissues. In vitro

experiments have shown that glioma cells convert glycine to

sarcosine through glycine-N-methyltransferase, leading to

elevated sarcosine levels in the microenvironment (26, 27).

Sarcosine competitively inhibits the GlyT1 transporter of

dendritic cells (DCs), thereby upregulating the expression of

COX-1 and CXCR2, and promoting DCs’ migration to the tumor

area (26). Interestingly, our results showed that sarcosine in GBM

tissues was significantly lower than that in normal brain tissues.
TABLE 1 The results of the six validation models established using top three ranked (by frequency) biomarkers.

Model Random Forest Neural Network
Conditional Infer-

ence Tree
SVM Decision Tree

C5.0
Decision Tree

Group CTRL IDH WT CTRL IDH WT CTRL IDH WT CTRL IDH WT CTRL IDH WT CTRL IDH WT

Sensitivity 0.824 0.860 0.679 0.647 0.773 0.753 0.562 0.785 0.469 0.673 0.796 0.683 0.604 0.780 0.461 0.651 0.860 0.658

Specificity 0.790 0.980 0.912 0.778 0.979 0.828 0.742 0.880 0.782 0.747 0.951 0.876 0.693 0.943 0.786 0.784 0.981 0.819

PPV 0.659 0.955 0.795 0.603 0.950 0.675 0.528 0.761 0.519 0.575 0.887 0.736 0.503 0.871 0.512 0.606 0.957 0.642

NPV 0.902 0.933 0.849 0.809 0.895 0.875 0.767 0.894 0.746 0.818 0.906 0.845 0.772 0.896 0.749 0.815 0.934 0.829

Precision 0.659 0.955 0.795 0.603 0.950 0.675 0.528 0.761 0.519 0.575 0.887 0.736 0.503 0.871 0.512 0.606 0.957 0.642

Recall 0.824 0.860 0.679 0.647 0.773 0.753 0.562 0.785 0.469 0.673 0.796 0.683 0.604 0.780 0.461 0.651 0.860 0.658

F1 score 0.732 0.905 0.732 0.624 0.852 0.712 0.544 0.772 0.492 0.620 0.839 0.708 0.549 0.823 0.485 0.628 0.906 0.650

DR 0.271 0.288 0.228 0.222 0.259 0.243 0.191 0.256 0.157 0.227 0.261 0.229 0.205 0.259 0.151 0.220 0.285 0.218

DP 0.412 0.302 0.286 0.368 0.273 0.360 0.361 0.337 0.302 0.394 0.294 0.312 0.408 0.297 0.295 0.363 0.298 0.339

Balanced Accuracy 0.807 0.920 0.795 0.713 0.876 0.790 0.652 0.832 0.625 0.710 0.873 0.779 0.648 0.861 0.623 0.718 0.920 0.739

Accuracy (95% CI) 0.787 (0.780–0.795) 0.723 (0.715–0.732) 0.603 (0.594–0.613) 0.717 (0.708–0.725) 0.615 (0.606–0.625) 0.723 (0.714–0.731)

P < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Kappa 0.681 0.585 0.405 0.575 0.422 0.584
fr
ontiers
P, p value of McNemar’s Test; SVM, support vector machine; DR, detection rate; DP, detection prevalence; PPV, positive predictive value; NPV, negative predictive value.
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Further research is needed to determine whether this metabolic

change is associated with DC-mediated immune responses. Glioma

cells do not directly synthesize itaconic acid (28). Instead, this

metabolite predominantly originates from metabolic byproducts of

M1-polarized macrophages (28, 29). Wang et al.’s study

demonstrated that IDH-mutant glioma tissues contain a
Frontiers in Oncology 08
significantly higher proportion of M1-polarized macrophages

compared to that in wild-type gliomas (30). This result may

explain the reason for the increased levels of itaconic acid in the

IDH group in our study.

Biomarkers for survival prediction have been demonstrated to

be closely linked to GBM progression. For example, creatine has
frontiersin.or
FIGURE 3

Evaluation of biomarkers for predicting survival risk. (A), C-index of the survival risk prediction models using different combinations of markers. The
biomarkers were added to the model for training in descending order of contribution values. (B), Importance of biomarkers for molecular subtypes
calculated via the XGBoost algorithm and Cox proportional hazards regression model. (C), SHapley Additive exPlanations (SHAP) contributions of
different features. Each point represents one case and is colored based on its abundance. (D), These plots represent how the SHAP feature
contributions depend on the biomarker values.
g
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been used extensively to facilitate the migration and proliferation of

GBM cells, although its impact on survival risk was not significant

in this study (31). Elevated cholic acid levels increase the invasive

capacity and drug resistance of GBM cells (32). The uric acid

concentration is correlated with the extent of necrosis in the GBM
Frontiers in Oncology 09
mass. High glutathione levels are intimately associated with

glioblastoma cell survival (33). Furthermore, nicotinamide

adenine dinucleotide (NAD+) augments the tumor-suppressing

capabilities of immune cells and increases chemosensitivity (34,

35). Consistently, our results revealed that GBM patients with low
FIGURE 4

Eight biomarkers significantly associated with survival risk. Among the 11 biomarkers used to establish the survival prediction model, 8 biomarkers
showed significant correlations with survival risk. Specifically, M_38, M_45, M_91, M_107, and M_111 also had a significant impact on overall survival
in the validation dataset. * A high abundance of M_107 indicates low risk, whereas a low abundance indicates high risk.
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NAD+ levels presented a significantly increased survival risk.

Interestingly, L-histidine has been reported to have anticancer

properties (36), while our results suggest that high levels of L-

histidine may increase the survival risk for GBM patients. This

inconsistent finding requires further confirmation. The remaining

biomarkers, such as citrulline and uridine-5’-diphosphoglucuronic

acid, have not yet been reliably associated with GBM. Nevertheless,

previous studies have shown that citrullinated histone H3 (CitH3)

plays a pivotal role in the formation of neutrophil extracellular traps

(NETs), which can accelerate glioblastoma progression (37). The

accumulation of uridine-5’-diphosphoglucuronic acid has also been

implicated in cancer metastasis (38). The above studies support the

reliability of biomarkers, and our study is the first to reveal the

associations between these biomarkers and survival risk.

There are several limitations that need to be addressed. Despite

evaluating the validation models via bootstrap-resampling, the small

sample size may still lead to overfitting. To mitigate overfitting, we

restricted the number of variables in both classification and survival

models to 1/10 of the sample size (e.g., 3 biomarkers for classification

models and 2 for survival analysis) and focused only on top-ranked

biomarkers. However, even with these precautions, the reported AUC

values should be referenced with caution as they may still be

overestimated due to the inherent limitations associated with small

sample sizes. While partial validation was performed using an

independent dataset, the heterogeneity of the external cohort (e.g.,

lack of IDH-mutant cases) may limit the generalizability of our

findings. Future studies should validate these biomarkers through

large-scale targeted metabolomics. The biomarkers identified here are
Frontiers in Oncology 10
tissue-derived, and their expression levels and diagnostic thresholds

in biofluids (e.g., cerebrospinal fluid) require further investigation.

Additionally, the biological roles of certain markers (e.g., sarcosine) in

tumor microenvironments remain unclear and necessitate functional

studies to elucidate their mechanisms. Untargeted metabolomics has

limited coverage which potentially omits previously reported

metabolites by other studies. Integrating targeted assays and multi-

omics approaches in our future studies will strengthen the

biomarker framework.

In summary, this exploratory work highlights potential

metabolic biomarkers for GBM subtyping and survival risk.

However, clinical application requires multicenter validation with

larger cohorts and mechanistic studies to clarify the biological basis

of metabolic reprogramming.
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