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Acquired aplastic anemia (AA) is a bone marrow failure syndrome characterized

by pancytopenia and decreased hematopoietic stem and progenitor cells

(HSPCs) in the bone marrow, it can be either congenital or acquired,

predominantly affecting adolescents and the elderly, with higher incidence in

Asia compared to Europe and America. Current treatment options include

allogeneic hematopoietic stem cell transplantation or immunosuppressive

agents, yet proximately a third of patients fail to reach long-term survival. AA is

primarily driven by immune-mediated destruction of HSPCs, initiated by self-

activated T cells. Early stages feature a Th1 response, which later shifts to Th17

and effector memory CD8+ T cells. Key cytokines including interferon-gamma

(IFN-g) and tumor necrosis factor-alpha (TNF-a) play crucial roles in this immune

dysregulation, influencing HSPCs and contributing to bone marrow failure.

Furthermore, bone marrow macrophages (MF), particularly M1 subtype, are

implicated in AA via the TNF-a/TNF-a receptor pathway, leading to T cell

activating and subsequent HSPC damage. Interestingly, MF with high

expression of IL-27Ra have been demonstrated to contribute to HSPC

destruction in AA murine models. Beyond their role in thrombosis, platelets

also participate in immune regulation. Some studies suggest that platelet may

modulate T cell responses through mechanisms such as Akt-PGC1a-TFAM
pathway or PF4-mediated activity, which could play a role in AA. However,

direct evidence connecting platelet regulation to T cell-mediated HSPC damage

is limited, and current research has largely focuses on CD8+ T cells. Moving

forward, it is essential to investigate the interactions between platelets, CD4+ T

cells, and mitochondrial energy metabolism. In this review, we propose that

platelet-derived factors such as PF4 and TGFb may activate mitochondrial

pathways, influencing T cell activation and leading to HSPC destruction in AA.

This hypothesis could provide new insights into the molecular mechanisms of AA

and pave the way for novel therapeutic strategies (Highlight).
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Highlights
Fron
• This review will discuss and explore the pathogenesis of AA

from a new perspective, focusing on platelet-regulated T-

cell immune response.

• The function of platelets are not only thrombus and

hemostasis, but also regulate T-cell immunity. The key

mediators involved are PF4 and the mitochondrial energy

metabolism signaling pathway.

• We also summarize the research history of platelet drugs in

cardiovascular and cerebrovascular diseases, as well as the

potential of immunotherapy in the current era.

• Molecular Activity of Platelet-Regulated T Cell Immune

Response in AA as below:
Introduction

Aplastic Anemia (AA) may arise from an unknown pathogen

infecting hematopoietic stem cells (HSCs) or peripheral cells,

leading to the presentation of pathogen particles and either

unmodified or chemically/genetically modified components on

their cell surfaces. These antigens are subsequently processed by

antigen-presenting cells (APCs) and presented to CD4+ T cells.

Platelets play a role in this immune regulation by releasing various

soluble mediators, such as PF4/CXCL4, TGFb, PAF, TXA2, NAP,
and RANTES. PF4 binds to CXCR3 and CXCR5 receptors on CD4+

or CD8+ T cells, activating downstream mitochondrial energy

metabolism signaling pathway (Akt-PGC1a-TFAM). This affects

mitochondrial quantity, ATP production, and reactive oxygen

species (ROS), ultimately regulating T cell immune response. In

CD4+ T cells, this regulation leads to: ①Differentiation into Th1,

Th2, Th9, and Th22 phenotypes; ②Simultaneous differentiation

into Th17 phenotypes under the stimulation of IL-23 and IL-12;

③Suppression of Treg cells, resulting in weakened immune

regulation and imbalance. In CD8+ T cells, the immune

regulation involves: ①Direct cytotoxicity through the release of

granzyme B (GzmB) and perforin (PFN); ②Paracrine effects via

secretion of TNFa, IFNg, and Fas ligand (Fas-L).

In summary, platelets regulate the immune responses of CD4+

and CD8+ T cells through mitochondrial energy metabolism,

contributing to immune dysregulation and increased levels of

IFNg and TNFa, leading to the destruction of HSPCs and

potential bone marrow failure.

While platelets are best known for their role in hemostasis and

thrombosis, recent evidence suggests that platelets release mediators

such as PF4/CXCL4 (platelet factor 4), TGFb (transforming growth

factor b), RANTES, and others through a-particle secretion. These
processes, mediated by pathways like mitochondrial Akt-PGC1a
and Toll-like receptors (TLR), selectively regulate T-cell

recruitment under normal blood flow, affecting the lifespan of

naive naïve T cells (TN) and memory T cells (TM). Moreover,

platelets influence the dynamics and differentiation of Th (T helper)

and Treg (regulatory T) cells, thus playing a critical role in immune

regulation (1–6).
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AA is characterized by bone marrow failure, pancytopenia, and

reduced bone marrow cellularity. It most commonly affects in

adolescents and the elderly, with a higher incidence in Asia than

in Europe and the United States. Immunosuppressive therapy is the

primary treatment, but it has a slow onset and significant side

effects, with about a third of patients not surviving long term.

Recent advances have seen TPO-RAs (thrombopoietin receptor

agonists) combined with IST as a first-line treatment, though

whether TPO-RAs can correct immune imbalances while

promoting platelet production remains unclear (7–9).

Research shows that patients with AA exhibit abnormal T-cell

activation, characterized by elevated levels of IFN-g and TNF-a,
leading to the destruction of HSPCs. Identifying the factors driving

excessive T-cell activation and developing effective strategies to

correct immune imbalance remain crucial challenges (10–13).

This paper proposes a novel clinical perspective: investigating

the role of platelet-mediated T-cell immune function in bone

marrow failure, potentially offering innovative approaches to

addressing treatment challenges in the future.
Platelet physiology

Platelets are anucleate, discoid cells with dimensions of

approximatley (2.0-5.0)×0.5 µm, an average cell volume of 6–10 fl, a

blood concentration of 200-300×109/L, and a lifespan of approximately

10 days (14). Though primarily known for their role in hemostasis and

thrombosis, platelets are critical in conditions such as myocardial

infarction (MI), which is frequently caused by thrombus formation.

They are also implicated in immune system disorders, including viral

and bacterial infections in patients with idiopathic thrombocytopenic

purpura (15). Emerging evidence indicates that platelets also contribute

to immune functions through Toll-like receptors (TLR) (1, 16–19).

Upon activation, platelets release a-granules, which are linked

to major histocompatibility complex I (MHCI) molecules. MHCI

expression can be found on the platelet plasma membrane and in

the cytosol, although it is relatively unstable in these areas (20, 21).

In addition to MHCI, a-granules release mediators like PF4/CXCL4

and TGFb, that play essential roles in thrombosis, inflammation,

and immune modulation, while also contributing to vascular

intimal injury (22). PF4 exhibits a strong chemotactic effect on

neutrophils by binding to heparan sulfate on vascular endothelium,

promoting thrombin activation. Additionally, circulating TGFb
primarily originate from platelets, serving as a specific marker of

in vivo platelet activation (2, 23–25).

Atherosclerosis, a chronic inflammatory process, involves an

sustained immune response. Platelets are involved in all stages of

thrombus formation, which encompasses four key stages: endothelial

dysfunction, fatty streak formation, advanced and complicated lesions,

and emergence of unstable fibrous plaques (26). For the prevention and

treatment of atherosclerotic diseases, antiplatelet therapy has long been

a cornerstone, with a consensus on its benefits (27). Current therapies

mainly target direct platelet activation, using agents like COX-inhibitor

aspirin and ADP P2Y12 receptor antagonists such as clopidogrel or

ticagrelor. These treatments reduce acute coronary syndrome risks by
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approximately 30-40%. However, efforts to further enhance antiplatelet

therapy have reached a therapeutic plateau, as illustrated by ticagrelor’s

marginal 2% superior over clopidogrel in primary endpoint protection

over one year (28, 29).

This highlights the need for novel antiplatelet strategies. Future

therapies may focus on platelet interactions with inflammatory and

immune processes. A combination of antiplatelet drugs that target both

platelet activation and inflammation could synergistic effects, offering

more comprehensive protection against thrombotic and immune-

related complications.

Platelets exhibit immunomodulatory potential, as evidenced by

their ability to stimulate lymphocyte proliferation, optimize the

subpopulation ratio of lymphocytes by regulating the CD3+CD8+ T

lymphocytes and bolster the cytotoxic function of lymphocytes in vitro

when activated (30). Additionally, platelets inhibit cytolytic function,

adhesion ability and cytotoxic properties of NK cells by expressing

glucocorticoid-induced TNF-related ligand (GITRL), releasing TGF-b
and transferringMHC-I, thereby protecting tumor cells and promoting

the formation of immunosuppressive environment (6, 31, 32).

Moreover, platelets play a role in modulating the balance of

macrophage phenotypes. Studies have shown that platelets can

promote the polarization of macrophages to M1 phenotype in a

mouse model of septic shock in vitro (33, 34). Meanwhile, related

research has also indicated that thrombopoietin receptor agonists

induce macrophages to shift towards the M2 phenotype (35). These

discoveries not only enhance our understanding of the immune-

regulating role of platelets, but also offer fresh perspectives and

approaches for the treatment of associated diseases.

One of the characteristics of aplastic anemia is decrease in platelets.

Thrombopoietin receptor agonists (TPO-RAs) regulate the

differentiation and maturation of megakaryocytes required for

platelet production. So thrombopoietin receptor agonists have been

used to treat bone marrow failure syndromes, such as aplastic anemia

(36). Eltrombopag is one of TPO-RAs that improves the blood platelet

level. A two-arm study suggests patients with severe aplastic anemia

(SAA) and very severe aplastic anemia (vSAA) who do not have a

suitable bone marrow transplant donor need standard

immunosuppression treatment. Compared with Group A (the

standard immunosuppressive therapy), more participants in group B

(the standard immunosuppressive therapy with Eltrombopag) have

elevated blood cell levels into the normal range and responded more

quickly to treatment, while side effects were similar in both groups. So

immunosuppression treatment with eltrombopag benefits participants

with SAA and vSAA (37). And the recovery of platelet level plays an

important role in the treatment of aplastic anemia.
CD4+ and CD8+ T cells

CD4+ T cells

Antigen-presenting cells (APCs) form a major histocompatibility

complex II (MHCII)-peptide complex on their surface. This complex

can be recognized and bound by the T cell receptor (TCR) and CD4,

which constitutes the first signal for CD4+ T cell activation. The second
Frontiers in Oncology 03
signal involves costimulation from either cytokines or membrane

proteins such as B7 (CD80) on the APC surface interacting with

CD28 on the CD4+ T cell surface. Without this costimulation, CD4+ T

cells remain energy-deprived. When CD4+ T cells are activated, they

start to synthesize and secrete IL-2, leading to their proliferation and

differentiation. Most activated CD4+ T cells become effector cells and

eventually die, but a few will survive to become memory cells, retaining

the long-term memory of the antigen. The first and second signals are

critical for T cell survival and proliferation, but they’re insufficient for

complete functional differentiation. The third signal, which drives

differentiation, comes from cytokines secreted by other cells in the

surrounding microenvironment, which, along with TCR recognition,

determines the final outcome of CD4+ T cells (38, 39).
CD4+ Th and Treg cells

CD4+ T cells can differentiate into various Th cell subsets, such as

Th1, Th2, Th9, Th17, Th22, TFH, TFR, and Treg cells. These subsets

play distinct roles in the immune system function of eliminating

pathogens and are influenced by specific transcription factors like T-

bet, GATA3, RORgt, and FoxP3 (40, 41). Additionally, certain

chromatin modifiers can affect T cell function at the gene level (42).
Th1 and Th2

Under normal physiological conditions, Th1 and Th2 cells

maintain a balanced state (43, 44). Th1 cells primarily secrete pro-

inflammatory cytokines like IFNg, which mediate cellular immunity

and activate other cell types, such as macrophages (45–49). Th2 cells,

on the other hand, support the survival and function of B cells,

including their proliferation, maturation, antibody production, and

mediation of humoral immunity. This is achieved through the

secretion of IL-4, IL-5, and IL-13 by Th2 cells. It’s worth noting that

these two subsets regulate each other tomaintain immune homeostasis;

IL-4 and IFNg can inhibit the functions of Th1 and Th2 cells,

respectively (50). There is also a specialized subtype of “Th2/Th1”

cells that express both IL-4 and IFNg, along with GATA3 and T-bet.

Intriguingly, antigens like Papain and House Dust Mites (HDM) can

induce Th2 cells through non-MHC-II pathways, suggesting an

additional role for Th2 cells in adaptive immunity (51, 52).
Th9

Under the influence of IL-2-induced STAT5 activation, along with

the regulation by IL-4 and TGF-b, CD4+ T cells can polarize toward

the Th9 phenotype (53, 54). Conversely, GFI1 acts as a negative

regulator for Th9 polarization. Key downstream transcription factors

like PU.1, IRF4 (Interferon Regulatory Factor 4), Id1, and HIF1a are

crucial for Th9 differentiation (55–57). The hallmark cytokine

produced by Th9 cells is IL-9, which is closely associated with

allergies and autoimmunity. TGF-b promotes IL-9 production by

activating PU.1 or by facilitating the interaction between Smad2/3
frontiersin.org
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and IRF4 through the TGF-b/Smad axis. Id1, when bound with Tcf3/4

or IRF4, enhances IL-9 expression in Th9 cells by interacting with the

IL-9 promoter region (58). Animal and in vitro experiments have

shown that DBP can increase IL-9 gene expression, while EB28 does

the opposite (59). When IL-9 binds to its receptor, it can activate three

distinct STAT proteins: STAT1, STAT3, and STAT5, which play

unique roles in gene induction, differentiation, and inhibition of

apoptosis (60–65).
Th17

Th17 cells are characterized by their expression of IL-17 (IL-17+

IFNg–) (66, 67). IL-17 is a key pro-inflammatory factor with

multiple functions, such as stimulating neutrophil proliferation

and maturation and inducing pro-inflammatory cytokine

expression in various cell types. Because of this, Th17 cells can

affect the pathophysiology of several conditions, including

infections, cancer, autoimmunity, aplastic anemia, rheumatoid

arthritis (RA), and others (68–71).
Th22

Th22 cells are marked by their high production of IL-22, which

is regulated by the NOTCH-HES-1 axis and the characteristic

expression of chemokine receptors CCR4, CCR6, and CCR10

(72–74). IL-22 activates several downstream pathways, including

MAPK, PI3K/Akt, and NF-kB, enabling it to perform various

functions (75–78). While Th22 cells were initially found in

studies of skin pathophysiology, recent research has shown that

they are involved in various autoimmune diseases, viral infections,

cardiovascular diseases, and tumors.
TFH (CXCR5, CXCR13/BCA-1, ICOS, IcosL,
Bcl6, CD40L; CD40, IL-21, PD-1)

TFH (T follicular helper) cells are characterized by the expression

of CXCR5 (CXC chemokine receptor 5). Various factors play roles in

the multi-stage regulation of TFH differentiation (79). CXCR5, ICOS

(Inducible costimulator), IL-12, IL-21, IFNg, IL-27, and IL-6 positively

regulate TFH differentiation, while PD-1 (Programmed Death 1),

CTLA-4 (Cytotoxic T Lymphocyte Antigen 4), ubiquitin ligase Peli1,

IL-2, and IL-7 have the opposite effects (80–86). TFH cells primarily

assist in the formation of germinal centers (GCs) and B cell

differentiation and maturation, closely tied to the humoral immune

response (87–89).
TFR (CXCR5, ICOS, Bcl6, PD-1; CTLA4,
GITR, FOXP3)

In 2011, a specialized subset of regulatory T cells (Tregs),

located in the germinal center (GC), was identified as Tfr cells
Frontiers in Oncology 04
(90). Similar to Tregs, this subset contains key molecules such as

FoxP3, CTLA-4, GITR, Prdm1, and Blimp-1. Additionally, Tfr cells

express Bcl-6, CXCR5, PD-1, and ICOS, similar to TFH cells,

distinguishing them as a unique CD4 T-cell subset (91–98). The

primary function of Tfr cells is to balance immune activation and

tolerance, which provides insight into autoimmune diseases, allergic

reactions, antibody-mediated rejection, viral infections, and type 1

diabetes (99–102).
Treg cells

Treg cells constitute an immunosuppressive T cell subset the

production of which is induced by IL-2-stimulated FoxP3

transcriptional activity. This subset plays a crucial role in

maintaining peripheral immune tolerance and controlling

autoimmune responses (103–115). The balance between Treg and

other Th subsets is crucial in preventing autoimmunity by impeding

the activation of autoreactive T cells and the expression of cytokines

(116, 117). Tregs express IL-10 and TGFb, which inhibit

macrophage function after TLR4 activation (118–120). IL-10

downregulates T cell-mediated immune responses, including

repressing the proliferation of Th1 and Th2 cells, while TGFb
regulates the functions of various immune cells (121–124).

In summary, the diagram of CD4+ T cell subsets and immune

response mechanism in Figure 1.
CD8+ T cells/CTL

Autoreactive cytotoxic CD8+ T cells recognize hematopoietic

stem and progenitor cell (HSPC) antigens through major

histocompatibility MHC I/II, resulting in secretion of pro-

inflammatory cytokines such as IFN-g. After activation, CD8+ T

cells rapidly proliferate, exit the lymph nodes, enter the

bloodstream, and migrate to the infection site. They directly kill

target cells by releasing perforin and granzyme or induce apoptosis

by using the Fas ligand protein on their surface to bind with the Fas

protein on target cells (125–127). Similar to CD4+ cells, CD8+ cells

can be classified into three subtypes based on their distinct

phenotypes and functional heterogeneity (128, 129).
Naïve and memory T cells

T cell subsets serve as indicators of immune function. CD4+

cells play a pivotal role in humoral and cellular immune systems by

secreting numerous cytokines and facilitating B cell antibody

production (130–132). Notably, T cells can be classified as either

Tn (CD45RA+ and CD45RO–) or TM (CD45RA– and CD45RO+)

based on the expression of these variants (133). Tn cells mature in

the thymus and migrate to peripheral secondary lymphatic organs/

tissues such as the spleen and lymph nodes (LNs). For Tn, central

memory T cell (Tcm), and effector memory (Tem) cells, APC

functional differentiation strength increases gradually, while
frontiersin.org
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proliferative capacity and antitumor efficacy decline progressively

(134). CD8+ effector T cell subsets identified thus far include Tc1,

Tc2, Tc9, Tc17, follicular cytotoxic T (Tfc), follicular helper T

(CD8+ Tfh), and regulatory T (CD8+ Treg), holds significant

potential in treating tumors, viral infections, allergies, and

autoimmune diseases (135, 136).The majority of effector cells

undergo apoptosis with small subset persists and differentiates

into memory cells. Some effector T cells directly transition into

Tcm and Tem, while others are converted from Tcm (41, 137, 138).
Frontiers in Oncology 05
Compared to Tn, TM cells mount and execute a faster immune

response upon re-infection by pathogens (137, 139–141).

Memory T cells can be further classified as Tem and Tcm based

on the expression of CD62L and CCR7. CD62L, a lymph node

homing receptor, influences cell migration, while CCR7, a

chemokine receptor, contributes to T cell recirculation and

effector function (130, 142, 143). Tcm localize to secondary

lymphoid tissues for recirculation similar to Tn cells, whereas

Tem preferentially migrate and distribute throughout non-
FIGURE 1

Diagram of CD4+ T cell subsets and immune response activity. CD4+ T cells require three sequential signals to activate and acquire the ability to
differentiate and function: ① First Signal: Antigen-specific interactions. The CD4 co-receptor and TCR-CD3 complex recognize the antigen-MHC II
complex on antigen-presenting cells (APCs), enabling signal transmission. ② Second Signal: Co-stimulatory molecules. The TCR binds to the MHC II
complex, while co-stimulatory molecules on the APC surface bind to ligands on the T cell surface. ③ Third Signal: Instructive cytokines. While the
first and second signals activate the T cells (promoting survival and proliferation), they are insufficient for functional differentiation. The third signal,
provided by cytokines secreted by surrounding cells, together with the TCR, determines the final differentiation of the CD4+ T cells. Fully activated T
cells can differentiate into various subsets: T Helper Cells (Th): These promote immune responses and include Th1, Th2, Th9, Th17, Th22, TFH, and
TFR cells. Regulatory T Cells (Treg): These inhibit and regulate immune responses. Their specific roles are depicted in the diagram. Additionally,
some effector T cells transition into memory T cells (TM), which are further classified into central memory T cells (Tcm) and effector memory cells
(Tem). Upon encountering pathogens again, memory T cells produce rapid and robust immune responses, which are crucial for long-term immunity
and vaccine effectiveness.
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lymphoid tissues and local immune response sites to mount rapid

immune responses (144–149). Additionally, Tem cells are involved

in early infection stages, while Tcm cells predominate in later stages

due to their robust proliferative potential and prolonged effector

function (150–159).

Memory cells are vital in vaccine immunity (139). Tcm cells exhibit

high expression of CD45RO, CD62L, CD28, CD44, CD11a, and IL-

12R (b1 subunit), displaying a stronger proliferative potential and anti-
tumor immunity than Tem cells (134, 144, 160) while Tem cells express

low levels of CD62L and CCR7. Due to limited CCR7 expression, Tem

cells promptly localize in inflamed tissues via chemotactic gradients

and express pro-inflammatory factors like IL-4, IL-5, IFNg, and
perforin. Notably, Tem function is implicated in autoimmune

diseases and AS development (161–165), evidenced by the Tem cells

in synovial fluid or skin during clinical diagnosis (161) and the decrease

in Tn cells and increase in Tem cells during AS (166–171), respectively.

Tcm cells, akin to stem cells, possess self-renewal capability, while some

Tem cells can originate from Tcm in response to antigen stimulation

(166–171).

In summary, the diagram of CD8+ T cell/CTL subsets and

immune response mechanism in Figure 2.
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T cell subsets and their associated functions are summarized

in Table 1.
Platelet regulates T cell immune
response

T cells play a pivotal role in both physiological and pathological

processes by releasing various cytokines that exert paracrine or

autocrine effects on different T cell subsets and other cells, thereby

regulating immune responses. Notably, the majority of effector T

cells (up to 90 to 95%) undergo apoptosis following antigen

clearance (172, 173), posing a challenge for the immune system

to maintain long-term self-tolerance during rapid expansions and

contractions of cellular population (174). The immune system’s

ability to maintain immunological specificity and memory ensures

that a small population of memory T cells, which have lower

proliferation rates and increased resistance to apoptosis, can

persist (175–178). These memory T cells are crucial for initiating

rapid and robust immune responses upon re-exposure to the same

antigen, forming the backbone of anti-tumor specific immunity.
FIGURE 2

Diagram of CD8+ T Cell/CTL subsets and immune response activity. CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs), are activated
through two primary activities: ① Activation via Antigenic Peptide from APCs: The first signal involves the interaction between the antigenic peptide-
MHC I complex and TCR/CD3-CD8 molecules on the APC. The second signal comes from the binding of B7 on the APC to CD28 on the CD8+ T
cell. Additionally, the T cell expresses the IL-12 receptor, which binds IL-12 secreted by the APC, leading to activation. ② Activation via Antigenic
Peptide from Target Cells: In this case, the first signal is provided by the antigenic peptide-MHC I complex binding to TCR/CD3-CD8 molecules.
Since target cells lack B7 molecules, CD4+ Th cells provide IL-2 to the corresponding receptor on CD8+ T cells, serving as the second signal. Upon
activation, CD8+ T cells gain the ability to differentiate and function. They rapidly proliferate, leave the lymphoid system, enter the bloodstream, and
kill target cells. Identified CD8+ effector T cell subsets include Tc1, Tc2, Tc9, Tc17, follicular cytotoxic T cells (Tfc), follicular helper T cells (CD8+ Tfh),
and regulatory T cells (CD8+ Treg). These subsets play significant roles in treating tumors, viral infections, allergies, and autoimmune diseases by
directly eliminating or inducing apoptosis in target cells. Following the resolution of an infection, most effector cells undergo apoptosis during the
contraction phase. However, some CD8+ T cells persist as memory cells (TM), which are further categorized into central memory T cells (Tcm) and
effector memory T cells (Tem). TM cells are crucial for tumor immunity, host defense, and other immune responses, and they mediate memory
responses following vaccination.
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The mechanisms underlying the persistence of memory T cell

remain a topic of debate. While some scientists argue about the

necessity of antigen stimulation for memory T cell maintenance

(179, 180), the shared surface molecules shared by memory and

effector T cells suggest that antigen exposure may indeed play a role

in promoting long-term memory. Some reports suggest that weak

antigen stimulation can contribute to the persistence of memory T

cells (181–183).

Moreover, TM cells are associated with cognate antigen-

independent cellular turnover in response to IL-7/IL-15 (154, 184,

185), which supports the sustained maintenance of immune

memory (186). An alternative perspective suggests that the

longevity of T cells might be directly related to immunological

memory itself (186, 187). Additionally, there’s evidence that

inflammatory signaling favors the production of effector cells,

while the absence of inflammation promotes the development of

memory T cells (186).

Platelets are recognized not only for their roles in thrombus

formation and hemostasis, but also for their significant regulatory
Frontiers in Oncology 07
role in immune responses. In collaborating with T cells, platelets

release bioactive mediators like PF4 and TGFb, which contribute to

immune modulation and can exacerbate vascular intimal injury

(22). Other mediators like PAF, TXA2, NAP, and RANTES activate

immune cells-such as neutrophils and monocytes/macrophages-

promoting chemotaxis and enhancing immune responses through

mitochondrial energy metabolism pathways. In concert with CD4+

T cells, Platelets influence immune responses by modulating Th and

Treg cell phenotypes, affecting the secretion of cytokines like IFN-g
and TNF-a (3, 4, 26, 188).

PF4/CXCL4, TGFb, and other mediators are secreted by platelet

a-granules and are involved in process related to thrombosis,

inflammation, and immunity, contributing to vascular intimal

injury (22). PF4 exhibits strong chemotactic properties for

neutrophils by binding to heparan sulfate on the vascular

endothelium, which attenuates thrombin inactivation. TGFb,
predominantly derived from platelets in circulation, serves as a

specific marker for in vivo platelet activation (2, 23–25).

In the context of inflammatory atherosclerosis, specific

macrophage subpopulations have been identified, notably those

induced by PF4/CXCL4 and labeled as “M4” (PF4/CXCL4-induced

plaque macrophage). The PF4/CXCL4-induced upregulation of

MMP7 and S100A8 is mitigated by heparin, which binds to PF4/

CXCL4 and glycosaminoglycans, potentially representing

macrophage receptors for PF4/CXCL4, characterized by CD68+

MMP7+ and S100A8+ expression (189). studies of atherosclerotic

plaque and rheumatoid arthritis synovium have shown that

macrophages are a major source of PF4/CXCL4 (190, 191). These

interactions between PF4 produced by macrophages and receptors

on endothelial cells, fibroblasts, and alveolar type 2 cells suggest

significant immune responses, particularly involving PTPRC+

immune cells, with PF4 transcripts detected in macrophages

based on their expression of CD68, CD163, and MRC1. This

indicates that macrophages may be a potential source of PF4/

CXCL4 in mouse models of lung and heart fibrosis, as well as in

individuals with pulmonary fibrosis (192).

In a study using a pressure overload TAC (transverse aortic

constriction) mouse model, PF4 expression was observed in

macrophages co-expressing C1q molecules. These macrophages

exhibited an M2-like signature, with increased proportions in

TAC compared to sham-operated mice after one week (193).

The immune function in chronic inflammatory atherosclerosis

involves both innate and adaptive immunity. The innate immunity

response is triggered by the accumulation of LDL (low-density

lipoprotein) in the arterial wall, which is taken up by macrophages,

leading to the formation of microcrystals. This activates

inflammasomes, processing of IL-1b, and promoting its secretion,

contributing to inflammation and plaque formation. Adaptive

immunity plays its part as LDL is transported to arterial draining

lymph nodes, where peptide fragments from LDL are presented to T

cells, leading to their activation, division, and differentiation. Some

T cells stimulate B cells to produce antibodies against LDL, while

others contribute to plaque formation and inflammation by

activating macrophages, endothelial cells, and smooth muscle

cells (194).
TABLE 1 T cell subsets and their associated functions.

T Cell Subsets Function

CD4+T cell

Th1 secrete pro-inflammatory cytokines like IFN-g, which
mediate cellular immunity and activate other cell types

Th2 secrete L-4, IL-5, and IL-13 thereby supporting the
survival and function of B cells

Th9 secrete IL-9, which is closely associated with allergies
and autoimmunity

Th17 secrete IL-17, which stimulate neutrophil proliferation
and maturation and induce pro-inflammatory cytokines
expression in various cell type

Th22 secrete IL-22 which activate several downstream
pathways, including MAPK, PI3K/Akt and NF-kB

TFH assist in the formation of germinal centers and assist in
B cell differentiation and maturation

TFR balance immune activation and tolerance

Treg maintain peripheral immune tolerance and controlling
autoimmune responses

TM Tem cells exist in lymphoid tissue while Tem cells exist
in the peripheral tissues and blood, which react rapidly
after antigen stimulation

CD8+T cell

Tc1 secrete IFN-g and TNF-a directly or indirectlykilling
target cells after being stimulated

Tc2 secrete IL-4 IL-5, IL-10 and IL-13, thereby regulating the
immune response and mediating allergic reactions

Tc9 secrete IL-9, possess poor cytotaxicity

Tc17 secrete IL-17 and IL-22 possess poor cytotoxicity

TM Tem cells exist inlymphoid tissue while Tem cells exist in
the peripheral tissues and blood, which react rapidly
after antigen stimulation
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Additionally, platelet-thrombocyte aggregates (PTAs) are

associated with an increased risk of thrombosis, with cancer patients

exhibiting significantly higher percentages of PTAs among CD4+ and

CD8+ T lymphocyte populations compared to healthy individuals

(195). Platelets significantly inhibit pro-inflammatory cytokines (IL-

12, IL-6, TNFa) while promoting the production of anti-inflammatory

cytokine (IL-10) in moDCs (monocyte-derived-dendritic cells) primed

with both Toll-like receptor (TLR)-dependent and TLR-independent

stimuli. Moreover, platelets and their soluble mediators impede T cell

priming and differentiation into the IFNg+ Th1 phenotype by

moDCs (196).

Interestingly, the absence or inhibition of T cells enhances the

antiplatelet effect of clopidogrel by boosting its metabolic activation

in the liver, leading to significant production of Cyp2c and Cyp3a in

mice. This finding suggests that damage to T cells can enhance the

metabolism of drugs that are substrates of Cyp2c or Cyp3a (197).

Platelets possess immunosuppressive properties, releasing anti-

inflammatory molecules such as TGF-b and soluble CD40L, which

help suppress excessive immune responses and prevent tissue

damage. Platelets are the primary source of TGF-b in the human

body. This cytokine has been demonstrated to exert deleterious

effects on various lymphocytes. Specifically, TGF-b inhibits the

differentiation of T cells into cytotoxic T cells while increasing the

population of Tregs. Tregs can further inhibit effector T cells and

NK cells. TGF-b also directly affects NK cells by impairing their

lytic activity and reducing IFN-g production (198). Therefore, TGF-

b released by platelets can inhibit excessive cellular immune

responses to prevent tissue damage, its suppression of cellular

immunity in tumors can support cancer cell survival.

Platelet-derived CD40 ligand (CD40L) induces production of IL-6

and IL-12 from DCs and enhances their expression of costimulatory

molecules such as CD80, CD86 and ICAM-1. Furthermore, CD40L has

been shown to enhance DC maturation and their ability to directly kill

Staphylococcus aureus, thereby promoting efficient adaptive immunity

against the bacterium (199). Besides, platelet CD40L can enhance CD8

+ T cell response, hence, functioning as a bridge to the adaptive

immune system (200). Additionally, activated platelets can synthesize

and secrete IL-1b, a potent pro-inflammatory cytokine. IL-1b up-

regulates the expression of adhesion receptors and the secretion of IL-6

and IL-8 in endothelial cells, as well as increases nitric oxide (NO)

-induced vascular permeability, thereby playing a significant role in the

immune response (201).

SARS-CoV-2 binds to platelet-expressed ACE2/TMPRSS2 through

its spike protein, activates the MAPK pathway and enhances platelet

activation (aggregation, granule secretion, leukocyte aggregation) and

thrombosis, which can be inhibited by recombinant human ACE2

protein and anti-spike monoclonal antibody. The molecular

mechanism by which the virus directly drives COVID-19

thromboinflammation is revealed (202). SARS-CoV-2 infection leads

to altered platelet gene expression, enhanced activation (manifested as

increased P-selectin expression), and increased aggregation with

immune cells (neutrophils, monocytes, T cells). Its excessive

activation and accelerated aggregation are associated with MAPK

pathway activation and increased thromboxane production. In some

patients, platelets carry viral mRNA (independent of ACE2), and these
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abnormalities may exacerbate the pathological process of thrombosis

and organ failure in COVID-19 (203).Therefore, platelet

immunomodulatory functions reported by studies in SARS-CoV-2

infections, where there has been accumulating evidence that

coagulation and complement cascades are deeply interconnected and

this can influence immune cell activation.
Platelets regulate T cell immune response
and cytokine release by PF4/TGFb—via
mitochondrial Akt PGC1 a-TFAM signaling
pathway

Studies indicate that platelets in healthy individuals selectively

enhance CD4+ T cell recruitment under normal arterial blood flow

conditions. They regulate T effector cell responses through

mediators like PF4, TGFb, and RANTES, which exhibit varying

kinetics and effects on the regulation of Th1, Th17, and Treg

cells (204).

Mitochondria, the body’s metabolic energy factories, play a

crucial role in T cell activation. Within the first 24 to 48 hours after

T cell activation, mitochondrial energy metabolism and ATP

production are vital for the immune response of T effector cells

(205). TFAM (Mitochondrial Transcription Factor A), encoded by

nuclear genes, is transported to mitochondria, and serves as a key

factor in activating and regulating mitochondrial DNA

transcription (3, 4). Additionally, PGC1a (Peroxisome

Proliferator-Activated Receptor g Coactivator 1 a) regulates

mitochondrial biosynthesis and proliferation by binding to the

downstream target gene NRF-1, which activates its transcription.

PGC1a also promotes TFAM expression through co-transcription

with NRF-1 and NRF-2, enhancing mitochondrial oxidative

function (206).

CXCR3, a functional receptor for PF4, is expressed on CD4+ T

cells such as Tem and Tcm (3–5, 207). Single-cell RNA sequencing

(scRNA-seq) analysis has revealed significant diversity among CD8

T subgroups, particularlly during the peak of influenza virus load

and resolution. An enrichment of CXCR3+ CD8+ T cells correlates

with stronger cytotoxic responses. Notably, CXCR3 blockade

during late-stage CD8 T cell responses in influenza-cleared lungs

can mitigate lung injury without affecting viral clearance, suggesting

therapeutic potential for preventing influenza-associated lung

injury (208). Moreover, functional CD4+ and CD8+ T cells

exhibiting traits of tissue-resident memory T cells (TRM) have

been identified in human kidney tissues, indicating a dynamic

immune environment (209). CXCR3 can also enhance specific

CD8+ T cell activation via plasmacytoid dendritic cells (pDCs)

during intracellular pathogen infections (210).

The research highlights that platelets significantly influence T cell

subsets (Tem, Tcm, and Tn) and their immune responses, involving

mitochondria through PF4 bridging. Key findings include:
1. Platelets significantly impact the Th1/Treg response, with

Treg cell response increasing while Th1 responses

are inhibited.
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2. Platelets undergo PF4-dependent mitochondrial biogenesis

and cell proliferation. The Akt-PGC1a-TFAM signaling

pathway, initiated by PF4 binding with CXCR3, enhances

the responses of Tem and Tcm cells, promoting

mitochondrial ATP and ROS production and thus

increasing Th1 and Treg responses.

3. Platelets regulate CD4+ Tn cell response through PF4-TGFb
interactions. At mildly elevated concentrations, PF4

combined with TGFBRIII promotes TGFb presentation

and TGFBRII expression, enhancing signal transduction

and Tn effector cell response. At excessively high

concentrations, PF4 can directly bind TGFb-TGFBRII,
blocking TGFb signal transduction and disrupting the T

cell response. This underscores the complex interplay

between platelets and T cell regulation, introducing a

novel immune regulatory function and highlighting that

the platelet-regulated T effector cell response results from

multiple factors (3–5, 204).
In conclusion, while platelets are primarily recoginized for their

role in blood clotting (hemostasis), they also play significant roles in

the immune response. Their involvement is a dynamic process,

influenced by various mechanisms, as their interactions with the

immune system can modulate responses depending on the context.

Thus, the role of platelets in immune activation and suppression is

both complex and dynamic.

Platelet activation triggers an increase in oxidative metabolism

to meet energy demands, a process that is more efficient than

aerobic glycolysis alone. Additionally, platelets exhibit

supplemental mitochondrial oxidative phosphorylation, which

may serve as a necessary chemical source for platelet

activation (211).

However, some studies suggest that:
1. mitochondria derived from platelets can inhibit the

proliferation of PBMCs (peripheral blood mononuclear cells).

2. mitochondria from platelets can modulate anti-CD3/CD28-

activated CD4+ T cells by directly targeting CXCR4 and its

ligand SDF-1 (stromal cell-derived factor-1), leading to the

upregulation of CD4+ Tn and Tcm, while causing a

decrease in CD4+ Tem (212).
Platelet-based drug delivery strategies have been explored for

targeting primary tumors, circulating tumor cells (CTCs), and

circulating malignant tumors like lymphoma. Therapeutic agents

have been loaded into platelets via endocytosis (e.g., doxorubicin),

cell surface chemistry methods (e.g., anti-PD-1 binding), and gene

modification (e.g., TRAIL expression). Drug-antibody conjugates

have also targeted to target platelet receptors. Given the unique

tumor vascular system and the ability of platelets to adhere to

circulating tumor cells—especially through surface receptors such

as GP IIb/IIIa—innovative targeting strategies have been designed

to leverage platelet accumulation in tumors. However, it is still

unknown whether this platelet-based drug delivery strategy will

cause excessive accumulation of platelets, thereby leading to
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thrombocythemia and thrombosis formation. More exploration is

needed in the future. Alternative approaches include using ligands

cleaved by proteins in the tumor microenvironment and surface

structures that provide propulsion (213–217).
Platelet-T cell interaction and impact
on AA

AA is a T-cell-mediated bone marrow failure syndrome

characterized by the depletion of HSPCs. Research links the

activation of T cells to cytokines and chemokines, such as INF-g,
TNF-a, and IL-2, which negatively affect HSPCs, resulting in

persistent inhibition of hematopoietic function (218–220).

Therefore, IST combined with TPO-RAs (thrombopoietin

receptor agonists) or HSCT (hematopoietic stem cell

transplantation) is recommended, depending on the patient’s age.

Because TPO receptors are expressed on HSPCs, recent research

suggests that TPO-RAs can alleviate the inhibitory effects of INF-g
on HSCT in multiple ways, beyond merely raising platelet counts.

IFN-g significantly impacts various T cell subsets, including Th,

Treg, and TFH (221, 222). There have been reports of myelofibrosis

in patients treated with TPO-RAs. Therefore, patients treated with

TPO-RAs should perform bone marrow biopsy once a year/every

six months. It is very necessary to be able to discontinue these drugs

in a timely manner when grade 2/3 myelofibrosis occurs.

Discontinuing TPO-RAs can also prevent the development of

clinical manifestations by blocking the progression of grade 2/3

fibrosis (223). Recent study has also shown that Janus kinase (JAK)

1/2 inhibitor ruxolitinib (RUX) can inhibit T cell infiltration

activation and inhibit bone marrow cell apoptosis in mice with

immune AA. This provides a new idea for the treatment of

AA (224).

In children with AA, Treg levels significantly decrease,

diminishing their immune suppressive capacity. However, during

remission, Treg levels do not show substantial changes (225). New

membrane proteins may be identified as platelet sensors for

pathogen- or damage-associated molecular patterns (PAMPs and

DAMPs), shedding light on novel molecular functions in immunity

(226). Furthermore, prior studies have revealed a reduction in

platelet-related cytokines in plasma, such as CCL5 and CD40L,

reflecting thrombocytopenia in AA. These cytokines are crucial in

regulating TH1 and TH2 balance (227).

High levels of PF4 in malignant pleural effusion (MPE) are

associated with poor prognosis. The impaired T lymphocyte

response caused by PF4 confers an advantage for tumor

progression (228).
Platelets and AA

Platelets can either eliminate microorganisms by direct binding

or inhibit their transmission by limiting cell division or survival

through indirect effects, which trigger host immune responses.

However, many invasive microbial pathogens can target host
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platelets, directly or indirectly altering platelet counts or function.

These microbial pathogens can also influence autoimmunity and

alloreactivity in immune-mediated diseases such as immune

thrombocytopenia, systemic lupus erythematosus, and multiple

sclerosis by interacting with platelet antigens. Conditions like

autoimmune thrombocytopenia and fetal and neonatal

alloimmune thrombocytopenia are examples of such effects (229).

Platelets have been shown to promote the proliferation of acute

leukemia (AL) cells, reduce their sensitivity to chemotherapy, and

induce apoptosis. However, the role of platelets in AA remains

unclear (230).

Mice lacking CD84, a receptor of the SLAM family, on platelets

or T cells, exhibit reduced CD4+ T cell infiltration and thrombotic

activity in the brain, lowering nerve damage. High platelet CD84

expression is also linked to poorer prognosis in stroke patients.

There is overlap in the cytokines and chemokines released by

platelets and T cells. Soluble CD48, shed from platelets, can

stimulate CD4 T cell migration, and high CD84 expression is

associated with an inflammatory immune response (231).

Studies on myeloproliferative neoplasms (MPN) show that PLT

interactions with CD8+ T cells reduce the proliferation and

cytotoxicity of these T cells (232, 233). In malignant pleural

effusion, high levels of platelet-derived PF4 are associated with a

more severe T lymphocyte response and poor prognosis (227).

Mitochondria from platelets can directly interact with CD4+ T cells

through SDF-1/CXCR4, influencing T cell behavior (212).

A study published in Nature Aging in 2024 revealed that the

TRMT6/61A complex, involved in m1A (methylation on the first

nitrogen atom of mRNA and tRNA adenosine), drives hematopoietic

stem cell aging through a non-methyltransferase pathway. Targeted

inhibition of this pathway can delay hematopoietic stem cell aging,

which has implications for blood diseases and bone marrow failure.

The accumulation of TRMT6/61A in aging HSCs due to deactivated

CRL4DCAF1 ubiquitin degradation pathway, may disrupt normal blood

cell production (234).

Exploring platelet-T cell interactions offers new insights into

bone marrow failure treatments. For instance, elevated levels of

RANTES and PDPN Mjs have been linked to in severe AA (235).

The TPO/Mpl complex regulates megakaryocyte development and

platelet production through downstream pathways such as JAK/

STAT, Ras/Raf-1/MAPK, and PI3k/Akt. Other regulators, like the

interleukin family and IGF-1, can also play supplementary roles in

TPO regulation. MicroRNAs, such as miR-9, miR-22, and miR-

125a, modulate megakaryocyte and platelet production at various

stages. Current treatments like etripopal and romiplimumab aim to

boost platelet count by targeting these pathways (236, 237).
T cells, cytokines, and AA

In a mouse model of AA, an increase in b-chemokines was noted,

partly depending on IFN-g. This cytokine is crucial for upregulating the
chemokine receptor CCR5 in macrophages. Blocking CCR5 in murine

AA models improved survival, correlating with increased platelet

counts and enhanced platelet-biased CD41hi HSCs. While T cells are
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essential in AA pathogenesis, CCR5 expression on T cells and T cell-

derived CCL5 are not necessary for disease progression. In fact, CCR5

antagonism reduces bone marrow macrophages and lower the

production of TNF and CCL5, correlating with reduced IFN-g
secretion from bone marrow T cells. Further studies revealed that

elderly mice and humans exhibit significantly higher CCR5 expression

in macrophages, highlighting CCR5’s role in age-related bone marrow

failure. CCR5 signaling plays a crucial role in maintaining bone

marrow macrophages, particularly in aging individuals (238).

Additionally, CD8+ T cells in AA (aplastic anemia) patients

show an activated phenotype characterized by elevated expression

of HLA-DR, CD57, and CD27, contributing to hematopoiesis

inhibition and bone marrow failure progression. CD38+ CD8+ T

cells, also enriched in both AA patients and animal models, display

enhanced pro-inflammatory and proliferative abilities (239–241).

Additionally, CD8+ GITR+ T cells exhibit increased CTLA-4

expression, resulting in a reduced cytotoxic phenotype (242).

CD4+ Th1 cells play a significant role in the pathogenesis of

bone marrow failure by secreting pro-inflammatory cytokines like

IFN-g and TNF-a, which mediate HSPC apoptosis (216). IFN-g, in
particular, is critical in cellular immunity, as it inhibits precursor

cell proliferation in vitro, and induces Fas expression on HSPCs.

Once Fas is expressed, activated T cells trigger apoptosis through

the Fas/FasL pathway, which ultimatly leads to bone marrow

failure. In transgenic mice with elevated levels of IFN-g, early
signs of bone marrow aging manifest both in the bone marrow

and peripheral blood. These mice exhibit the symptoms

characteristic of bone marrow dysfunction and immune

dysregulation (243, 244).

Interestingly, despite the significant elevation of IL-18 (a

cytokine that is also induced by IFN-g) in severe AA patients,

studies have shown that IL-18 gene knockout in mouse models does

not prevent bone marrow failure. This suggests that while IL-18

may be involved in the inflammatory response, it does not directly

drive the pathogenesis of AA (243).

Additionally, TNF-a is a key negative regulator of

hematopoiesis. It acts through its receptors on T cells and bone

marrow CD34+ cells, further contributing to cell damage and the

progression of bone marrow failure (245–247).

Thes studies underscore the complex interplay of cytokines like

IFN-g, TNF-a, and IL-18 in the immune-mediated destruction of

hematopoietic cells, with IFN-g playing a central role in inducing

bone marrow failure through the Fas/FasL pathway and inhibiting

progenitor cell proliferation.
T cell dysfunction is closely related to the
physiological and pathological status of
bone marrow failure, and there are also
many associations between CD4+ T cells
and CD8+ T cells

CD4+ Treg cells in the tumor microenvironment (TME) express

high levels of PD-1 (programmed cell death protein 1), suggesting

that PD-1 blockade might enhance Treg’s immunosuppressive
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FIGURE 3

Molecular activity of platelet-regulated T cell immune response in acquired aplastic anemia (AA). AA may be due to an unknown pathogen infecting
hematopoietic stem cells (HSCs) or peripheral cells, leading to the presentation of pathogen particles and either unmodified or chemically/
genetically modified components on their cell surfaces. These antigens are then presented to antigen-presenting cells (APCs), which process and
present them to CD4+ T cells. Platelets play a role in this immune regulation by releasing various soluble mediators, such as PF4/CXCL4, TGFb, PAF,
TXA2, NAP, and RANTES. PF4 binds to CD4+ or CD8+ T cell/CTL membrane receptors CXCR3 and CXCR5, activating the downstream mitochondrial
energy metabolism signaling pathway (Akt-PGC1a-TFAM). This affects mitochondrial quantity, ATP production, and reactive oxygen species (ROS),
thereby regulating the T cell immune response. For CD4+ T cells: ① Differentiation into Th1, Th2, Th9, and Th22 phenotypes. ② Simultaneous
differentiation into Th17 phenotypes under the stimulation of IL-23 and IL-12. ③ Suppression of Treg phenotypes, leading to weakened immune
regulation and immune imbalance. For CD8+ T cells: ① Direct cytotoxicity through the release of granzyme B (GzmB) and perforin (PFN). ② Paracrine
effects via TNFa, IFNg, and Fas ligand (Fas-L). In summary, platelets regulate the immune responses of CD4+ and CD8+ T cells through mitochondrial
energy metabolism, contributing to immune imbalance and increased levels of IFNg and TNFa. This results in the attack on HSPCs and may
ultimately lead to bone marrow failure.
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function. Research has indicated that anti-PD-1 monoclonal

antibodies (mAb), commonly used in immune checkpoint

inhibition therapy, may paradoxically boost Treg-mediated

immunosuppressive activity in cancer patients. Moreover, Treg

cells deficient in PD-1 deficiency exhibit an even more potent

ability to suppress immune responses (248, 249). Conversely, PD-

1 expression is also a hallmark of exhausted CD8+ T cells, which

limits their cytotoxic function due to chronic TCR (T cell receptor)

stimulation. Immune checkpoint inhibitors (ICIs), like anti-PD-1 or

anti-PD-L1 mAb, block the interaction between “PD-1—PD-L1

(PD-1 ligand)”, effectively restoring cytotoxic capabilities of CD8+ T

cells. This restoration helps in reducing viral load and tumor

progression, as demonstrated in clinical practice across various

cancer treatments (250–255).

In addition, CXCR5+ CD8+ T cells have emerged as crucial players

in immune regulation, particularly within the TME and during chronic

infections. These cells exhibit dual functions: they not only assist B cells

in germinal centers in a manner similar to CXCR5+ CD4+ T follicular

helper (Tfh) cells by promoting antibody production, but they also retain

cytotoxic activity, crucial in infection and cancer contexts (254–258).

CXCR5+ CD8+ T cells, like their CD4+ counterparts, also express high

levels of PD-1, and may exhibit an “exhausted” phenotype in the tumor

microenvironment, making them potential targets for ICIs (256–260).

In the context of thromboinflammation, activated platelets

expressing integrin aIIbb3 and P-selectin are known to contribute

to platelet aggregation, endothelial damage, and microthrombosis.
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This interaction increases the formation of neutrophil extracellular

traps (NETs), which amplify cytokine release and further

inflammation. Given this, future therapeutic strategies targeting

thromboinflmmatory responses are focusing on dieases such as

thrombosis, sepsis, influenza, and COVID-19 (261). Advances in

platelet-T cell immune regulationmay also enable novel drug delivery

systems, such as the use of platelet-coated gold nanoparticles to

modulate the tumor microenvironment (217, 262) (Figure 3).
Summary and future perspective

The development of platelet drugs and antiplatelet therapies has

progressed through four key stages: the prehistoric phase, focusing on

the conceptualization of platelets; the mono-antiplatelet phase, marked

by the introduction of aspirin; the dual-antiplatelet phase, involving the

combination of two antiplatelet drugs; and the current new era,

characterized by immune targeting and precision medicine

(Figure 4). The CHANCE2 study has enabled the selection of

appropriate antiplatelet drugs, such as ticagrelor or clopidogrel, based

on detecting CYP2C19 gene loss-of-function mutations (263).

Despite advancements, the efficacy of antiplatelet drugs has hit a

plateau. Improvements, even with widely used drugs like aspirin,

clopidogrel, and ticagrelor, have only reached about 2%. This

highlights the need for new targets and directions beyond

traditional COX inhibitors or ADP P2Y12 receptor antagonists.
FIGURE 4

Diagram of the brief history of platelet drugs. The brief history of platelet drugs and antiplatelet therapy spans over 180 years and can be divided into
four key stages: ① Initial Development Stage (The Concept of Platelets): This stage marks the initial understanding of platelets and their role in
clotting. ② Mono-Antiplatelet Stage (Introduction of Aspirin): The development of aspirin as the first antiplatelet drug represents a significant
milestone in antiplatelet therapy. ③ Dual-Antiplatelet Stage (Combination Therapy): This stage involves the combination of two antiplatelet drugs to
enhance therapeutic efficacy. ④ Current New Era Stage (Immune Targeting and Precision Medicine): Advances in personalized medicine and
immune targeting characterize this latest phase. The CHANCE2 study highlights that suitable antiplatelet drugs, such as ticagrelor or clopidogrel, can
be selected by detecting CYP2C19 loss-of-function mutations. Despite ticagrelor providing only 2% greater protection for primary endpoints
compared to clopidogrel within one year, it appears we have reached a new bottleneck in antiplatelet therapy. Thus, identifying new targets for
platelet drugs remains a crucial goal for future research.
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Interestingly, recent studies suggest that platelet function

extends beyond their roles in thrombosis and hemostasis, playing

significant roles in immune regulation. As the second most

abundant blood cell type, platelets engage with T cells through

mitochondrial metabolic pathways, influencing T cell development,

proliferation, differentiation, survival, and apoptosis.

Platelets activate the downstream mitochondrial energy

metabolism signaling pathway (Akt-PGC1a-TFAM) of T cells by

releasing various soluble mediators such as PF4/CXCL4, TGFb,
PAF, TXA2, NAP and RANTES, affecting the number of

mitochondria, ATP production and reactive oxygen species

(ROS), thereby regulating the immune response of T cells. CD4 +

T cells differentiate into Th1, Th2, Th9, Th17 and Th22 phenotypes,

while the Treg phenotype is inhibited, resulting in weakened

immune regulation and immune imbalance. CD8 + T cells, on

the one hand, directly produce cytotoxicity by releasing granzyme B

(GzmB) and perforin (PFN), and on the other hand, exert paracrine

effects through TNFa, IFNg and Fas ligand (FAS-L). These immune

responses promote immune imbalance and elevated levels of IFNg
and TNFa. This leads to an attack on hematopoietic stem cells and

may eventually result in bone marrow failure.

In AA, platelets may regulate T cells through several

mechanisms: 1) Mitochondria-mediated regulation of T cells via

the Akt-PGC1a-TFAM signaling pathway leads to increased

mitochondrial biogenesis, boosting ATP and ROS production.

This may result in immune imbalance, overactivation of CD4+

Th1, suppression of Tregs, and imbalance in CD8+ T cell

phenotypes (e.g., CD38, PD-1, GITR, CTLA-4, HLA-DR, CD57,

CD27), contributing to elevated IFN-g and TNF-a levels and

subsequent HSPC damage. 2) Platelet-derived mediators like PF4

and TGFb can modulate PF4-TGFb dual signaling. Low PF4 levels

increase TGFb signaling through TGFBRIII, while high levels

inhibit this pathway, potentially triggering excessive immune

response and damage to hematopoietic stem cells.

Further research is required to understand how telomere

dysfunction, hematopoietic microenvironment abnormalities, and

other immune cells contribute to AA. Investigating these

mechanisms may guide future clinical treatments.

Overall, the emerging understanding of platelet-T cell interactions,

combined with platelet-based drug delivery technologies, could lay a

strong foundation for immune-inflammatory therapies. Platelets may

become a central focus in research on atherosclerosis and immune-

related inflammation, garnering significant interest from the scientific

community (Figure 4).
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