
Frontiers in Oncology

OPEN ACCESS

EDITED BY

John Frederick Pearson,
University of Otago, New Zealand

REVIEWED BY

Dongbo Yang,
The University of Chicago, United States
Hengrui Liu,
University of Cambridge, United Kingdom

*CORRESPONDENCE

Dora Janeth Fonseca-Mendoza

dora.fonseca@urosario.edu.co

†These authors share first authorship

‡These authors have contributed
equally to this work and share
last authorship

RECEIVED 19 February 2025
ACCEPTED 22 April 2025

PUBLISHED 19 May 2025

CITATION

Rodriguez-Salamanca J, Angulo-Aguado M,
Orjuela-Amarillo S, Duque C, Sierra-Dı́az DC,
Contreras Bravo N, Figueroa C, Restrepo CM,
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Integrating next-generation
sequencing and artificial
intelligence for the identification
and validation of pathogenic
variants in colorectal cancer
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Diana Carolina Sierra-Dı́az1, Nora Contreras Bravo1,
Carlos Figueroa2, Carlos M. Restrepo1, Andrés López-Cortés3,
Rodrigo Cabrera1, Adrien Morel1‡

and Dora Janeth Fonseca-Mendoza1*‡

1School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR),
Institute of Translational Medicine (IMT), Universidad del Rosario, Bogotá, Colombia, 2Coloproctology
Department, Hospital Universitario Mayor - Méderi - Universidad del Rosario, Bogotá, Colombia,
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Background: Colorectal cancer (CRC) is recognized as a multifactorial disease,

where both genetic and environmental factors play critical roles in its development

and progression. The identification of pathogenic germline variants has proven to

be a valuable tool for early diagnosis, the implementation of surveillance strategies,

and the identification of individuals at increased cancer risk. Next-generation

sequencing (NGS) has facilitated comprehensive multigene analysis in both

hereditary and sporadic cases of CRC.

Patients and methods: In this study, we analyzed 100 unselected Colombian

patients with CRC to identify pathogenic (P) and likely pathogenic (LP) germline

variants, classified according to the guidelines established by the American

College of Medical Genetics and Genomics (ACMG) and the Association for

Molecular Pathology (AMP). Using the BoostDM artificial intelligence method, we

were able to identify oncodriver germline variants with potential implications for

disease progression. We assessed the model’s accuracy in predicting germline

variants by comparing its results with the AlphaMissense pathogenicity prediction

model. Additionally, a minigene assay was employed for the functional validation

of intronic mutations.

Results: Our findings revealed that 12% of the patients carried pathogenic/likely

pathogenic (P/LP) variants according to ACMG/AMP criteria. Using BoostDM, we

identified oncodriver variants in 65% of the cases. These results highlight the

significance of expanded multigene analysis and the integration of artificial

intelligence in detecting germline variants associated with CRC. The average

overall AUC values for the comparison between BoostDM and AlphaMissense

were 0.788 for the entire BoostDM dataset and 0.803 for the genes within our

panel, with individual gene AUC values ranging from 0.606 to 0.983. Functional
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validation through the minigene assay revealed the generation of aberrant

transcripts, potentially linked to the molecular etiology of the disease.

Conclusion: Our study provided valuable insights into the prevalence and

frequency of P/LP germline variants in unselected Colombian CRC patients

through NGS. Integrating advanced genomic analysis and artificial intelligence

has proven instrumental in enhancing variant detection beyond conventional

methods. Our functional validation results provide insights into the potential

pathogenicity of intronic variants. These findings underscore the necessity of a

multifaceted approach to unravel the complex genetic landscape of CRC.
KEYWORDS

next generation sequencing (NGS), pathogenic germline variants, artificial intelligence,
minigene assay, functional validation, colorectal cancer
Introduction

Colorectal cancer (CRC) is the third most frequently diagnosed

cancer worldwide and ranks as the second leading cause of cancer-

related death (1, 2). Worldwide, approximately 1.9 million new

CRC cases are reported, resulting in over 900,000 deaths globally (3,

4). Similarly, it has been projected that by the year 2024,

approximately 2 million new cancer cases and 611.720 cancer-

related deaths will occur in the United States, with an increase in the

incidence of 6 of the 10 most common cancers. Notably, the

incidence of CRC is estimated to rise by 1% to 2% annually

among young adults (under 55 years of age) (5). About 1 in 23

men and 1 in 24 women are projected to be diagnosed with CRC at

some point in their lives (6). While CRC is more common in

developed countries, mortality rates have decreased due to early

screening strategies such as colonoscopy and fecal occult blood tests

(7). The incidence and mortality rates of colorectal cancer (CRC) in

Colombia have been documented in several studies. According to

Carvalho et al., there has been an increasing trend in CRC incidence

in Cali, Colombia, with annual percentage increases of 2.8% for men

and 3.3% for women between 1983 and 2012 (8). Regarding

mortality, Piñeros et al. reported a rising burden of CRC-related

deaths, with an estimated annual percentage change of 2% from

1984 to 2008 (9).

Additionally, according to GLOBOCAN, CRC accounts for

approximately 11,163 new cases and 5,640 deaths annually in

Colombia (3). In 2022, the country recorded 44,371 new cancer

cases, of which 3,851 were attributed to CRC (10) (https://

cuentadealtocosto.org/higia/).

Overall, these data highlight the increasing incidence and

mortality rates of CRC in our country, underscoring the urgent

need for improved preventive strategies and equitable access to

healthcare services (11).

CRC is a complex disease in which genetic alterations and

environmental risk factors play crucial roles in its development and
02
progression (12, 13). Approximately 30% to 35% of patients with

CRC report a family history of the disease, which can be attributed

to genetic factors, common exposures, or both (14, 15). The familial

component of CRC includes both hereditary syndromes and non-

syndromic familial clustering, which can increase the risk of CRC

even in absence of identifiable genetic mutations (16, 17). Only

about 5% to 10% of CRC cases are due to high or moderate

penetrance genetic variants associated with hereditary cancer

syndromes such as Lynch syndrome (MLH1, MSH2, MSH6,

PMS2, and EPCAM), familial adenomatous polyposis (APC), and

MUTYH-associated polyposis (18). Patients carrying Pathogenic

Variants (PVs) in these genes are subject to appropriate surveillance

strategies, as recommended by the National Comprehensive Cancer

Network (NCCN) guidelines for hereditary CRC (19).

Recent reports utilizing next-generation sequencing (NGS) to

assess germline variants in multiple cancer-related genes have

identified non-canonical pathogenic variants (PVs) potentially

associated with CRC in both selected and unselected populations

(18, 20, 21). Consequently, increasing the detection rate of PVs

through NGS will enhance the identification of molecular

alterations in CRC patients. In addition to genes associated with

syndromes and genetic disorders conferring a high risk of CRC,

other high-penetrance genes, such as AKT, ATM, BMPR1A, BRAF,

BRCA1/2, CHEK2, CTLA4, KRAS, MYO3A, PI3KCA, PTEN, RAS,

SMAD2, SMAD3, TCF7L2, TGFBR2, and TP53, as well as those

classified as moderate- and lower-penetrance genes, should also be

considered. This strategy can potentially improve the identification

of risk conferred by PVs predisposing to CRC (22–24). The

understanding of genetic mutations has been fundamental to the

evolution of cancer therapies, enabling the development of targeted

treatments that inhibit key oncogenic proteins and driving the

creation of antibody-drug conjugates that combine monoclonal

antibodies with cytotoxic agents. In addition, it has contributed to

the advancement of immunotherapy and cellular therapies such as

CAR-T cells. These personalized strategies have improved
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treatment efficacy and reduced side effects, representing a milestone

in modern oncology (25).

In Colombia, studies focused on germline variants in CRC have

primarily concentrated on syndromic genes such as APC, MLH1,

and TP53 (26–29). However, the lack of comprehensive genomic

data and information on population frequency makes it challenging

to construct a genomic profile for CRC predisposition in the

Colombian population. The aim of this research was to identify

molecular variants potentially related to the disease in Colombian

patients with unselected CRC and to determine their frequency in

CRC-associated genes. The study analyzed 100 CRC-affected

patients, generating a virtual gene panel evaluated through NGS,

which included 206 genes of interest. Additionally, intronic variants

were validated using functional minigene assays.
Materials and Methods

Sampling and Data collection

This study included 100 unselected patients, defined as

individuals diagnosed with cancer who have not been pre-

screened or stratified based on specific clinical, molecular, or

demographic characteristics. All patients had a histopathological

diagnosis of colorectal cancer (CRC) and received care at the

Coloproctology Service of Méderi Hospital in Bogotá, Colombia.

Patients over 18 years of age with a confirmed biopsy of any type of

CRC were eligible, invited to participate in the study, and provided

informed consent. Sociodemographic and clinical data were

collected through interviews and review of clinical records. The

variables examined included sex, age, comorbidities (hypertension,

diabetes mellitus, chronic obstructive pulmonary disease, cancer,

and others), family history of cancer, lifestyle habits, CRC screening

tests, height, weight, age at diagnosis, tumor location,

lymphovascular infiltration, tumor stage, and metastasis. The

sample size was convenience-based, including patients treated at

Méderi Hospital during a defined period from 2020 to 2022. All

experimental procedures were approved by the Ethics Committee of

Universidad del Rosario and were conducted according to the

principles outlined in the Declaration of Helsinki (DVO005

1607-CV1436).
NGS - Whole-Exome sequencing

The patient´s DNA was extracted, from peripheral blood, using

the Quick-DNA 96 plus kit (Zymo Research). The quality and

quantity of DNA were determined using the Quantifluor ONE

dsDNA system on a GloMax Discover instrument (Promega).

Library preparation was carried out with 250 ng of DNA using the

MGIEasy FS DNA Library Prep Kit. Enzymatic DNA fragmentation

was performed to obtain fragments ranging from 200 to 400 bp,

followed by end repair and PCR amplification. Specific regions of

interest were captured using the Exome Capture V5 probe and

streptavidin beads. Specific primers were employed for enrichment
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in the final PCR reaction. For sequencing, the DNA was circularized,

and the library was denatured after split oligo ligation, followed by

digestion and purification using specific beads. The circularized DNA

was used to generate DNBs (nanoballs) through the rolling circle

amplification process (https://en.mgi-tech.com/). DNBs were

quantified and subsequently sequenced on the DNBSeqG400

platform. The obtained reads were mapped to the hg19 reference

genome using the Burrows-Wheeler Aligner (BWA) and organized

using SAMtools (https://github.com/samtools/samtools). Duplicate

reads were identified and removed using Picard Software (https://

broadinstitute.github.io/picard/). Coverage and depth analysis were

carried out using BAMBA tool, we considered 50X as an acceptable

threshold. >93% of total bases called had a Phred-scaled quality

score greater than 30 (>Q30).

A minimum of 7 Gb raw data was obtained and the percentage

of reads properly mapped was >99.99% (56,446,362-101,662,468)

per sample. Average mapping efficiency was >99%, with sequencing

depth on target and coverage of target region >50x and >94%,

respectively. The average fraction of target covered with >20x was

>72%. Coverage uniformity (10x) was ≥90% and the average

fraction of target covered with at least 10x, 20x, 50x and 100x was

>90%, >72%, >40% and >19%, respectively. The average number of

paired ends reads that mapped to the reference genome was

72,351,272 (99.99%).

The library preparation and sequencing were performed by

GencellPharma (Bogota, Colombia). The analyzed panel included

206 genes selected based on evidence from case-control association

studies, systematic reviews, GWAS and functional validation

studies in CRC, considering their biological relevance, the

implication in physio pathological processes, and their roles in

oncogenesis (this group was considered as candidate genes).

Additionally, genes included in diagnostic panels from CGC

genetics, ICM Atrys division, Mayo Clinic Laboratories,

GENDIA-genetics and molecular biology, CD Genomics disease

panel, Centogene, and Invitae were incorporated. The final panel

consisted of 102 genes from established diagnostic panels and 104

candidate genes (Table 1).
Bioinformatic Analysis

Variant call format (VCF) files were analyzed using the software

VarSeq® (Golden Helix, v 2.3.0). We incorporated the following

database annotations: ClinVar (https://www.ncbi.nlm.nih.gov/

clinvar/), Ensembl (https://www.ensembl.org/index.html), RefSeq

(https://www.ncbi.nlm.nih.gov/refseq/), dbNSFP Functional

predictions, dbSNP, REVEL, OMIM Phenotype Ontology (https://

www.omim.org/), UniProt Variants (https://www.uniprot.org/) and

gnomAD v2.1 (https://gnomad.broadinstitute.org/).

To identify pathogenic/likely pathogenic (P/LP) and oncodriver

variants in the 206 CRC-related genes, we applied a bioinformatic

analysis using two filtering and classification strategies: (A) manual

classification according to the ACMG/AMP recommendations (30,

31), and (B) the BoostDM artificial intelligence system (32)

(Figure 1). For strategy A, we prioritized molecular variants with
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a minor allele frequency (MAF) of ≤1%, including loss-of-function

(LoF) variants (nonsense, frameshift, and splice site), in-frame, and

missense mutations. The potential functional impact of splicing

variants was assessed using scores from the adaptive boosting

(ADA) and random forest (RF) algorithms (cut-off ≥ 0.6). For

missense variants, we prioritized those with positive in silico

pathogenicity predictions in at least 3 out of 6 predictors

integrated into the VarSeq® software (SIFT, Polyphen2, Mutation

Taster, Mutation Assessor, FATHMM, and FATHMM MKL

Coding). Variants classified as functionally relevant were

subsequently manually classified following the ACMG/AMP

recommendations. The final dataset included variants that met

the criteria for P and LP as defined by Hampel et al. (30). For

strategy B, all variants with a MAF of less than 5% were analyzed

using the BoostDM artificial intelligence model. The final dataset
Frontiers in Oncology 04
included variants classified as oncodriver mutations, as described by

Muiños et al. (32). Furthermore, we sought to evaluate its potential

in predicting the significance of germline variants in colorectal

cancer genes. For benchmarking against a high-performing

germline variant classifier, we utilized AlphaMissense (33), which

demonstrates leading-edge performance in predicting the

pathogenicity of missense variants, by integrating structural

context and evolutionary conservation. This tool is validated by

extensive genetic and experimental benchmarks and can classify a

vast majority of missense variants with a high precision score on

recognized databases like ClinVar, without being explicitly trained

on such data (33). A Python script (S1 Appendix) was developed to

assign AlphaMissense classifications (Obtained from https://

storage.googleapis.com/dm_alphamissense/AlphaMissense_

hg38.tsv.gz) to all variants scored for BoostDM available in the
TABLE 1 Extended multigene panel (n=206 genes).

Molecular diagnosis panel Gene-candidate panel

AIP EGFR NF2 RUNX1 ACTR1B EDN1 MAMSTR SBF2

ALK EPCAM NOTCH2 SDHA ALCAM EIF3H MGMT SEMA4A

APC EPM2A NOTCH3 SDHAF2 APE1 ERCC1 MRE11 SF3A3

ATM FAN1 NRAS SDHB ARFGEF2 EXO1 MRE11A SFMBT1

AXIN2 FH NTHL1 SDHC ATF1 FAM109A MYC SH2B3

BAP1 FLCN PALB2 SDHD ATXN2 FANCC MYO3A SHROOM2

BARD1 GALNT12 PDGFRA SMAD4 B9D2 FANCE NABP1 SLC15A4

BLM GATA2 PHOX2B SMARCA4 BMP2 FEN1 NCAPG SLC6A18

BMPR1A GPC3 PIF1 SMARCB1 BMP4 FKBP5 NXN SMAD6

BRAF GREM1 PIK3CA SMARCE1 BMP5 FMN1 OGG1 SMAD7

BRCA1 HOXB13 PMS1 STK11 BORA FUT2 PIAS1 SMAD9

BRCA2 HRAS PMS2 SUFU C11orf53 GLI3 PITX1 SMARCD1

BRIP1 KIT POLD1 TELO2 CABLES2 GNL1 PLCB1 TBX3

CASR KRAS POLE TERC CCND2 HHIP PLGLA TCF7L2

CCND1 MAX POT1 TERT CD44 HNF4A PNKD TFEB

CDC73 MEN1 PRKAR1A TGFBR2 CDKN2B IL12RB1 POLD3 TLE4

CDH1 MET PTCH1 TMEM127 CHRDL2 KDR POU5F1B TMBIM1

CDK4 MITF PTEN TP53 COL4A2 KLF5 PRDM1 TMEM59

CDKN1B MLH1 RAD50 TSC1 COLCA1 LAMA5 PREX1 TNS3

CDKN1C MLH3 RAD51C TSC2 COLCA2 LAMC1 PTPN1 TOX2

CDKN2A MSH2 RAD51D VHL COX14 LGR5 PTPN12 TP53BP1

CEBPA MSH3 RB1 WRN CRTC3 LIG1 RBBP8 TTC22

CHEK2 MSH6 RBL1 WT1 CTNNB1 LIMA1 RHPN2 VTI1A

CTNNA1 MUTYH RECQL4 XAF1 DCLRE1C LIMK2 RPS20 WNT4

DICER1 NBN RET DIP2B LRP1 RTEL1 XRCC2

DIS3L2 NF1 RNF43 DUSP10 MACC1 SATB2-AS1 ZAP70
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public repository (https://www.intogen.org/boostdm/downloads).

Utilizing this script, precision-recall curves were generated, and

AUC scores were calculated to evaluate the performance of

BoostDM’s predictions of variants classified by AlphaMissense.

This comparison utilized saturation mutagenesis data,

encompassing 81 genes, including 22 that are part of our

colorectal cancer gene panel. Genes without AlphaMissense

predictions were excluded.
Population Genetic Analysis

For each variant identified through NGS analysis, we assessed

the allelic frequency, genotypic frequency, and the Hardy Weinberg

equilibrium (HWE) using the SNP-Stats software (https://

www.snpstats.net/start.htm). Deviation from HWE was

determined using c2 goodness-of-fit test with 1° of freedom. The

allele frequencies of the study were compared to the global and

Latin-American populations, obtained from the gnomAD database

(https://gnomad.broadinstitute.org), and statistical significance was

assessed using chi-square (c2) test, with significance being

established at p-value <0.05.
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Plasmid constructs

We used patient genomic DNA to amplify the region

encompassing the exon nearest to the mutation, along with 300

bp of flanking intronic sequences (upstream and downstream of the

exon). Primers were designed according to Putscher et al., 2021 and

verified by Primer-BLAST (34). The PCR was performed using the

New England Biolabs Q5 master mix (Q5®High-Fidelity 2XMaster

Mix cat: M049), according to the manufacturer´s protocol. The

PCR products were recombined with the pSpliceExpress vector

using Gateway™ BP Clonase™ II Enzyme mix (Invitrogen),

following the manufacturer’s instructions. The sequence of the

constructed vector was confirmed through Sanger sequencing.
Cell culture transfection

HCT-116 and HEK-293 cell lines, were cultured in Dulbecco’s

Modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum and 5% penicillin/streptomycin at 37°C in a 5% CO2

environment. Both cell lines were seeded at a density of 60,000 cells

per well into a 24 well-plate, with triplicates for each experimental
FIGURE 1

Methodological scheme for filtering genomic variants in CRC patients. ADA, adaptative boosting; CRC, colorectal cancer; MAF, minor allele
frequency; n, number of patients; LoF, loss of function; RF, random forest. ACMG/AMP, American College of Medical Genetics and Genomics and
the Association for Molecular Pathology.
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condition. 1 µg of the vector was transfected into the cells and

incubated for 48 hours using FuGENE® 6 Transfection Reagent

(Promega), according to the manufacturer’s protocol.
Total RNA extraction and RT-PCR analysis

Total RNA was extracted using the TRIzol® Reagent protocol.

500 ng of RNA was used to synthesize cDNA with SuperScript III

cDNA first strand (Invitrogen), previous treatment with DNase I

Amplification Grade (Sigma-Aldrich). Using primers targeting

exons 2 and 3 of rat insulin (whose sequences are located into the

pSpliceExpress vector and surrounds the sequences cloned through

recombination with Gateway™ BP Clonase™ II Enzyme mix). PCR

was performed under the following conditions: 95°C for 1 minute,

60°C for 40 seconds, and then 3 minutes at 72°C for 30 cycles. RT-

PCR products were visualized on 1.5% agarose gels. The obtained

bands were analyzed using densitometry with Image Lab software

(BIO-RAD). For each band, obtained in the Wild-Type (WT) and

mutant (MUT) RT-PCR assays, intensity measurement was

performed, allowing subsequent establishment of differences in

the transcripts obtained.

Additionally, the RT-PCR products for both WT and MUT

were cloned in the storage vector, pCR4-TOPO, using the TOPO®

TA Cloning Kit for Sequencing (Invitrogen) following the

manufacturer’s instructions. After transformation in the One Shot

Top 10 chemically competent cells (https://www.thermofisher.com/

), 10 colonies were randomly selected for Sanger sequencing

following plasmid DNA extraction.
Statistical Analysis

We determined the association between non-genetic factors and

being a carrier of a Pathogenic, Likely Pathogenic and oncodriver

variant using a bivariate analysis. Statistical significance was

determined at a threshold of p-value <0.05.

To compare WT vs MUT for experimental assays, an

independent samples t-test (Student’s t-test) was applied for

comparisons between the two experimental groups and their

replicates, using SPSS V.29 and GraphPad Prism 10 software. A

statistically significant difference was considered if p-value < 0.05.
Results

Demographic and clinicopathological
characteristics

This study included 100 unselected patients with a

histopathological diagnosis of CRC, and the characteristics of the

population are summarized in Table 2. Women constituted the

majority, representing 55% (n=55) of the patients. A family history

of cancer was reported in 63% of individuals, with 11% of cases

involving CRC. Regarding tumor location, there was a higher
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prevalence of right-sided colon cancer, followed by sigmoid and

rectal cancer (44% and 29%, respectively). The sample analyzed

exhibited heterogeneous histology and tumor staging, with a greater

proportion of moderately differentiated adenocarcinoma and stage

II tumors (30% and 36%, respectively). Most patients did not

present metastasis at the time of inclusion in the study (76%).

The mean age at CRC diagnosis was 65.5 years, with 12% of patients

diagnosed before the age of 50. An association analysis of clinical

variables grouped by age at diagnosis revealed statistically

significant differences in family history of CRC (p<0.05) (Table 2).
Germline mutation landscape of
Colombian CRC patients

Molecular variants identified following ACMG/
AMP recommendations

Following the bioinformatics pipeline described in the

methodology (Figure 1) and applying Filter A, which identified

pathogenic (P) and likely pathogenic (LP) variants according to

ACMG/AMP recommendations, our study detected a total of 248

variants (Figure 2A). Of these, 5 (2%) were classified as pathogenic

(P), 8 (3.2%) as likely pathogenic (LP), 153 (61.7%) as variants of

uncertain significance (VUS), and 82 (33.1%) as likely benign (LB)

(Table 3 and Figure 2A). The detection rate for P/LP variants was

12% (12 patients). A total of 11% of patients carried a single P/LP

mutation in a heterozygous state, while one patient was identified

with two variants, MLH1 c.1039delA and IL12RB1 c.1791 + 2T>G,

classified as LP and P, respectively.

Among the identified P/LP variants in the studied population,

38.5% (5/13) were in genes not typically included in routinely used

diagnostic panels in clinical practice. These variants corresponded

to ERCC1: c.702 + 1G>A, EXO1: c.1465delA, IL12RB1: c.1791 +

2T>G, OGG1: c.137G>A, and SMAD9: c.781 + 2T>A (Table 3). Of

the P/LP variants, 61.5% (8/13) were found in genes commonly

selected in molecular diagnostic panels for cancer. Four of these

were in high-penetrance genes (BMPR1A: c.176T>A, MLH1:

c.1039delA, MSH6: c.3516_3517delAG, and PTCH1: c.3241G>A),

while one was in the moderate-penetrance gene BARD1:

c.2229dupT. For eight of the analyzed genes where variants of

interest were found, the penetrance has not been clearly defined

(FLCN, NOTCH3, NTHL1, ERCC1, EXO1, IL12RB1, OGG1, and

SMAD9) (Table 3 and Figure 2B).

Regarding variant types, we observed six loss-of-function (LoF)

variants, four missense variants, and three splice-site variants.

Notably, two LP variants were novel and had not been previously

reported in public databases such as gnomAD (MLH1: c.1039delA,

p. Thr347Leufs*20, and EXO1: c.1465delA, p. Arg489Glyfs*32)

(Table 3). All variants classified as P/LP were confirmed through

Sanger sequencing.

Molecular Variants identified for BoostDM model
The BoostDM model, developed by Muiños et al. in 2021, is a

machine learning-based methodology designed for evaluating the

oncogenic potential of mutations. We tested whether this model can
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TABLE 2 Demographic and clinicopathological characterization.

Characteristics Total
Age at diagnosis

P-value P-value
Yates correction< 50 ≥ 50

No. of patients 100 12 88

Gender 0.035* 0.073

Male 45 2 43

Female 55 10 45

Age at CRC diagnosis

Mean (SD) 65,5 (12,6) 41,25 (8,4) 68,8 (8,9)

Family history of cancer 0.632 0.889

No 32 3 29

Yes 63 8 55

Unknown 5 1 4

Family history of CRC 0.004* 0.017*

No 81 6 75

Yes 11 4 7

Unknown 8 2 6

Primary tumor site

Right sided colon cancer 44 2 42 0.042* 0.085

Sigmoid 29 6 23 0.087 0.171

Rectum 17 4 13 0.108 0.232

Entire colon 1 0 1 0.711 1

Multiple primary colorectal cancer 9 0 9 0.246 0.533

Tumor histological stage

Well differentiated
adenocarcinoma 7 0 7

0.311 0.682

Moderately differentiated adenocarcinoma 30 4 26 0.788 1

Poorly differentiated
adenocarcinomald 1 0 1

0.711 1

Mucinous adenocarcinoma 3 1 2 0.248 0.801

Infiltrating adenocarcinoma 3 1 2 0.248 0.801

Multiple histological stage 56 6 50 0.655 0.892

Cancer Stage 0.484 0.484

0 2 1 1

I 14 1 13

I 36 4 32

III 32 3 29

IV 15 2 13

Unknown 1 1 0

Lymphovascular infiltration 0.188 0.319

Yes 53 8 45

(Continued)
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accurately predict germline variants by evaluating its agreement

with the AlphaMissense pathogenicity prediction model, which has

shown state-of-the-art performance for predicting germline disease

variants (33). We observed average overall AUC values for the

comparison between BoostDM and AlphaMissense of 0.788 for the

entire BoostDM dataset and 0.803 for the genes within our panel,

with AUC values for individual genes ranging from 0.606 to 0.983

(Figure 3) using publicly available saturation mutagenesis data (S1

Appendix). The reliability of BoostDM in our study underscores its

potential applicability beyond somatic mutations, suggesting it may

serve as an informative tool for germline variant analysis in CRC.

Applying this model facilitated the identification of 68

oncodriver variants across 43 genes (Supplementary Table 1),

which were found in 65 of the analyzed patients, resulting in a

detection rate of 65%. Notably, 27% of individuals were found to

carry more than one mutation (Figure 2C). Of the variants

identified through this analysis, 72% were associated with genes

included in cancer diagnostic panels, while the remaining 28% were

linked to candidate genes. Additionally, 18.3% (8/43) of the genes

with oncodriver variants are related to syndromic CRC, and 20.5%

(14/68) of the study’s variants were identified in these genes.

Penetrance has been clearly defined for 18 of the genes in which

oncodriver mutations were identified, with 14 being high-

penetrance and 4 moderate-penetrance genes (Supplementary

Table 1, Figure 2D).

Regarding the types of variants, 82.3% (56/68) were missense,

13.2% (9/68) were loss-of-function (LoF), 1.5% (1/68) were splicing

mutations, and 3% (2/68) were synonymous variants. The genes

with the most frequently observed variants were MSH6 (n=5), and

MLH1, WRN, FANCC, KDR, and TCF7L2 (each with 3 variants,

respectively) (Table 3). Finally, five of the oncodriver variants were

novel and had not been previously reported in public databases
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(APC: c.3663_3665delTTC, MLH1: c.1039delA, RAD51C:

c.659T>C, CTNNB1: c.991T>C, and KDR: c.2555A>T). All these

variants were confirmed through Sanger sequencing.

The comparison between allelic frequencies of P/LP variants

identified by Filter A and oncodriver variants identified by Filter B

revealed statistically significant differences (p<0.05) when

compared to those described for global and Latin American

populations in the gnomAD database (Supplementary Table 2).

For P/LP variants classified by Filter A, 46% had higher allelic

frequencies compared to the global population, while only 23%

differed from the Latin American population. This finding

highlights distinct genomic profiles specific to our population,

with higher frequencies of P/LP variants associated with CRC.

Similarly, 42.6% of the oncodriver variants identified by Filter B

showed significant differences in global allelic frequencies, while

70.6% of the allelic frequencies in our patients aligned with those of

the Latin American population (Supplementary Table 2).
In vitro assay in splice-site variants

Functional validation was performed for three splicing

mutations identified in the genes ERCC1: c.702 + 1G>A, SMAD9:

c.781 + 2T>A, and IL12RB1: c.1791 + 2T>G. These variants belong

to genes that are not typically included in cancer diagnostic panels,

representing novel genetic factors potentially related to CRC.

Confirmation of the generation of aberrant transcripts,

validated through post-transfection RT-PCR in HCT-116 and

HEK-293 cell models, revealed that the SMAD9 c.781 + 2T>A

mutation induced exon skipping of exon 3, resulting in the loss of

111 bp. The mutant form failed to generate the normal transcript

observed in the WT version, leading to complete exon skipping and
TABLE 2 Continued

Characteristics Total
Age at diagnosis

P-value P-value
Yates correction< 50 ≥ 50

No 45 3 42

Unknown 2 1 1

Metastasis 0.719 1

Yes 22 2 20

No 76 9 67

Unknown 2 1 1

Pathogenic or Likely Pathogenic Variant (ACMG/AMP) 0.140 0.315

Yes 12 3 9

No 88 9 79

Oncodriver Variant (BoostDM) 0.156 0.273

Yes 65 10 55

No 35 2 33
*Statistical significance.
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the loss of 37 amino acids in the protein (p<0.05). This result was

consistent across all three replicates and in both cell lines analyzed.

Exon skipping was further confirmed through Sanger sequencing of

plasmid DNA obtained from the cloning process (Figure 4A).

Functional analysis of the ERCC1 c.702 + 1G>A variant

revealed the exclusive generation of an aberrant transcript with a

loss of 100 bp, corresponding to exon 6 skipping, which result in a

frameshift mutation (p. Ser201Argfs*1). The wild-type (WT) allele

produced two transcripts: one canonical and one resulting from

exon skipping. A statistically significant difference in transcript

profiles was observed between the WT and mutant (MUT) alleles in

the HCT-116 cell line (p < 0.05). This difference was not observed in

the HEK-293 Cell line (Figure 4B).

Lastly, the IL12RB1 c.1791 + 2T>G mutation was associated

with the generation of two aberrant transcripts. The first involved

partial retention of intron 14 of the IL12RB1 gene, introducing 98

bp, while the second resulted in exon skipping, eliminating exon 15

(76 bp). The predicted consequences on the protein indicate that

these transcripts induce frameshift mutations, p.Thr598Glyfs21 and

p.A573Lfs21, respectively (Figure 4C). Although these aberrant

transcripts were also observed in the WT version, their expression

was significantly reduced compared to the MUT version (p<0.05).
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These findings were consistent across both cell models analyzed and

in all three replicates. The transcripts were verified through Sanger

sequencing of the plasmid DNA obtained from cloning using the

TOPO® TA Cloning® Kit for Sequencing (Invitrogen) (Figure 4C).
Discussion

To the best of our knowledge, this study presents, for the first

time, a description of the prevalence and spectrum of germline

variants in a cohort of Colombian patients with unselected CRC.

Our approach utilized next-generation sequencing (NGS) to

identify molecular variants within a comprehensive panel of 206

cancer-associated genes (Table 1). This panel includes genes

commonly used in diagnostic panels for clinical practice, as well

as potential candidate genes identified through an exhaustive

literature review. The bioinformatic pipeline implemented

enabled the classification of molecular variants according to the

ACMG/AMP criteria and the BoostDM artificial intelligence

model (Figure 1).

Although BoostDM was originally developed for somatic

variants, we selected this model due to its comprehensive in silico
FIGURE 2

(A) Variants classified by ACMG/AMP classification in 100 CRC patients. (B) Penetrance genes of P/LP variants (Filter A). (C) Patients with 1 or >1
oncodriver variant classified with BoostDM model. (D) Penetrance genes of oncodriver variants (Filter B).
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TABLE 3 Described pathogenic and likely pathogenic germline variants in CRC patients – Filter A (ACMG/AMP).

Penetrance Gene Gene Transcript Variant Protein rs ID Zygosity Type ACMG/
AMP classification

Criteria Count

p.Leu59Ter rs1564714834 Het Missense Pathogenic PVS1 + PM2 + PM4
+ BP1

1

p.Thr347Leufs*20 Not reported Het LOF Likely Pathogenic PVS1 + PM2 1

p.Arg1172Serfs*4 rs398123232 Het LOF Pathogenic PVS1 + PM2 + PM4 1

p.Val1081Met rs587778629 Het Missense Likely Pathogenic PS3 + PM2 + PP3 1

p.His429Thrfs*39 rs80338682 Het LOF Likely Pathogenic PVS1 + PM2 1

p.Arg449Cys rs762734007 Het Missense Likely Pathogenic PM1 + PM2 + PP2
+ PP3

1

p.Gln82Ter rs150766139 Het LOF Pathogenic PVS1 + PM2 + PM4 1

p.Asn744Ter rs1259296823 Het LOF Pathogenic PVS1 + PM1 + PM2
+ PM4

1

– rs747911302 Het Splice Likely Pathogenic PVS1 + PM2 1

p.Arg489Glyfs*32 Not reported Het LOF Likely Pathogenic PVS1 + PM2 1

– rs554063682 Het Splice Pathogenic PVS1 + PM2 + PP3 1

p.Arg46Gln rs104893751 Het Missense Likely Pathogenic PS3 + PM2 1

– rs770716081 Het Splice Likely Pathogenic PVS1 + PM2 + BP4 1
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High Diagnosis BMPR1A NM_004329.3 c.176T>A

High Diagnosis MLH1 NM_000249.4 c.1039delA

High Diagnosis MSH6 NM_000179.3 c.3516_3517delAG

High Diagnosis PTCH1 NM_000264.5 c.3241G>A

Less well-defined Diagnosis FLCN NM_144997.7 c.1285delC

Less well-defined Diagnosis NOTCH3 NM_000435.3 c.1345C>T

Less well-defined Diagnosis NTHL1 NM_002528.7 c.244C>T

Moderate Diagnosis BARD1 NM_000465.4 c.2229dupT

Less well-defined Candidate ERCC1 NM_202001.3 c.702+1G>A

Less well-defined Candidate EXO1 NM_130398.4 c.1465delA

Less well-defined Candidate IL12RB1 NM_005535.3 c.1791+2T>G

Less well-defined Candidate OGG1 NM_002542 c.137G>A

Less well-defined Candidate SMAD9 NM_001127217.3 c.781+2T>A

Het, Heterozygous; LOF, Loss of function.
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saturation mutagenesis approach, which enables a systematic

assessment of the oncogenic potential of all possible variants

across cancer-related genes (32). Given the lack of germline-

specific tools for oncodriver classification, we aimed to explore

the applicability of BoostDM to germline variants. To ensure its

relevance in this context, we compared its performance with

AlphaMissense, which demonstrated strong concordance and

suggested potential utility beyond the somatic mutation context

(33). Notably, this strategy has previously been explored and

validated in several populations worldwide exposed to driver

mutations in lung and gastric cancers (35, 36).

Our cohort consisted of unselected patients, with only 12%

being diagnosed with CRC before the age of 50. This contrasts with

the majority of studies on germline mutations, which typically focus

on individuals with early-onset cancer or those suspected of having

hereditary predisposition syndromes related to CRC (18, 23, 37–

39). In such cases, CRC susceptibility is often primarily attributed to
Frontiers in Oncology 11
germline variants, particularly in hereditary or syndromic CRC,

where inheritance typically follows an autosomal dominant pattern.

In addition to the age of CRC onset, our study revealed a higher

proportion of affected women (55%) compared to men, which

contrasts with previously reported findings. Most studies show a

higher incidence of CRC in men (20, 37, 40, 41). This discrepancy

may be related to demographic trends in Colombia, where the

proportion of women is slightly higher than men (20.9% vs 19.9%)

in the age ranges most represented in our population. It has been

established that the only age group in which men outnumber

women is the youngest (0 to 14 years) (https://www.statista.com/

statistics/789705/population-total-age-gender-colombia/).

Understanding the genetic factors related to CRC is crucial for

supporting the implementation of appropriate surveillance

strategies, as recommended by international guidelines, to reduce

CRC incidence and mortality in carriers of pathogenic/likely

pathogenic (P/LP) germline variants (18). In this context, our
FIGURE 3

Comparative analysis of BoostDM and AlphaMissense predictions (A). Bar chart displaying the average area under the precision-recall curve (AUC) for
each gene analyzed by BoostDM, reflecting the model’s ability to distinguish between benign and non-benign variants as classified by
AlphaMissense. When there are BoostDM analyses for multiple cancer types for variants within a gene, the AUC represents the average value across
tumor types. (B–D). Representative precision-recall curves for colorectal adenocarcinoma (COREAD) BoostDM predictions of AlphaMissense
classifications for TP53, SMAD4 and APC, showing AUCs of 0.931, 0.898, and 0.777 respectively. Similar results were obtained for all genes and
cancer contexts evaluated.
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study proposes the use of NGS for the analysis of multiple genes,

enabling the identification of both canonical and non-canonical

pathogenic variants associated with the disease. Non-canonical PVs

in cancer predisposition genes, seemingly unrelated to CRC, have

proven to be a significant source for identifying the molecular

causes in unselected cases (21). Moreover, analyzing unselected

populations, as we have done, has been recommended to avoid

underestimating the true prevalence of hereditary factors in the

global CRC population (18).

Regarding the classification of molecular variants, we applied

two approaches. First, Filter A, which followed the ACMG/AMP

recommendations (30, 42). This approach is used in both research

and routine clinical molecular diagnostics, and it enabled the

detection of 13 P/LP variants in 12% of our patients (Table 3).

Our findings demonstrated a higher detection rate compared to

other studies analyzing unselected populations, such as those

described by Yurgelun et al. (21), which reported a rate of 10%

(21). The smaller number of genes analyzed in that study (n=29)

may explain this difference and supports the advantage of using

expanded panels, which potentially enhance diagnostic

performance (18, 43). Detection rates of PVs in cases with

suspected familial CRC or in patients diagnosed before the age of

50 are substantially higher, with rates ranging from 15.5% to 26.8%

(18, 20, 40, 41). In our study, 61.5% of the P/LP variants were

associated with genes included in diagnostic panels, while the
Frontiers in Oncology 12
remaining 38.5% originated from candidate genes identified

through literature review. This significant proportion supports the

hypothesis that the analysis of genes not currently included in

routine diagnostic panels on various sequencing platforms can

increase the detection of P/LP germline variants associated with

CRC development.

In the analyzed population, four high-penetrance mutations were

identified in the MLH1, MSH6, BMPR1A, and PTCH1 genes. This

finding is significant, as the detection of mutations in some of these

genes, particularlyMLH1 andMSH6, allows for the implementation of

screening, treatment, and follow-up strategies for these high-risk

patients, following the recommendations outlined in the NCCN

guidelines (National Comprehensive Cancer Network) (https://

www.nccn.org/patients/guidelines/content/PDF/colorectal-screening-

patient.pdf). Germline variants in the mismatch repair (MMR)

genes (MLH1, MSH2, MSH6, and PMS2) are associated with

Lynch Syndrome, one of the most common genetic predisposition

syndromes, accounting for 2-4% of all CRC cases. Studies have

shown that in Latin American and Caribbean countries, there is a

higher prevalence of CRC in patients under 50 years of age.

Therefore, screening programs and the identification of high-risk

individuals carrying pathogenic germline mutations are expected to

more effectively reduce CRC incidence (44).

Previous studies have demonstrated that most P/LP variants

found in CRC patients are located in MMR genes, which are
FIGURE 4

Minigene assay on intronic P/LP variants in canonical splicing sites. (A) Functional analysis of SMAD9:c.781 + 2T>A in transfected HCT-116 and HEK-
293 cells (WT and MUT), with exon skipping confirmed by Sanger sequencing. (B) Functional analysis of ERCC1:c.702 + 1G>A transfected HCT-116
and HEK-293 cells (WT and MUT), with exon skipping confirmed by Sanger sequencing. (C) Functional analysis of IL12RB1:c.1791 + 2T>G in
transfected HCT-116 and HEK-293 cells (WT and MUT), showing exon skipping and an intron retention confirmed by Sanger sequencing. Ex, exon;
MUT, mutant; RI2, Rat Insulin 2; WT, Wild-Type *Statistical significance. *p<0.05; **p<0.01 and ***p<0.001.
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associated with DNA repair processes. For instance, Gong et al. (20)

reported that out of the 19.1% of P/LP variants identified in their

study, 11.3% were from MMR genes. Similarly, Yurgelun et al. (21)

demonstrated a high rate of mutations in these genes, and other

studies, such as Zhang et al. (39), confirmed these findings, with

nearly 50% of genetic variants located in MMR genes (20, 21, 39).

In contrast to these previous findings, our population exhibited

only two variants in the MMR genes (MLH1: c.1039del and MSH6:

c.3516_3517delAG), accounting for 15.4% of the total identified.

This result indicates a lower frequency of MMR mutations in our

study population, which may be attributed to the sample selection

criteria. Studies with higher mutation rates in MMR genes typically

include patients with a family history of CRC, a diagnosis under the

age of 50, and the presence of polyps. In contrast, our study

analyzed unselected cases, allowing for the identification of

variants in genes not associated with hereditary syndromes.

Additionally, mutations in other genes related to syndromic

CRC were identified in our study. One such mutation is the

BMPR1A mutation (c.176T>A, p.Leu59Ter), which generates a

premature termination codon (PTC), leading to the elimination

of 473 amino acids. Variants in the BMPR1A gene have been

associated with juvenile polyposis syndrome. This gene is linked

to the AKT signaling pathway and functions as a type 1 receptor in

the TGFb superfamily (45–48). Beyond its role in regulating

epithelial functions in the colon, BMPR1A influences critical

cellular processes such as growth, differentiation, and apoptosis

(46, 48–51). Furthermore, this mutation has been previously

reported in a patient with adenomatous polyposis (52). The

identified mutation affects the majority of the protein, including

its functional activin type I and II domains, as well as the Ser/Thr

protein kinase domain. As a result, the protein loses its

functionality, its ability to interact with other proteins, and its

role in the aforementioned signaling pathways.

Finally, one patient presented a heterozygous variant in a gene

known for its high penetrance and its correlation with metastatic

potential in CRC (53). The identified variant is a missense change in

the PTCH1 gene (c.3241G>A, p.Val1081Met). PTCH1 plays a

crucial role in the Hedgehog signaling pathway, which is involved

in tumorigenesis, regulation of proliferation, angiogenesis, and stem

cell renewal. These processes have been linked to oncogenic

mechanisms related to CRC (54). The discovery of this variant is

highly relevant, as previous studies have shown that PTCH1 could

serve as a potential biomarker for distinguishing between CRC cases

with high and low metastatic risk, with an inverse correlation to

PTCH1 protein expression levels (53). Additionally, this variant has

been reported in patients with hereditary cancer predisposition

syndromes, with functional evidence indicating protein loss of

function (55), further supporting the pathogenicity criteria for

this mutation.

For other P/LP variants identified according to ACMG/AMP

recommendations, the exact definition of penetrance is not

available. However, due to their pathogenicity and clear

involvement in molecular signaling pathways related to the CRC

pathophysiology, they are relevant in its molecular etiopathology.
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46% of the variants corresponded to loss-of-function (LoF) variants

and altered the function of FLCN, NOTCH3, NTHL1, and

BARD1 genes.

BARD1 encodes a protein that interacts with the N-terminal

region of the BRCA1 gene. The BARD1/BRCA1 complex plays a

critical role in DNA repair, recombination, and cell cycle control

(56–60). The BARD1 c.2229dupT variant generates a premature

termination codon (PTC), affecting the BCRT 2 domain, which is

involved in protein-protein interactions and has been linked to

DNA repair, recombination, and cell cycle control—mechanisms

critical in the development of malignant neoplasms (61, 62).

On the other hand, the FLCN gene is associated with Birt-Hogg-

Dubé syndrome and increases the risk of CRC (63). Pathogenic

variants in this gene have recently been identified in patients with

early-onset CRC (64–68). The FLCN c.1285delC variant induces a

frameshift (p.His429Thrfs*39), resulting in the loss of the terminal

DENN domain, which is important for the AMPK and mTOR

signaling pathways (69).

NOTCH3 is a cell surface receptor that plays a crucial role in

signaling pathways that regulate epithelial cell proliferation,

polarity/adhesion, and apoptosis (70–72). One patient was a

carrier of the NOTCH3 c.1345C>T, p.Arg449Cys variant,

classified as likely pathogenic. Previous research has established a

connection between variants in this gene and susceptibility to CRC,

particularly in men (73).

The NTHL1 gene is associated with familial adenomatous

polyposis and hereditary cancer predisposition syndrome, with an

autosomal recessive inheritance pattern. It is involved in base

excision repair (BER), the primary repair pathway for oxidative

DNA damage (22, 74–76). The NTHL1 c.244C>T, p.Gln82Ter

variant induces the loss of the HhH domain, which is crucial for

DNA binding and, consequently, for the proper functioning of the

BER pathway (77).

Our study identified that approximately 40% of the P/LP

variants classified through the ACMG/AMP criteria (Filter A

described in the methodology) were located in genes not typically

analyzed in the context of clinical-molecular diagnosis. Our finding

supports the need to implement molecular analyses, using NGS,

that allow the simultaneous analysis of hundreds of genes

potentially related to CRC. 60% of these variants were located in

genomic sites involved in the splicing process and correspond to the

ERCC1 (c.702 + 1G>A), IL12RB1 (c.1791 + 2T>G), and SMAD9

(c.781 + 2T>A) mutations. These genes participate in the signaling

pathways of cellular damage repair and processes related to

carcinogenesis (78–80). Mutations in these genes could, therefore,

alter these signaling pathways and increase susceptibility to CRC

(81, 82). However, to determine the effect of these intronic variants

on carcinogenesis, further studies must be performed at several

levels such as transcriptomic, post-transcriptional modifications,

and proteomics in the tumoral context. To the best of our

knowledge, these studies have not yet been conducted.

Our study also identified heterozygous P/LP mutations in the

EXO1 and OGG1 genes, both of which are involved in repair and

recombination processes (83–88). When these genes are affected by
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mutations, replication and post-replication processes, including

checkpoint activation, are disrupted, potentially leading to

genomic instability and cancer development (84, 89, 90).

Collectively, our findings indicate that germline P/LP variants

predominantly cluster in genes associated with DNA repair and

regulatory pathways, such as BARD1, BMPR1A, ERCC1, EXO1,

MLH1, MSH6, NTHL1, and OGG1 (comprising 60% of the

identified variants). These pathways are critical for maintaining

genomic stability (91). Consequently, germline variants in genes

linked to these signaling pathways can have detrimental effects,

increasing susceptibility to CRC.

In addition to searching for pathogenic germline variants using

strategies commonly employed in routine molecular diagnostics for

identifying individuals at high risk of developing CRC, we utilized

an artificial intelligence method. BoostDM is a machine learning-

based methodology designed for in silico mutagenesis of genes

associated with cancer development. This innovative approach

systematically evaluates all possible changes within a gene or

protein to identify cancer-causing factors (32, 92). Variants with

detrimental effects are categorized as oncodrivers. We identified a

total of 68 oncodriver variants in 65% of the patients, with 27%

presenting more than one oncodriver variant. Of these, 72% were

found in genes commonly used in clinical diagnostics, while the

remaining 28% were in candidate genes.

The application of BoostDM to germline variant analysis

addresses a critical gap in current interpretation strategies. Most

existing germline-focused tools, including AlphaMissense, are

designed to assess pathogenicity but do not distinguish between

driver and passenger mutations—a distinction that can provide

deeper insight into cancer predisposition mechanisms (33).

BoostDM offers a complementary approach by prioritizing

variants with high oncogenic potential, regardless of their

previous clinical annotation (32). This feature is particularly

useful in unselected populations, where novel or non-canonical

germline variants are frequently detected. While BoostDM is not

intended to replace clinically validated models, its application can

improve variant prioritization for downstream functional assays

and support comprehensive molecular profiling in hereditary

cancer research (Figure 3).

A consensus was established to support the efficacy of the

BoostDM model in our analysis, we analyzed its predictions with

those from AlphaMissense, a tool recognized for its accuracy in

classifying pathogenic germline variants (Figure 3). This

comparison aimed to ascertain BoostDM’s reliability in the

germline context, despite its original design for somatic variant

analysis. Our data supports the potential applicability of BoostDM

beyond its initial somatic mutation focus and suggests its utility for

germline variant analysis in cancer genes. These findings, like those

with the previous filter, demonstrate enhanced diagnostic

performance with the incorporation of massive sequencing

methods such as NGS in the analysis of cancer-related mutations.

Recently, Garg et al., (93), indicated that the use of NGS increases

the identification of mutations by approximately 36% compared to

single-gene analysis, highlighting the clear benefit of using massive

molecular analysis strategies (93).
Frontiers in Oncology 14
Of the total germline variants classified as oncodriver by

BoostDM, a higher proportion of changes in genes related to

CRC predisposition syndromes was identified compared to filter

A. Significantly, 20.6% of molecular variants were found in these

genes, and it was possible to identify them in genes related to Lynch

Syndrome; MSH6 (n=5) and MLH1 (n=3). As mentioned earlier,

these findings allow for advising patients and their relatives

following international guidelines, potentially improving the early

detection of at-risk individuals and the management of carriers of

such variants (94). Additionally, this model allowed the

identification of other variants in genes related to syndromic

CRC, such as APC, BMPR1A, MSH2, MSH3, NTHL1, and PMS2.

These molecular changes, along with those observed in genes

related to DNA damage repair signaling pathways, demonstrate

the ability of this artificial intelligence algorithm to detect

oncodriver variants (76, 85, 86). Variations in these genes have

been reported in large cohorts of patients with highly significant

associations with the development of CRC, such as MSH2 (OR:

18.1), MLH1 (OR: 8.6), and APC (OR: 49.4), supporting the

importance of germline variant identification studies in an

unselected population to contribute to the generation of genetic

assessment policies and variant interpretation in CRC (95).

In this context, based on our results, we believe that the

oncodriver variants identified particularly those not detected by

conventional prediction algorithms hold potential for inclusion in

future clinical prediction panels. However, their inclusion requires

further validation, and we propose the following next steps: a)

replication in larger and independent cohorts of CRC patients, b)

functional validation of candidate variants to confirm their

biological relevance, and c) integration of these variants into

multigene risk models to evaluate their predictive value in clinical

practice. Additionally, drawing on international experiences such as

the Personalized OncoGenomics (POG) program in Canada (96), it

would be necessary to define a framework for identifying,

evaluating, and reporting research-based germline findings within

the clinical infrastructure of a publicly funded healthcare system. In

this context, since the variants identified by BoostDM are

potentially oncogenic, prioritization could be given to those

associated with moderate to high penetrance cancer susceptibility

genes, or variants in cancer predisposition genes known to influence

tumor phenotype and evolution.

Recent studies have recognized the involvement of synonymous

variants as causal factors in Mendelian and multifactorial diseases,

including cancer (97–103). Interestingly, the BoostDM model

identified two synonymous variants in the CDH1 (c.1710T>C)

and NF1 (c.3498C>T) genes as oncodrivers. This finding is

particularly intriguing because it involves genes related to

neurofibromatosis and hereditary diffuse gastric cancer. The NF1

gene is a tumor suppressor that contributes to cancer development

and has been associated with gastrointestinal tract adenocarcinoma

(104). Studies by Seminog and Goldacre (105) determined that

patients with pathogenic mutations in the NF1 gene have a higher

risk of colon cancer compared to the general population, supporting

our findings in the patient analyzed (105). It is important to note

that, although the variant in the NF1 gene is classified as an
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oncodriver by Filter B, it does not meet the criteria to be classified as

pathogenic or likely pathogenic (P/LP) according to ACMG/AMP

guidelines. Therefore, this variant is not reported as associated

with neurofibromatosis.

On the other hand, pathogenic germline variants in the CDH1

gene are responsible for over 20% of hereditary diffuse gastric cancer.

However, consistent with our findings, recent studies have established

that carrying a variant in this gene generates a higher predisposition

to colorectal polyps, suggesting a potential association between CDH1

variants and CRC risk. These data are relevant for cancer risk

assessment and patient counseling with variants in this gene (106).

The molecular mechanisms associated with the pathogenicity of

synonymous variants have been explored, but it is generally

considered that they mostly affect splicing, generating aberrant

transcripts (e.g., exon skipping). A recent study analyzing this type

of variants in over 3000 cancer samples demonstrated that around 6-

8% of all driver variants in oncogenes are synonymous (107). In this

context, we can highlight the importance of incorporating additional

methods for detecting variants related to cancer development, as

ACMG/AMP criteria may exclude these variants. However, the

findings must be approached with caution and supported by

functional validation studies.

Additionally, the contribution of oncodriver variants in genes

usually used in diagnostic panels, combined with extended

molecular analysis of candidate genes, has a significant impact, as

demonstrated by our results in which variants were identified in

FANCC, KDR, and TCF7L2. FANCC is involved in DNA repair and

transcription processes and has been associated with an increased

risk of CRC (108–110). On the other hand, KDR encodes one of the

two receptors for VEGF. This is a type III tyrosine kinase receptor

involved in the proliferation, survival, migration, and tubular

morphogenesis of endothelial cells and has been associated as a

prognostic marker in CRC (111, 112). Finally, TCF7L2 plays a key

role in the Wnt signaling pathway, and variants in this gene have

also been found in patients with CRC (113, 114). Taken together,

the findings derived from the BoostDM model highlight a high

capacity for identifying oncodriver mutations, supporting recent

claims about the use of artificial intelligence as a tool that could

enhance precision and effectiveness in cancer prediction, diagnosis,

and treatment (115).

The population-genetic analysis carried out in our study

identified, for the first time in the country and in Latin America,

the frequency of pathogenic, likely pathogenic, and oncodriver

variants in 206 genes related to CRC. Comparing allele

frequencies with data obtained from the gnomAD database

allowed us to establish statistically significant differences between

the global and Latin American populations. The greatest differences

were observed in non-Latin American populations, demonstrating

that approximately 46% of the variants identified by us are

presented at higher or lower frequencies. In contrast, only 23% to

29% of the variants in this study were different from other Latin

American populations. This finding is relevant as it underscores the

need for studies like the present one, where genomic
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characterization is performed in populations typically

underrepresented in public databases.

Taken together, the findings of this study suggest the need to

conduct expanded analyses in the Colombian population using

whole-exome sequencing (WES) or other high-throughput

sequencing methods (e.g., whole-genome sequencing) to establish

population-specific variant databases. Our results support this

recommendation based on the following observations: (a) 13% of

the variants identified were classified as pathogenic or likely

pathogenic (P/LP), (b) 38.5% of the P/LP variants were found in

genes not currently included in standard diagnostic panels, and (c)

we propose a novel classification approach capable of identifying

oncodriver variants not detected by conventional algorithms.

Finally, we conducted a functional validation analysis of

pathogenic variants identified in genes not conventionally

involved in molecular diagnostic genetic panels to contribute new

knowledge about their potential involvement in CRC etiology. In

this context, intronic variants in canonical splicing sites were

evaluated using minigene assay. This type of variant is recognized

for its potential effect on splicing and the generation of aberrant

transcripts through mechanisms such as exon skipping, intron

retention, or pseudogene generation (116).

Our findings revealed that the SMAD9: c.781 + 2T>A variant

leads to exon skipping, resulting in the loss of 37 amino acids. This

molecular effect potentially impacts the protein’s function, crucial

in the TGFb signaling pathway. This pathway has been associated

with the regulation of pro-oncogenic processes, such as invasion,

epithelial-mesenchymal transition, and the promotion of

angiogenesis (117). SNPs in this gene have been identified in

CRC patients and associated with an increased risk, mainly due

to its role in the TGFb signaling pathway (38, 118–121).

The ERCC1 c.702 + 1G>Amutation was classified as an oncodriver

by BoostDM, and Likely Pathogenic according to the ACMG

classification criteria, as detailed in Table 3 and Supplementary

Table 1. Based on both classification frameworks, this variant can be

considered pathogenic. Furthermore, the ACMG PVS1 criterion

supports the hypothesis of a splicing alteration. Our minigene assay

results demonstrated exon skipping without the production of a

canonical transcript in the HCT116 cell line, consistent with In Silico

predictions and bioinformatics based classifications. This mutation is

predicted to generate a truncated protein (p.Ser201Argfs*1), which lacks

the C-terminal HhH2 domain of ERCC1 (residues 220–297) required

for dimerization with XPF (122, 123). The ERCC1-XPF complex is a

structure-specific endonuclease involved in nucleotide excision repair

(NER), interstrand crosslink (ICL) repair, and double-strand break

(DSB) repair. Consequently, its impairment significantly compromises

DNA repair capacity, increasing the risk of cancer (124).

However, in our functional validation, exon skipping was also

observed in the wild-type plasmid, although the canonical

transcript remained detectable in HCT116 cell line. This result is

difficult to explain, as although ERCC1 has been reported to

produce isoforms through alternative splicing, these transcript

variants differ mainly in their untranslated regions or result from
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intron retention (125). In this context, additional studies may be

required to confirm this finding.

The variant in IL12RB1: c.1791 + 2T>G had the most significant

impact, resulting in the generation of two aberrant transcripts: exon

15 skipping (76 bp), and intron 14 partial retention (98 bp). Both

effects caused a reading frame shift and the generation of a

premature stop codon, potentially affecting the structural integrity

of the protein. IL12RB1 is an interleukin receptor that plays a role in

DNA damage repair pathways (82, 126). Variants in this gene in

CRC patients provide convincing evidence of its role in

predisposition to this neoplasia (126, 127).

In agreement with recent reports, we confirmed that the pSplice

Express vector, used in combination with the Gateway

recombination system, is an effective approach for evaluating

splicing alterations. Nearly twenty studies in the literature have

successfully applied this strategy, reporting relevant findings related

to exon skipping, intron retention, cryptic splice sites, among

others. Notably, this approach is suitable for assessing mutations

in canonical splice sites as well as deep intronic variants, further

supporting its technical robustness (121, 126–130).
Study limitations

The present study has several noteworthy limitations, which

could be summarized as technical and biological. The technical

limitations are related to the NGS methodology employed, based on

short-read sequencing, leading to difficulties in the variant detection

in exons with high GC content, highly homologous, repetitive, or

low complexity regions, and pseudogenes resulting in false-positive

or false-negative variant calls due to inaccurate sequence alignment

and variant calling in these challenging regions (128–131). Another

technical limitation correlates with the design of the exome probes

and the use of the exome capture kits. It has been reported that they

can lead to biases in variant detection due to uneven coverage of

some coding regions, resulting in systematic insufficiencies in

sequencing depth for certain genes, leading to false negative

pathogenic variant calls (132, 133).

The NGS methodology employed falls short in identifying

pathogenic variants within deep promoter or intronic regions.

Furthermore, this study did not investigate Copy Number

Variations (CNVs), which have been documented as potential

causative factors in Colorectal Cancer (CRC). Concerning the

biological limitations, we assessed germline variants from

peripheral blood from a cohort of Colombian patients with

unselected CRC. This methodology only allowed us to evaluate

the genomics of a bigger landscape that requires a multi-omic

approach involving transcriptomics, proteomics, and metabolomics

to better understand CRC and the correlation between germline and

somatic variants in this intricate network (134–136). Functional

validation studies focused on splicing variants’ impact on mRNA,

yet protein validations were not conducted. It is also critical to

recognize that, while the concordance analysis between BoostDM

and AlphaMissense provided insights into BoostDM’s applicability

to germline variants, both models have inherent limitations in
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predicting variant pathogenicity. Further study is required to

determine functional consequences of the identified variants.

Specifically, the reliance on computational predictions without

functional validation may not capture the complete biological

impact of certain variants. The BoostDM artificial intelligence

analysis also identified variants in genes with undetermined

penetrance, necessitating cautious interpretation. Additionally, no

functional validation was conducted for synonymous variants

proposed as oncodrivers.

We performed a minigene assay, a widely used methodology to

evaluate the effect of intronic variants on splicing. This assay allows

assessment of the variant’s impact on splicing; however, its potential

oncogenic effect can be further investigated using complementary

approaches such as proliferation, invasion, and apoptosis assays,

among others.
Conclusion

In conclusion, our findings played a crucial role in delineating

the germline mutational landscape among unselected CRC

pat ients wi th in the Colombian popula t ion , us ing a

comprehensive multigene panel that includes genes from both

established diagnostic panels and candidate genes. The

importance of evaluating genes typically omitted from routine

diagnostic procedures was evident, shedding light on the potential

oversight of a substantial proportion of P/LP variants. This

omission is primarily due to the limited availability of

information regarding their association with CRC. Therefore,

expanding the number of genes potentially related to the

etiology of the disease could help us to understand how

germline variants contribute to increased susceptibility to CRC.

Understanding the genetic predisposition for CRC is essential for

early diagnosis, prevention, and patient treatment. While

improvements in sequencing technologies and the emergence of

advanced artificial intelligence bioinformatics platforms, such as

the BoostDM model, have expanded our tools for understanding

the mechanisms by which variants affect genes or proteins,

including synonymous variants that are often not considered

pathogenic, it is necessary to further support the molecular

involvement with functional validation analyses.
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126. Terradas M, Capellá G, Valle L. Dominantly inherited hereditary nonpolyposis
colorectal cancer not caused by MMR genes. J Clin Med. (2020) 9:1954. doi: 10.3390/
jcm9061954

127. Chubb D, Broderick P, Dobbins SE, FramptonM, Kinnersley B, Penegar S, et al.
Rare disruptive mutations and their contribution to the heritable risk of colorectal
cancer. Nat Commun. (2016) 7:11883. doi: 10.1038/ncomms11883

128. Guha S, Reddi HV, Aarabi M, DiStefano M, Wakeling E, Dungan JS, et al.
Laboratory testing for preconception/prenatal carrier screening: A technical standard
of the American College of Medical Genetics and Genomics (ACMG). Genet Med.
(2024) 26:101137. doi: 10.1016/j.gim.2024.101137

129. Freeman TM, England G, Wang D, Harris J. Genomic loci susceptible to
systematic sequencing bias in clinical whole genomes. Genome res. (2020) 30:415–26.
doi: 10.1101/gr.255349.119.5

130. Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic
interpretation of genetic studies in patients with primary immunodeficiency diseases: A
working group report of the Primary Immunodeficiency Diseases Committee of the
American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. (2020)
145:46–69. doi: 10.1016/j.jaci.2019.09.009

131. Miya F, Kato M, Shiohama T, Okamoto N, Saitoh S, Yamasaki M, et al. A
combination of targeted enrichment methodologies for whole-exome sequencing
reveals novel pathogenic mutations. Sci Rep. (2015) 5:1–7. doi: 10.1038/srep09331

132. Guo MM, Duan XN, Cui S, Tian FG, Cao XC, Geng CZ, et al. Circulating High-
Molecular-Weight (HMW) adiponectin level is related with breast cancer risk better
than total adiponectin: A case-control study. PloS One. (2015) 10:e0129246.
doi: 10.1371/journal.pone.0129246

133. Barbitoff YA, Polev DE, Glotov AS, Serebryakova EA, Shcherbakova IV, Kiselev
AM, et al. Systematic dissection of biases in whole-exome and whole-genome
sequencing reveals major determinants of coding sequence coverage. Sci Rep. (2020)
10:2057. doi: 10.1038/s41598-020-59026-y

134. Liu H, Guo Z, Wang P. Genetic expression in cancer research: Challenges and
complexity. Gene Reports. (2024) 37:102042. doi: 10.1016/j.genrep.2024.102042

135. Liu H, Li Y, Karsidag M, Tu T, Wang P. Technical and biological biases in bulk
transcriptomic data mining for cancer research. J Cancer. (2025) 16:34–43. doi: 10.7150/
jca.100922

136. Kar SP. A new frontier for cancer genetics: identification of germline–somatic
associations. Cancer Res. (2023) 83:1165–6. doi: 10.1158/0008-5472.CAN-23-0152
frontiersin.org

https://doi.org/10.1016/j.gastha.2022.10.006
https://doi.org/10.1016/j.gastha.2022.10.006
https://doi.org/10.1016/j.cell.2014.01.051
https://doi.org/10.1038/ejhg.2016.44
https://doi.org/10.1016/j.cancergen.2015.12.006
https://doi.org/10.1016/j.cancergen.2015.12.006
https://doi.org/10.1186/s12864-018-5193-9
https://doi.org/10.1111/j.1349-7006.2011.02194.x
https://doi.org/10.1158/1078-0432.CCR-18-0103
https://doi.org/10.1158/1055-9965.EPI-19-0755
https://doi.org/10.1158/1055-9965.EPI-19-0755
https://doi.org/10.3390/medsci6020031
https://doi.org/10.3390/life12121991
https://doi.org/10.1073/pnas.1101135108
https://doi.org/10.3748/wjg.v28.i33.4744
https://doi.org/10.3748/wjg.v28.i33.4744
https://doi.org/10.3390/biomedicines10123207
https://doi.org/10.3390/biomedicines10123207
https://doi.org/10.1038/s41588-018-0286-6
https://doi.org/10.1038/s41467-019-09775-w
https://doi.org/10.1093/hmg/ddab021
https://doi.org/10.1073/pnas.0504341102
https://doi.org/10.1073/pnas.0504341102
https://doi.org/10.1016/j.str.2005.08.014
https://doi.org/10.1016/j.str.2005.08.014
https://doi.org/10.1016/j.dnarep.2011.04.026
https://doi.org/10.3892/ijo.2018.4347
https://doi.org/10.3390/jcm9061954
https://doi.org/10.3390/jcm9061954
https://doi.org/10.1038/ncomms11883
https://doi.org/10.1016/j.gim.2024.101137
https://doi.org/10.1101/gr.255349.119.5
https://doi.org/10.1016/j.jaci.2019.09.009
https://doi.org/10.1038/srep09331
https://doi.org/10.1371/journal.pone.0129246
https://doi.org/10.1038/s41598-020-59026-y
https://doi.org/10.1016/j.genrep.2024.102042
https://doi.org/10.7150/jca.100922
https://doi.org/10.7150/jca.100922
https://doi.org/10.1158/0008-5472.CAN-23-0152
https://doi.org/10.3389/fonc.2025.1568205
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Integrating next-generation sequencing and artificial intelligence for the identification and validation of pathogenic variants in colorectal cancer
	Introduction
	Materials and Methods
	Sampling and Data collection
	NGS - Whole-Exome sequencing
	Bioinformatic Analysis
	Population Genetic Analysis
	Plasmid constructs
	Cell culture transfection
	Total RNA extraction and RT-PCR analysis
	Statistical Analysis

	Results
	Demographic and clinicopathological characteristics
	Germline mutation landscape of Colombian CRC patients
	Molecular variants identified following ACMG/AMP recommendations
	Molecular Variants identified for BoostDM model

	In vitro assay in splice-site variants

	Discussion
	Study limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


