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Background: In recent years, radiomics, as a non-invasive method, has shown

potential in predicting tumor response and prognosis by analyzingmedical image

data to extract high-dimensional features and reveal the heterogeneity of tumor

microenvironment (TME).

Objective: The aim of this study was to construct and validate a radiomic model

based on PET/CT images for predicting immunotherapy response and prognosis

in mCRC patients.

Methods: This study included mCRC patients from multiple cohorts, including a

training set (n=105), an internal validation set (n=60), a TME phenotype cohort

(n=42), and an immunotherapy response cohort (n=99). High-dimensional

radiomic features were extracted from PET/CT images using a deep neural

network (DNN), and RNA-Seq was used to screen for features associated with

TME phenotypes to construct a radiomic score (Rad-Score). At the same time,

combined with immune scores (IHC staining results based on CD3 and CD8) and

clinical features, a joint prediction model was developed to assess overall survival

(OS) and progression-free survival (PFS). The predictive performance of the

model was evaluated by area under receiver operating characteristic curve

(AUC), calibration curve and decision curve analysis (DCA).

Results: A radiomics signature to predict the TME phenotype was constructed in

the training set and verified it in an internal validation set, with AUC of 0.855 and

0.844 respectively. In the TME phenotype external cohort, the radiomics

signature can differentiate either immunopotentiation or immunosuppression

tumor (AUC=0.814). In the immunotherapy response external cohort, the

radiomics signature can predict response to immunotherapy (AUC=0.784). The

combined nomograms can predict OS and PFS, with AUC of 0.860 and 0.875

respectively. The calibration curve and decision curve analysis (DCA) confirmed

the predicting performance and clinical utility of the combined nomograms.

Conclusion: In this study, a radiomic model based on PET/CT images was

successfully constructed, which can effectively predict immunotherapy
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Abbreviations: mCRC, metastatic colorectal cancer;

environment; ROI, regions of interest; DNNs, deep

overall survival; PFS, disease free survival; ROC, receiver

curve; DCA, decision curve analysis.
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response and prognosis of mCRC patients. The model combines radiomic

features, immune scores and clinical features, showing high prediction

accuracy and clinical application value. In the future, the reliability and

generalization ability of this model need to be further verified in larger

prospective studies to promote its application in clinical practice.
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Introduction

Colorectal carcinoma (CRC) is the third most prevalent

malignancy globally, with its mortality ranking second among all

neoplasms (1, 2). Over 50% of CRC patients progress to metastatic

CRC (mCRC), which is the predominant cause of mortality (3).

Radical surgery is deemed the optimal therapeutic approach for

mCRC patients, capable of extending the 5-year survival rate to 50%

(4). Due to the complex location, large number, or large volume of

metastases, a considerable portion of metastatic colorectal cancer

(mCRC) patients are ineligible for surgical intervention (5). As

such, the pursuit of novel and efficacious therapeutic strategies

becomes imperative. The core goal of immunotherapy is to

recognize and attack cancer cells by activating or boosting a

patient’s own immune system. Immune checkpoint inhibitors

(such as PD-1/PD-L1 inhibitors and CTLA-4 inhibitors) are the

main means of immunotherapy (6).These drugs restore the anti-

tumor activity of T cells by blocking immune checkpoint proteins.

In recent years, immunotherapy has emerged as a potential

treatment modality for tumor therapy, potentially playing a

pivotal role in enhancing clinical outcomes among this cohort of

initially non-operable patients (7). Despite significant

advancements in immunotherapy for mCRC, nearly half of

mCRC patients do not respond to immunotherapy due to the

immunosuppressive tumor microenvironment (TME) (8). In

addition, adverse reactions caused by overactivation or

dysregulation of the immune system due to the use of immune

checkpoint inhibitors, such as PD-1/PD-L1 inhibitors and CTLA-4

inhibitors, can involve multiple organ systems and range in severity

from mild to life-threatening (6). Consequently, it is essential to

identify patients who are responsive to immunotherapy to augment

response rates and mitigate adverse events. By developing a PET-

CT radiomic model to predict immunotherapy response, the aim is

to identify patients who may benefit from immunotherapy, thereby

reducing ineffective treatment for non-responsive patients and

reducing the risk of adverse reactions.
TME, tumor micro-

neural networks; OS,

operator characteristic

02
RNA sequencing (RNA-seq) mirrors the TME immune cell

infiltration status, prompting the development of various

methodologies to assess immune cell density within tumor tissues,

a key technique for assessing TME phenotype (9–11). Two distinct

TME phenotypes have been delineated: immunoenhancement and

immunosuppression. The immunoenhancement phenotype, referred

to as “hot tumors”, is characterized by a high frequency of immune

cell infiltration and is responsive to immunotherapy. Conversely, the

immunosuppression phenotype, known as “cold tumors”, exhibits

minimal immune cell infiltration, which often neutralizes the effects

of immunotherapy. The transition of “cold tumors” to “hot tumors”

has been demonstrated to enable a broader population to reap

benefits from immunotherapy (12, 13). However, conventional

approaches for TME phenotype evaluation typically necessitate

invasive tissue sampling. The availability of non-invasive TME

phenotype biomarkers would be advantageous. By leveraging RNA-

seq data, researchers have identified the two TME phenotypes:

immunoenhanced (“hot tumors”) and immunosuppressed (“cold

tumors”). This foundational work paves the way for the

development of non-invasive biomarkers that can predict

immunotherapy response and ultimately improve patient outcomes.

Radiomics, by analyzing high-dimensional imaging data, offers

extensive insights into TME phenotype (14). These radiomic

characteristics not only mirror the pathological and physiological

alterations within the TME but also delineate the TME phenotype,

encompassing immune cell composition and infiltration dynamics

(15–17). The objective of radiomics is to develop non-invasive

biomarkers that reveal the correlation between radiomic features

and TME phenotype. Recent preliminary radiomics findings have

indicated a correlation between radiomic features and immune cell

infiltration status, as well as patient prognosis and immunotherapy

response prediction (18, 19). However, the application of radiomics

based on PET/CT imaging to forecast immunotherapy responses in

metastatic colorectal cancer (mCRC) patients remains unexplored.

In this study, a PET/CT radiomics model integrating the Rad-

Score, immunoscore, and clinical parameters was established and

validated across various cohorts. Rad-Score, created by the Random

Forest classifier based on PET/CT radiomic features to predict

tumor microenvironment (TME) phenotypes, is the core

predictive tool of the study. The immune score, derived from

CD3 and CD8 immunohistochemical (IHC) staining results,
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reflects the infiltration of immune cells within the tumor

microenvironment and is a crucial indicator for evaluating TME

phenotypes. Clinical features, including PET/CT SUVmax,

preoperative CEA levels, and primary tumor site, are

incorporated due to their correlation with immunotherapy

efficacy. We propose that PET-CT radiomics can non-invasively

identify microstructural differences across diverse TME

phenotypes, potential ly uncovering new predictors of

immunotherapy response. Our goal is to classify the TME

phenotype in mCRC, develop a radiomics signature for TME

characterization, and prognosticate the outcomes of mCRC

patients undergoing immunotherapy. Furthermore, we suggest

that nomograms incorporating Rad-Score, immunoscore, and

clinical parameters may offer a robust prediction of overall

survival (OS) and progression-free survival (PFS) in mCRC

patients. Together, these measures form a comprehensive

predictive model designed to assess immunotherapy response and

prognosis in patients with metastatic colorectal cancer (mCRC).
Frontiers in Oncology 03
Methods

Study design

In this multi-cohort study, retrospective RNA-Seq and

radiomics analysis was performed in four distinct cohorts of

mCRC patients (Figure 1) . In order to improve the

reproducibility of the study, we followed the following clear

inclusion and exclusion criteria when selecting patients. Inclusion

criteria: mCRC patients between the ages of 18 and 75 years;

Patients must have complete PET-CT and RNA-seq data; Patients

must agree to participate in the study and sign an informed consent

form. Exclusion criteria: Patients with other active malignancies;

Patients with severe cardiac, liver and renal dysfunction; Patients

unable to complete a baseline PET-CT scan.

According to the inclusion criteria, a total of 306 patient

samples were collected from Shenzhen People’s Hospital, the

Tenth Affiliated Hospital of Southern Medical University and
FIGURE 1

Classification algorithm comparison. AUC of different algorithms (Adaboost, GaussianNB, GaussianP, Grandboost, KNN, Logistic model, Random
Forest-DERBY model) on the training (A), internal validation (B), and external validation cohort (C). Probability Calibration analysis in internal
validation (D) and external validation cohort (E). As (A–C) shows, the RF, Adaboost, GaussianNB and Gradboost models yields comparable AUC
scores. It can be seen from (D, E), among these 4 competing algorithms, Adaboost and Gradboost models show poor calibration in, while
GaussianNB tend to output probabilities close to 0 or 1. Abbreviation: KNN, K-Nearest Neighbor; RF, Random Forest.
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Shenzhen Pingshan District People’s Hospital, including 105 in the

training set, 60 in the internal validation set, and 141 in the external

validation set (Supplementary Figure S1). The external validation

set was divided into TME phenotype group (N=42) and

immunotherapy response group (N=99). The training set for

mCRC patients provided PET-CT and RNA-seq data. Internal

validation sets were used to confirm agreement between radiomic
Frontiers in Oncology 04
features and TME phenotypes. In addition, we divided the TME

phenotypic cohorts into immunoenhanced and immunosuppressed

groups by immunohistochemical (IHC) staining of CD3 and CD8

outcomes (20, 21). which was used to determine the

correspondence between radiomic features and TME phenotypes.

The immunotherapy response group was used to predict the

immunotherapy response. The clinical characteristics of all
TABLE 1 Study cohort and patient characteristics.

Characteristic Training
Set (n=105)

Internal Validation
Sett (n=60)

External Validation Set
1 (n=42)

External Validation Set
2 (n=99)

Sex

Female 32 (31.4) 22 (36.7) 10 (23.8) 32 (35.6)

Male 73 (68.6) 38 (63.3) 32 (76.2) 67 (64.4)

Age, years

Median (range) 58 (30-75) 58 (31-81) 61 (29-72) 60 (29-78)

22 (21.4) 14 (21.5) 10 (27.0) 34 (33.3)

No. of metastases

10 (9.8) 11 (18.3) 6 (14.3) 25 (25.3)

≥3 95 (90.2) 49 (81.7) 36 (85.7) 74 (74.7)

Maximum size of metastases, cm

69 (67.6) 41 (68.3) 23 (54.8) 69 (69.7)

≥5 36 (32.4) 19 (31.7) 19 (45.2) 30 (30.3)

Immunoscore, mean ± SD

CD3 11.9 ± 7.8 12.3 ± 8.1 11.1 ± 5.2 12.3 ± 5.0

CD8 11.8 ± 5.2 11.2 ± 3.7 12.9 ± 4.3 11.6 ± 8.6

Overall response

CR 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

PR 49 (48.0) 27 (45.0) 11 (26.2) 46 (46.5)

SD 38 (37.3) 23 (38.3) 13 (31.0) 41 (41.4)

PD 16 (15.7) 15 (25.0) 13 (31.0) 15 (15.2)

ORR (CR plus PR) 49 (48.0) 27 (45.0) 11 (26.2) 46 (46.5)

DCR (CR plus PR plus SD) 87 (82.8) 50 (83.3) 24 (57.1) 87 (87.9)

PFS, years

Median 7.5 8.5 5.2 8.0

(95% CI) 6.7 to 9.4 7.3 to 11.0 3.8 to 6.0 6.9 to 9.3

OS, years

Median 20.7 22.8 15.5 22.0

(95% CI) 18.6 to 26.0 15.8 to 25.7 13.5 to 19.8 18.7 to 28.1

Surgery for metastases

Resection rate 24 (23.5) 15 (25.0) 3 (7.1) 20 (20.2)

Actual R0 resection rate 23 (22.5) 15 (25.0) 3 (7.1) 18 (18.2)
Data presented % unless otherwise indicated.
CR, complete response; DCR, disease control rate; DFS, disease-free survival; NORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival.
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patients are shown in Table 1. Clinical features were screened using

the LASSO regression, and PET/CT SUVmax, metabolic tumor

volume, pathology type and CA125 level were selected

(Supplementary Figures S2, S3).
Radiomics score

18F-FDG PET/CT scans were performed using a uMI510/

uMI780 scanner (United Imaging Healthcare, Shanghai, China) as

previously described (22, 23). Three dimensions images were

acquired after the 18F-FDG injection. The PET images were

reconstructed and segmented using a uWS-MI workstation (United

Imaging Healthcare, Shanghai, China). The regions of interest (ROI)

of PET images were manually enclosed. The ROI of the CT images

were delineated according to the corresponding ROI in the PET

images. The CT and PET radiomics features were extracted in parallel
Frontiers in Oncology 05
using the deep neural networks (DNNs). These features reflect the

metabolic characteristics of the tumor (from PET images) and

anatomical characteristics (from CT images). After comparing

several commonly used classification algorithms, the random forest

classifier was used to identify radiomics features and create a

predictive radiomics score (Rad-Score) (Figure 2). The Rad-Score

was combined with immune scores and clinical features to construct

the final prediction model. The predictive performance of the model

is then evaluated through internal and external validation sets.

In the immunotherapy response cohort, patients were

categorized into high or low risk groups based on the median

value of the Rad-Score. Clinical response was assessed six months

from the start of immunotherapy, including complete response

(CR), partial response (PR), stable disease (SD), and progressive

disease (PD). Progression-free survival (PFS) and overall survival

(OS) was calculated as the period between the start of

immunotherapy and the date of the last follow-up.
FIGURE 2

Comparison of radiomics score of OS (A) and DFS (B) prediction model between patients in low and high immune score groups. Distribution of
radiomics score of OS (C) and DFS (D) prediction model and immune status.
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Abundance of TME cell subsets

The gene expression matrix was generated from the collected

tumor tissues by RNA-Sequence (RNA Seq) assay, and the presence

and abundance of cell subsets were calculated by K-cluster analysis.

Cells label genes in the following way: CD3 labels T cells, CD8

labels cytotoxic T cells, CD4 labels helper T cells, CD68 labels

macrophages, and CD20 labels B cells. The expression levels of

these marker genes can reflect the presence and abundance of the

corresponding cell subsets.

Cells label genes in the following way: CD3 labels T cells, CD8

labels cytotoxic T cells, CD4 labels helper T cells, CD68 labels

macrophages, and CD20 labels B cells. The expression levels of

these marker genes can reflect the presence and abundance of the

corresponding cell subsets.
Immunoscore

Two protein markers (CD3 and CD8) were selected to represent

the TME phenotype. CD3 tags T cells, reflecting the overall infiltration

of T cells in the tumor microenvironment. CD8 labeled cytotoxic T

cells (CTLs) reflect the infiltration of killer immune cells in the tumor

microenvironment. By the density of these two markers, TME

phenotypes can be divided into: immunoenhanced (“ hot tumors “):

High density of CD3 and CD8 positive cells indicates an abundant

infiltration of immune cells in the tumor microenvironment and a

good response to immunotherapy. Immunosuppressed type (“ cold

tumor “): Low density of CD3 and CD8 positive cells indicates less

infiltration of immune cells in the tumor microenvironment and poor

response to immunotherapy. We obtained immune scores from the

results of CD3 and CD8 immunohistochemical staining. CD3 and

CD8 stained slides were scanned using a full-film scanner (Leica

Microsystems, Wetzlar, Germany) under 40x magnification. The

density of CD3+ and CD8+ T cells in the center of the tumor and in

the infiltrating margin were measured by HALO (Indica Labs, USA).

Average density ≥75% is considered “high” density. Based on the

density of CD3 and CD8 positive cells in the center of the tumor and

at the edge of the invasion, the immune score was assigned on a scale

of 0 to 4:0 indicates that the density of both cell types is low in both

areas; 4 indicates a high density of both cell types in both regions. A

score of 0–2 belongs to the low immune rating group, and a score of

3–4 belongs to the high immune rating group. The higher the immune

score, the richer the infiltration of immune cells in the tumor

microenvironment, and the higher the possibi l i ty of

immunoenhanced type. Correlation of CD3 and CD8 IHC scores

and Kaplan-Meier (KM) survival analyses confirmed that these

tumor-related features were associated with immunotherapy

efficacy (Figure 3).
Nomogram

Independent prognostic factors were identified using multi-

variable Cox regression analysis. Then, two nomograms, combing
Frontiers in Oncology 06
Rad-Score, immunoscore and clinical features, were created to

predict overall survival (OS) and Progression Free Survival (PFS)

in mCRC patients. When using nomograms, it can be interpreted by

adding the weighted score for each variable indicated at the top of

scale. The total score can be converted into the prediction of the

probability of death and recurrence or metastasis for a patient in the

lowest scale. A higher total score was associated with worse OS or

PFS. Decision Curve Analysis (DCA) assesses the clinical decision

utility of Nomogram by comparing the net benefit of treatment

under different thresholds. The DCA curve shows the net health

benefit of using Nomogram for clinical decision making compared

to not using Nomogram at different thresholds.
Assessment of performance

To evaluate the performance of Rad-Score, the area under the

receiver operator characteristic curve (AUC) and other metrics

(accuracy, sensitivity, specificity, positive predictive value and

negative predictive value) were used to determine whether Rad-

Score could categorize mCRC patients into two TME phenotypes

based on the abundance of TME cell infiltration.

To assess the association between the high-risk or low-risk

prediction scores generated by nomogram models and prognosis,

receiver operator characteristic curve (ROC) analysis, Kaplan-Meier

(KM) survival analysis, and Cox proportional risk regression model

were used. The calibration curve assessed the accuracy of the

combined nomograms for predicting OS and PFS. Decision curve

analysis (DCA) was used to assess the clinical decision utility of the

combined nomograms.
Statistical analyses

All processing and analysis steps were conducted in Python 3.8

and the R 4.0.2 software. Python 3.8 following libraries include

NumPy 1.19.2, Pandas 1.1.3, Scikit-learn 0.23.2 and TensorFlow

2.3.1.R 4.0.2, which contains the following packages survival 3.1–8

and rms 6.1-0.
Results

TME phenotypes in mCRC

RNA-Seq was used for quantitative analysis of the expression

levels of all transcripts in a cell to reflect cell type and functional

status. A total of 24 TME cell subpopulations comprehensively

defined the TME phenotype (24, 25). The abundance of 24 TME cell

subpopulations was measured in each sample. We then performed

k-means clustering with the TME phenotype. The TME phenotype

of mCRC patients was divided into two heterogeneous groups: the

“immunopotentiation” group (“hot tumor”) with a relatively large

infiltration of immune cells, and the “immunosuppression” group

(“cold tumor”) with a low TME cell infiltration (Figure 4). The
frontiersin.org

https://doi.org/10.3389/fonc.2025.1568755
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1568755
infiltration of immune cells was much more pronounced in the

“immunopotentiation” group, while other stromal cells were much

more pronounced in the “immunosuppression” group (Figure 4).

Given the importance of the TME for the prognosis of mCRC

patients, we further investigated the prognostic significance of two

TME phenotypes. Through K-means clustering, we found that the

TME phenotype of mCRC patients can be divided into two different

clusters: immunoenhanced type (Cluster A): abundant immune cell

infiltration and better prognosis; Immunosuppressive type (Cluster

B): Less infiltration of immune cells and poor prognosis. Kaplan-

Meier survival analysis was used to verify the difference in prognosis

between the two clusters, and it was found that the overall survival

(OS) of the immunoenhanced Cluster A was significantly better

than that of the immunosuppressed Cluster B(p<0.05) (Figure 4).

Better prognosis was achieved in in the “immunopotentiation”

group with a larger degree of immune cell infiltration, as well as

in the “ immunosuppression” group and in the entire

cohort (Figure 4).
Frontiers in Oncology 07
Radiomics signature for the prediction of
the TME phenotype

A random forest classifier was used to create Rad-Score to predict

the TME phenotype in the training set (AUC=0.855), the internal

validation set (AUC= 0.844), and the external validation set 1

(AUC=0.814). Rad-Score could differentiate responders (CR and

PR) and non-responders (SD and PD) of immunotherapy, the

external validation set 2 (AUC=0.784) (Figure 5). Other metrics

(sensitivity, specificity, positive predictive value and negative

predictive value) all suggested that Rad-Score had excellent

predictive performance (Figure 5). In addition, Rad-Score was

significantly higher in the CD3-high group than the CD3-low group

(p<0.01) (Figure 5). Similarly, Rad-Score was significantly higher in

the CD8-high group than the CD8-low group (p<0.01). Responders

with CR and PR had higher Rad-Score than non-responders with SD

and PD (p<0.01). Thus, the above results verified the reliable

predicting performance of Rad-Score for the TME phenotype.
FIGURE 3

Landscape and prognostic significance of TME phenotypes in mCRC. (A) K-means clustering of TME phenotypes in mCRC demonstrating
abundance of 24 TME cell subpopulations. (B) Distribution of characteristic scores of four cell subpopulations in two clusters. (C) Kaplan-Meier
curves of OS between Cluster A and B. (D) Measurement of the prognostic value of each cell subgroup by a univariate Cox proportional hazards
model for OS in the whole cohort, as well as Cluster A and B.
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FIGURE 4

Correlation and Kaplan-Meier survival analysis of CD3 and CD8 in histology cohort. (A, B). Correlation analysis of CD3 and CD8 IHC score with
immunotherapy efficacy. (C, D) Kaplan-Meier estimates of PFS stratified by the level of CD3 or CD8 expression. (E, F) Kaplan-Meier estimates of PFS
and OS stratified by the level of CD3 and CD8 expression. The statical analysis of IHC score was done with z-test.The statical analysis of PFS and OS
was done with log-rank test. Red line, CD3 high and CD8 high; green line, CD3 high and CD8 low; blue line, CD3 low and CD8 high; purple line,
CD3 low and CD8 low. Abbreviations: IHC - Immunohistochemistry.
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Prognostic value of Rad-Score and
immunoscore

The high and low Rad-Score subgroups were determined by

applying the 50% threshold of Rad-Score. It was found that Rad-

Score could divide mCRC patients into low- and high-risk subgroups,

which differed significantly in PFS and OS (both p<0.001) (Figures 6A,

B). In addition, survival analysis showed that patients with high

immunoscore had significantly better PFS and OS, confirming

immunoscore as a good prognostic factor in mCRC patients

(Figures 6C, D). To assess the correlation between Rad-Score and

immunoscore, the difference of Rad-Score between the low and high

immunoscore groups were compared (Figure 7).We found that patients

with high immunoscore had significantly lower Rad-Score, confirming

the close relationship between radiomics and immune infiltration status.
Nomograms for the prediction of OS and
PFS

After multivariate analysis adjusting for clinical variables, sex,

Rad-Score and immunoscore remained independent factors for
Frontiers in Oncology 09
predicting OS and PFS (Table 2). Then, two nomograms,

combining Rad-Score, immunoscore and clinical factors, were

created to predict OS and PFS respectively (Figures 8A). The

usefulness of combined nomogram was confirmed in the survival

ROC analysis for predicting OS (AUC=0.860; Figure 8) and PFS

(AUC=0.875; Figure 8). The calibration curve showed a high

accuracy of the combined nomogram model for predicting OS

and PFS (Supplementary Figure S3). The DCA was then performed

to illustrate the clinical decision utility of the combined nomogram

(Supplementary Figure S4).
Discussion

In the current study, we presented a PET-CT-based radiomics

model that incorporates several novel features to improve the

accuracy of predicting response to immunotherapy in mCRC

patients. The radiomics model was constructed based on the

PET/CT radiomics features extracted via DNNs, IHC biomarkers

and clinical features. We believe that this model can not only

improve the response rate compared to the current immunotherapy

delivery strategy, but also reduce the use of anti-PD-1/PD-L1 in
FIGURE 5

Performance of radiomics signature in the training and validation sets. (A). Diagnostic efficacy of radiomics signature in the training set and three
independent validation sets. (B). Evaluation metrics of radiomics signature in the training set and three independent validation sets. (C). Comparison
of rad scores for different CD3, CD8 expression, and immunotherapy responses, respectively. ****, p<0.0001. **, p<0.01; ACC, accuracy, SEN,
sensitivity, SEP, specificity, PPV, positive predictive value, NPV, negative predictive value.
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mCRC patients. This study is a step forward in the use of artificial

intelligence (AI) for personalized treatment and prognosis

prediction in mCRC patients. Further validation, clinical impact

and prospective studies are needed to determine the reliability,

generalizability and utility of these models for the clinical

management of mCRC patients. Taken together, we proposed a

promising tool for predicting response to immunotherapy in mCRC

patients before treatment, which could help clinicians stratify

mCRC pat ients and ident i fy those who may benefi t

from immunotherapy.

In the last decade, several radiomics-based models have been

proposed to predict response to immunotherapy in various tumors

(18, 26–28); however, these methods relied on manually generated

ROI labels for image feature extraction, raising the potential that

optimal radiomics features for predicting response to

immunotherapy may not be involved. Recently, DNNs have been

widely used in radiomics research to automatically extract image

features. For instance, 256 features (deep features) have been

extracted from CT images via a convolutional neural network
Frontiers in Oncology 10
(CNN) (29). Compared to traditional radiomics models, DNN-

based radiomics achieved better performance. Hence, in the current

study, CT and PET features were also extracted using DNNs.

There is a consensus that clinical factors can improve the

predictive ability of radiomics (30, 31). In this study, clinical

factors were also included. SUVmax of PET/CT, pre-operative

CEA, and primary tumor site were screened out using the LASSO

regression, which have been shown to correlate with

immunotherapy efficacy. PD-L1 is the most commonly used

biomarker associated with immunotherapy. Nevertheless, PD-L1

measured by IHC staining is not satisfactory as a biological marker

for immunotherapy for the majority of tumors (32). Therefore, new

biomarkers are needed for predicting and monitoring patient

responses to immunotherapy. This study aims to create a PET-

CT radiomics signature related to the TME phenotype and

immunotherapy efficacy. A radiomics signature of the TME

phenotype was derived from PET-CT images and the relationship

between the radiomics signature, the TME phenotype, and response

to immunotherapy was investigated. As a significant predictor, Rad-
FIGURE 6

Prognosis value of radiomics score and immune score. The high and low radiomics score subgroups were determined by operating the threshold of
50% to prediction scores of two radiomics models. It showed that the developed two radiomics signatures can divide patients into low and high risk
radiomic subtypes with significantly different (A) PFS (p=0.0001) and (B) OS (p=0.0006). Survival analysis showed that patients with high immune
score have notably improved (C) OS and (D) PFS, confirming immunoscore as a good prognostic factor in mCRC patients.
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Score may be related to the immune activity of the tumor

microenvironment. In clinical practice, a high Rad-Score may

indicate that a patient is more likely to benefit from

immunotherapy. Furthermore, the predicted performance of the

radiomics signature was validated in three different cohorts and

showed that it is associated with clinical outcomes in mCRC

patients treated with immunotherapy.

The immunoenhanced and immunosuppressed phenotypes

were examined in this study. We focused on the extent of

immune and stromal cell infiltration in TME because lack of
Frontiers in Oncology 11
immune infiltration is associated with poor immunotherapy

response. TME phenotypes are generally divided into

immunoenhanced (“ hot tumors “) and immunosuppressive (“

cold tumors “) types, corresponding to tumor microenvironments

with abundant and low immune cell infiltration, respectively.

Metabolic features in PET images, such as standardized intake

value (SUVmax) and metabolic volume, and anatomical features

in CT images, such as tumor size, shape, and texture, all reflect

tumor heterogeneity. In addition, advanced features extracted by

deep learning algorithms can capture the complex heterogeneity of
FIGURE 7

Overall study strategy. The training set consists of 103 mCRC patients whose PET-CT and RNA-seq data are available. The internal validation set
(N=65) was utilized to confirm the congruence between the radiomics signature and the TME phenotypes. The TME phenotype cohort (N=37) was
employed to reveal the match between the radiomics signature and tumor TME phenotypes. The immunotherapy response cohort (N=102)
receiving anti-PD-1/PD-L1 therapy was used to predict the prognostic response to immunotherapy. Baseline PET/CT images, clinical data (SUVmax,
CEA, and primary tumour site), and IHC (CD3 and CD8) were retrospectively selected for feature extraction. The radiomics signature for predicting
TME phenotypes was developed using random forest algorithm.
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tumors, further improving the ability to identify TME phenotypes.

The application of radiomics to TME phenotypic classification has

significant advantages, such as non-invasive, high-resolution, and

multimodal data fusion capabilities, enabling it to provide

comprehensive tumor characterization information based on

PET/CT images without relying on invasive tissue biopsies. To

better explain the spatial distribution of immune and stromal cells

in TME, as we gain a better understanding of mCRC and its
Frontiers in Oncology 12
immune function in TME, a prospective direction in the future

may include possible other immunophenotypes.

In addition, we added CD3 and CD8 IHC staining to the

endoscopic biopsy to show the TME phenotype of the primary

tumor. The inclusion of these protein markers enables the

combined model to further improve the performance of the

external validation queue. The Rad-Score is generated by a

random forest classifier that screens for features associated with
TABLE 2 Univariate logistic and cox regression of external validation cohort.

Number of Events OS Number of Events PFS

(relapse/patients) HR (95% CI) P (response/patients) OR (95% CI) P

Sex

Female (29/32) 1 (reference) (11/32) 1 (reference)

Male (66/70) 0.36 (0.14-0.96) 0.042 (35/70) 1.91 (0.81-4.66) 0.144

Age, years

(64/68) 1 (reference) (30/68) 1 (reference)

(31/34) 0.95 (0.61-1.46) 0.800 (16/34) 1.13 (0.49–2.58) 0.778

Preop. CEA, ng/ml

(79/85) 1 (reference) (41/85) 1 (reference)

≥200 (16/17) 1.26 (0.74-2.17) 0.395 (5/17) 0.45 (0.13-1.32) 0.161

Preop. CA19-9, U/ml

(52/56) 1 (reference) (27/56) 1 (reference)

≥200 (43/46) 1.15 (0.76–1.74) 0.499 (19/46) 0.76 (0.34–1.66) 0.486

Clinical risk scoreb

0-2 (14/15) 1 (reference) (6/15) 1 (reference)

3-5 (81/87) 1.05 (0.59–1.86) 0.866 (40/87) 1.28 (0.42–4.10) 0.668

No. of metastases

(22/25) 1 (reference) (9/25) 1 (reference)

(73/77) 1.55 (0.95–2.50) 0.077 (37/77) 1.64 (0.66–4.31) 0.295

Maximum size of metastases, cm

<5 (65/69) 1 (reference) (32/69) 1 (reference)

>=5 (30/33) 1.19 (0.75–1.89) 0.452 (14/33) 0.85 (0.36–1.96) 0.708

Radiomics score

Low (46/49) 1 (reference) (10/49) 1 (reference)

High (49/53) 0.64 (0.42–0.95) 0.029 (36/53) 8.26 (3.46–21.24) <0.001

Immune score

Low (49/52) 1 (reference) (9/52) 1 (reference)

High (46/50) 0.52 (0.35–0.79) 0.002 (37/50) 13.60 (5.44–37.28) <0.001
fr
Data presented as %.
CEA, carcinoembryonic antigen; CA19-9, Carbohydrate antigen199; SUV, standardized uptake value; SD, standard deviation.
aAll enrolled patients developed synchronous liver metastases. Histology cohort was consisting of patients with colonoscopy biopsy specimens in training and validation cohorts, thus, there was
an overlap of patients in three cohorts.
bClinical risk factors included lymphatic spread of primary cancer, simultaneous metastases, or interval <12 months from primary tumor resection to metastasis, CEA>200 ng/mL, no. of liver
metastasis >1, and largest size of liver metastasis > 5 cm. Each risk factor was 1 point.
cRight-sided included tumors from cecal to two thirds of proximal transverse colon; left-sided represented tumors from one third of distal transverse colon to rectum.
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the TME phenotype and is able to distinguish between immune-

enhanced and immune-suppressed tumors. In terms of

immunotherapy response prediction, radiomics assesses patient

response to immunotherapy by building predictive models such

as Rad-Score and combination models. The combined model

combined Rad-Score, immune score (based on CD3 and CD8

IHC staining results), and clinical features to further improve the

accuracy of the prediction of OS and PFS, and the improved
Frontiers in Oncology 13
performance of the combined model showed that these features

were effective. Validation of radiomic models is a key step to ensure

their reliability and generalization ability, including internal

validation, external validation, and predictive ability validation in

immunotherapy response cohorts. Radiomics has demonstrated

high accuracy, multimodal data fusion capabilities, and clinical

value in immunotherapy response prediction, providing clinicians

with a non-invasive tool to evaluate a patient’s potential response to
FIGURE 8

Nomograms for OS and PFS prediction. Combined nomograms incorporating clinical features, radiomics signature and Immunoscore for OS (A) and
PFS (B) prediction. Survival ROC curves demonstrate the prognostic accuracy in predicting OS (C) and PFS (D) of the combined nomograms.
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immunotherapy before treatment, thereby optimizing

treatment strategies.

There are several limitations in the current study. First, we were

not able to include all patients in the study because baseline PET/CT

data and tumor tissues were not available, potentially leading to

selection bias and confounding. Second, the radiomics model used a

semi-automated segmentation pipeline for tumor ROI, which still

requires manual initialization and post-processing. Third, the

protein markers selected for this study were derived from the

literature, and optimal candidates may need to be verified using

proteomic data from tumor samples of mCRC patients treated

before and after immunotherapy. Finally, due to the retrospective

nature of this study, a large prospective study is required to further

validate the results.
Conclusions

In conclusion, we have developed a PET-CT radiomics model

for predicting response to immunotherapy in mCRC patients. Our

research shows that the PET-CT radiomics model proves to be a

promising, non-invasive, cost-effective, and reliable tool for

characterizing the TME phenotype and predicting response to

immunotherapy in mCRC patients. The robust performance of

the radiomics model presented the promise for the development of

therapies prior to the administration of conversion therapy

administration, with the goal of reducing mortality. Although the

results need to be validated in a larger prospective study, they

underline the potential for the development of non-invasive

biomarkers in the field of immunotherapy.
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