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Introduction: Hepatocellular carcinoma (HCC), a predominant subtype of liver

cancer, remains Q7 a major contributor to global cancer mortality. Accurate

delineation of liver tumors in CT and MRI scans is critical for treatment planning

and clinical decision-making. However, manual segmentation is time-consuming,

errorprone, and inconsistent, necessitating reliable automated approaches.

Methods: This study presents a novel U-shaped segmentation framework

inspired by U-Net, designed to enhance accuracy and robustness. The

encoder incorporates Dynamic Multi-Head Self-Attention (D-MSA) to capture

both global and local spatial dependencies, while the decoder uses skip

connections to preserve spatial detail. Additionally, a Feature Mix Module (FM-

M) blends multiscale features, and a Residual Module (RM) refines feature

representations and stabilizes training. The proposed framework addresses key

challenges such as boundary precision, complex structural relationships, and

dataset imbalance.

Results: Experimental results demonstrate superior segmentation performance,

achieving a mean Dice score of 86.12 on the ATLAS dataset and 93.12 on the

LiTS dataset.

Discussion: The proposed method offers a robust, efficient tool for liver tumor

segmentation and holds strong potential to streamline diagnostic workflows and

improve automated medical image analysis in clinical practice.
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1 Introduction

Hepatocellular carcinoma (HCC), the predominant form of liver

cancer, ranks as the sixth most common cancer and the third leading

cause of cancer-related deaths globally, accounting for over 800,000

deaths each year (1–3). The high mortality rate is largely attributed to

late diagnosis and the aggressive progression of liver tumors. In

clinical practice, early detection and precise delineation of liver

tumors are essential for improving patient survival rates, enabling

timely interventions such as surgical resection, radiofrequency

ablation, or targeted therapy. Accurate tumor segmentation in

imaging modalities like computed tomography (CT) and magnetic

resonance imaging (MRI) plays a critical role in guiding treatment

planning, monitoring therapeutic response, and reducing inter-

observer variability among radiologists. However, manual

segmentation of liver tumors is labor-intensive, time-consuming,

and prone to human error. To address these challenges, there is a

growing demand for automated segmentation frameworks that

provide consistent, efficient, and accurate tumor identification.

Automated segmentation involves the use of computational

algorithms to extract meaningful regions—such as organs, tissues,

or tumors—from medical images without manual intervention.

This is typically achieved through deep learning-based feature

extraction and boundary delineation. Several researchers have

explored such approaches for liver cancer segmentation. Ayalew

et al. presented a modified U-Net architecture tailored for

abdominal CT images, addressing class imbalance challenges (4).

Zang et al. used pulse-coupled neural network preprocessing

combined with SE-ResNet to effectively denoise and segment liver

tumors from CT and MRI scans (5). Amin et al. proposed a three-

phase strategy involving synthetic data generation using GANs,

YOLOv3-based tumor localization, and Deeplabv3 for precise

segmentation (6). While these approaches demonstrate notable

progress, critical challenges remain.

Liver tumor segmentation is complicated by variations in tumor

shape, size, and contrast, as well as the presence of ambiguous

boundaries and overlapping tissue structures. Even with

advancements in convolutional neural networks (CNNs) and

transformer-based models, existing methods often fail to capture

complex structural relationships and achieve reliable boundary

precision. These limitations are further compounded by class

imbalance in medical datasets, which can bias the model toward

dominant structures.

To address these issues, we propose a novel segmentation

framework based on a U-shaped architecture inspired by U-Net.

Our model integrates a Dynamic Multi-Head Self-Attention (D-

MSA) mechanism in the encoder to capture both global and local

spatial dependencies. The decoder incorporates skip connections to

retain high-resolution spatial features, while a Feature Mix Module

(FM-M) enables multi-scale feature fusion and a Residual Module

(RM) supports stable training through efficient feature refinement.

Together, these components enable accurate segmentation of liver

tumors, effectively addressing boundary precision, structural

integration, and data imbalance. The proposed framework offers a

clinically relevant, robust tool for medical image analysis.
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2 Related works

Automated segmentation of liver tumors has undergone

remarkable progress, driven by advancements in both traditional

machine learning and deep learning techniques. Early architectures

like U-Net introduced an encoder-decoder structure that set a

benchmark for pixel-level segmentation in medical imaging. Its

successors, such as U-Net++ and 3D U-Net, enhanced feature

aggregation and volumetric segmentation by incorporating nested

and dense skip connections, effectively addressing spatial

correlations in CT and MRI scans. These foundational models

laid the groundwork for subsequent innovations that integrate

attention mechanisms and hybrid approaches to further improve

segmentation performance.

Recent developments have emphasized the integration of

advanced architectures and attention mechanisms. Lal et al.

developed a deep learning framework for nuclei segmentation in

histopathological liver cancer images, integrating residual blocks to

enhance high-level feature extraction and attention based decoder

modules for precise spatial localization. Their architecture

demonstrated state-of-the-art performance on benchmark

datasets, including KMC Liver and Kumar, outperforming

existing methods in segmentation accuracy (7). Similarly,

Suganeshwari et al. developed EN-DENet, an encoder decoder

network for liver tumor segmentation, reporting Dice scores of

85.94% on the LITS dataset and 84.81% on the 3DIRCADb01

dataset (8). Zhang et al. developed a 3D CNN architecture

incorporating multi-scale convolutional layers, residual pathways,

and channel-spatial attention modules to enhance hierarchical

feature learning. Their framework demonstrated robust

performance, yielding Dice coefficients of 76.5% and 72.96% on

the LiTS and 3DIRCADb01 datasets, respectively, outperforming

prior approaches in liver lesion segmentation tasks (9). Lei et al.

enhanced liver and tumor segmentation using a deformable

encoder-decoder network with Ladder-ASPP modules, achieving

a Dice score of 76.7% on the LiTS dataset (10).

Lambert et al. developed a novel segmentation framework

leveraging anisotropic hybrid networks to delineate liver and tumor

regions in contrast-enhanced MRI (CE-MRI) data. Their methodology

combined dual-binary pipelines (multi-class and dual-binary

architectures) integrated with uncertainty quantification mechanisms

to improve model transparency and computational efficiency,

outperforming conventional approaches in both accuracy and

reliability (11). Patel et al. focused on robust liver segmentation in

T1-weightedMRI, leveraging architectures like Swin UNETR, nnUNet,

and PocketNet trained on a multi-institutional dataset of 819 images,

achieving Dice scores above 0.9. Their study highlights the impact of

ensemble datasets and tailored models for addressing variations in

imaging protocols and disease etiologies (12).

Transfer learning has also been explored to improve

segmentation. Ye et al. evaluated pre-trained STUNet models for

volumetric medical image segmentation, demonstrating strong

modality transfer capabilities and superior performance on

diverse datasets, particularly in cases of limited data (13). Li et al.

presented MFHARFNet, a multi-branch hybrid attention and
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adaptive receptive field network, redesigning skip connections and

integrating multi-scale attention modules to achieve high

performance on datasets such as ATLAS, LiTS, and BraTS2019 (14).

In undersampled MRI data, Duan et al. proposed TJLD-Net, a

dual-domain network combining CNNs and Transformers in an

end-to-end joint learning approach for MRI reconstruction and

segmentation. Their method effectively addressed the challenges

of low-quality imaging (15). Dai et al. introduced SoSegFormer,

a cross-scale feature correlated network for small object

segmentation, demonstrating effectiveness in datasets like ATLAS

and PolypGen through cross-scale feature aggregation and vision

transformers (16). Finally, Qin and Li proposed S MedNeXt, a

hybrid ConvNeXtTransformer model for 3D reconstruction of liver

and tumors, achieving high efficiency and accuracy with a Dice

score of 0.934 on the ATLAS dataset (17).

Despite these advancements, many existing methods continue

to face challenges in achieving precise boundary delineation,

particularly for tumors with irregular shapes or overlapping

regions. Additionally, the inability to fully capture complex

structural relationships within the liver remains a significant

limitation. These issues are further exacerbated by imbalanced

datasets, which can bias models to focus on prominent features

while neglecting smaller or less distinct regions. Addressing these

limitations is crucial for developing more robust and accurate

segmentation frameworks, motivating the design of our

proposed method.
3 Materials and methods

Figure 1 illustrates the overall architecture of the proposed

Dynamic Transformer Network (DynTransNet), which is based on

the UNETR framework and follows an encoder–decoder structure.

The encoder is responsible for extracting and compressing

multi-scale features from the input images. It begins with
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patch partitioning and linear embedding, followed by multiple

Transformer Blocks that incorporate D-MSA to effectively

capture both global and local spatial dependencies. As shown

in Figure 1, the output tokens from each encoder stage

are progressively downsampled through patch merging

operations, which are clearly depicted by the narrowing feature

pathways. The decoder, on the other hand, reconstructs high-

resolution segmentation masks by progressively upsampling these

compressed representations. A key novelty of our architecture is the

integration of the FM-M and RM at each decoding stage. The FM-

M fuses features from the skip-connected encoder path and the

upsampled decoder features via an attention-guided mechanism.

The output of this fusion is then passed through the RM, which

refines the combined feature maps using convolutional blocks and

residual learning to ensure stable training and improved boundary

precision. These modules are repeated at each stage of the decoder

and are visually highlighted in the figure to illustrate their flow

and interconnections.
3.1 Encoder

In our proposed architecture, the encoder operates on an input

tensor X ∈ RH×W×D×S, where H, W, and D denote the spatial

dimensions, and S indicates the number of input channels. The

encoder leverages a transformer-based architecture with D-MSA to

capture both global and local spatial dependencies dynamically and

efficiently. The input tensor X is first partitioned into non-

overlapping 3D patches of size H0 × W0 × D0 to create a

sequence of tokens with dimensions:

H
H0

� �
� W

W0

� �
� D

D0

� �

Each token is subsequently mapped into a learnable

C-dimensional embedding space through a linear projection.
FIGURE 1

DynTransNet’s architecture comprises three main components: a transformer block, a FM-M, and a RM.
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E = X 0We + be

where X0 is the flattened representation of the tokens, We ∈
RH0W0D0�C is the projection weight matrix, and be ∈ RC is the

bias term.

The core of the encoder consists of a series of transformer blocks,

each equipped with DMSA to effectively model multi-scale spatial

interactions. At each layer l, the input Xl ∈ RN�C , where N =
H
H0

� W
W0

� D
D0
. The detailed description of DMSA is given below,

3.1.1 Dynamic Multi-Head Self-Attention
We introduce D-MSA to make the attention mechanism more

adaptive to diverse image contexts. This mechanism extends the

standard self-attention by incorporating a dynamic bias term that

modulates attention weights based on the input features themselves.

Input features are first projected into query, key, and value vectors that

help model relationships between spatial positions. Unlike fixed

attention formulations, D-MSA introduces a learnable, input-

dependent bias that adjusts how strongly the model attends to

different regions. This dynamic bias is computed from the input

using a ReLU-activated linear transformation and added to the

attention score before softmax normalization. As a result, the model

can selectively emphasize more relevant spatial features based on the

current context. By concatenating the outputs from multiple attention

heads and projecting them back into the feature space, D-MSA enables

richer and more flexible representation learning, effectively capturing

both global context and fine-grained local details, which is critical for

segmenting complex anatomical structures like liver tumors.

Within each attention head, input features are independently

mapped via linear transformations to specialized query (Q), key (K),

and value (V) vectors to enable distinct representation learning for

contextual alignment as follows,

Qh = XlW
h
q ,Kh = XlW

h
k ,Vh = XlW

h
v

whereWh
q ,W

h
k ,W

h
v ∈ RC�dh are learnable parameters, and dh =

C
H is the dimensionality of each head. The scaled dot-product

attention with dynamic bias is then computed as follows,

Ah = Softmax 
QhK

⊤
hffiffiffiffiffi

dh
p + Dh

 !
Vh

where Dh is the dynamic bias that adapts attention weights based

on input features. The dynamic bias, Dh is computed as follows,

Dh = ReLU  XlW
h
d + bhd

� �
The outputs from all attention heads are concatenated and

projected back to the embedding space using the flowing equation,

Zl = Concat  A1,A2,…,AH)Woð
where Wo ∈ RC�C is a learnable weight matrix. The detailed

pseudo-code can be seen in Algorithm 1.
Fron
Require: Input volume X ∈ RH�W�D�S, patch size (H0,W0,

D0), embedding dim C, number of heads H
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1: Partition X into non-overlapping 3D patches of size H0

× W0 × D0

2: Flatten patches and reshape to sequence: X0 ∈ RN�(H0W0D0)

where N = H
H0
· W

W0
· D

D0

3: Project patches to embedding space: E = X0We + be,

where We ∈ RH0W0D0�C

4: Xl ← E

5: for each Transformer block layer l = 1 to L do

6: //D-MSA computation

7: for each head h = 1 to H do

8: Qh ←XlW
h
q, Kh ←XlW

h
k, Vh ←XlW

h
v

9: Dh ←ReLU(XlW
h
d + bh

d)

10: Ah ← Softmax Qh(Kh)⊤ffiffiffiffi
dh

p + Dh
� �

Vh

11: end for

12: Concatenate heads: Zl ← Concat(A1,A2,…,AH)Wo

13: Xl ← Zl

14: end for

15: return Xl {Final encoder output feature sequence}
Algorithm 1. Encoder with patch embedding and dynamic multi-head
self-attention (D-MSA).
3.2 Decoder

The decoder in our network is structured in a U-shaped design,

inspired by the architecture of U-Net. Features extracted from each stage

of the encoder are transmitted to the corresponding stage in the decoder

through skip connections, preserving critical spatial and semantic

information. At each decoder stage, these encoder features are

combined with the upsampled decoder features using a FM-M. This

module merges the input features by concatenating them along the

channel dimension, followed by a convolution operation to ensure

seamless blending of information from different scales.

After feature fusion, the output is refined through a RM, which is

composed of two 3×3×3 convolutional layers with residual connections

and an instance normalization layer. The RM enhances feature

representation while ensuring efficient gradient flow during

backpropagation, making the training process stable and effective.

The final segmentation output is obtained by processing the

reconstructed feature maps through a 1×1×1 convolution layer,

followed by a sigmoid activation function. This setup ensures precise

pixel-wise segmentation of liver and tumor regions. The integration of

skip connections, FM-M, and RM allows the decoder to leverage multi-

scale information effectively for accurate reconstruction.

3.2.1 Feature mix module
The FM-M plays a crucial role in merging multi-scale features

from the encoder and decoder pathways. By effectively blending

spatial and semantic information, this module ensures that the

decoder can utilize both high-resolution and context-aware features

for accurate segmentation. The FM-M achieves this through a

combination of learnable linear projections, attention-guided

weighting, and feature fusion. The architecture details of the

feature mix module is show in (Figure 2).
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The module begins by processing the upsampled decoder

feature map, D ∈ RH�W�Cd , and the corresponding encoder

feature map, E ∈ RH�W�Ce , where H and W are the spatial

dimensions, and Cd and Ce represent the channel dimensions of

the decoder and encoder features, respectively. Both inputs are

passed through learnable 1×1×1 convolutional filters, Wɡ and Wx ,

to align their dimensions and emphasize important features:

ɡ = Wɡ · D, x = Wx · E

The attention mechanism then computes an attention map y ,

which dynamically weights the encoder features based on the

combined decoder and encoder information. This is achieved

through element-wise addition of g and x, followed by a rectified

linear unit (ReLU) activation and a sigmoid activation:

y = s (Wy · (ReLU (ɡ + x)))

whereWy is another 1×1×1 convolutional filter, and s denotes

the sigmoid activation. The resulting attention map y ∈ RH�W�1

acts as a gating mechanism, highlighting the most relevant encoder

features for the current decoder stage.

The encoder features are modulated by this attention map

through element-wise multiplication:

E0 = y · E

producing refined encoder features E0 that are better aligned

with the decoder’s requirements. These modulated encoder features

are concatenated with the decoder features along the channel

dimension:

C =  Concat (D, E0)

The concatenated feature map C ∈ RH�W�(cd+Ce) is then

forwarded through a 1� 1� 1 convolutional layer Wf , which

reduces the dimensionality and integrates the features into a

consolidated representation as follows,

F = Wf · C
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The output of the FM-M, F ∈ RH�W�C , serves as the refined

feature map that feeds into the subsequent layers of the decoder. By

incorporating attention mechanisms and weighted feature

transformations, the FM-M ensures that the decoder effectively

utilizes the most critical spatial and semantic information from

both pathways, significantly enhancing the segmentation

performance. The relevant pesudo-code for the FM-M module can

be seen in Algorithm 2.
Require: Decoder feature map D ∈ RH�W�CdEncoder feature

map D ∈ RH�W�Ce

1: Apply 1 × 1 × 1 convolution to decoder: g ← Conv1×1×1

(D,Wg)

2: Apply 1 × 1 × 1 convolution to encoder: x ← Conv1×1×1

(E,Wx)

3: Add and apply ReLU: r ← ReLU(g + x)

4: Compute attention map: y ← s(Conv1×1×1(r,Wy))

5: Modulate encoder features: E0 ←y · E

6: Concatenate with decoder: C ← Concat(D, E0)

7: Fuse features: F ← Conv1×1×1(C,Wf)

8: return F {Refined feature for decoder}
Algorithm 2. Feature Mix Module (FM-M).

3.2.2 Residual module
The RM is a crucial component of our network, designed to

refine the input feature maps while maintaining efficient gradient

flow for stable and effective training. This module follows the

principles of residual learning, allowing the model to learn

refinements to the input features rather than the features

themselves. As illustrated in the figure, the module consists of

two consecutive convolutional blocks, each integrated with instance

normalization and Leaky ReLU activation, followed by a residual

connection to combine the input and processed features. The

structure details of RM is show in Figure 3.
FIGURE 2

The architecture of the feature mix module which incorporates the multi-scale information.
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The input feature map, denoted as X ∈ RH�W�D�C , where H,W,

D are the spatial dimensions and C is the number of channels, is first

passed through a 3×3×3 convolution operation. This operation extracts

localized spatial features, producing an intermediate feature map:

Y1 = Conv 3D (X,W1) + b1

where W1 and b1 represent the convolution weights and biases.

The output is then normalized using instance normalization to

stabilize the learning process:
Frontiers in Oncology 06
Y2 = InstanceNorm (Y1)

Subsequently, a Leaky ReLU (L-ReLU) activation function is

applied to introduce non-linearity, defined as:

L − ReLU (z) =
z,  if z > 0

az,  if z ≤ 0

(

where a is the negative slope parameter, enabling the network

to learn more flexible representations.

The processed feature map is subsequently forwarded through a

second convolutional block, which applies identical operations: a 3

× 3 × 3 convolution, instance normalization, and Leaky ReLU

activation. The output of this block, Y6, represents the refined

features. To ensure that the module retains the critical information

from the input, a residual connection is added between the original

input and the processed features:

F = Y6 + X

This residual connection allows the module to focus on learning

residuals to the input features to ensure the original information is

preserved while enabling the network to refine and enhance feature

representations. The output, F, is a refined feature map of the same

dimensions as the input, RH�W�D�C , and is passed to the next layer

in the network. The RM’s design ensures robust feature extraction,

stable gradient flow, and improved segmentation accuracy. The

pesudo-code of RM module is shown in Algorithm 3.
Require: Input feature map X ∈ RH�W�D�C

1://First convolution block

2: Y1 ← Conv3×3×3(X,W1) + b1

3: Y2 ← InstanceNorm(Y1)

4: Y3 ← LeakyReLU(Y2)

5: //Second convolution block

6: Y4 ← Conv3×3×3(Y3,W2) + b2

7: Y5 ← InstanceNorm(Y4)

8: Y6 ← LeakyReLU(Y5)

9://Residual connection

10: F ← X + Y6

11: return F {Refined output feature map}
Algorithm 3. Residual module (RM).
4 Experimental results analysis

4.1 Experimental platform and parameters

Our model implementation was carried out using the PyTorch

2.1.0 deep learning framework, developed in Python 3.8. The

experimental environment used an Intel(R) Core(TM) i7-

13700KF CPU at 3.40 GHz, paired with an NVIDIA GeForce

RTX 4070 Ti SUPER GPU, running on a Windows 10 platform.

The hyperparameter details of our proposed model is show

in Table 1.
FIGURE 3

The detailed structure of RM using convolutional normalization and
non-linear activation function such as Leaky-ReLU (L-ReLU).
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4.2 Evaluation metrics

The relevant equations for used evaluation metrics is defined as

follows,

 Dice Score  =
2oN

i=1piɡi

oN
i=1pi +oN

i=1ɡi

 Precision  = o
N
i=1piɡi

oN
i=1pi

 Recall  = o
N
i=1piɡi

oN
i=1ɡi
4.3 Dataset description

This study utilized two datasets to evaluate the performance of

the model such as ATLAS (18) and LiTS (19) datasets. Atlas dataset

comprises 90 contrast-enhanced MRI scans focusing on the entire

liver in 90 individuals diagnosed with unresectable HCC. Each scan

is paired with dedicated segmentation masks delineating both the

liver and liver tumors. The Liver Tumor Segmentation (LiTS)

dataset comprises 131 training CT scans and 70 additional test

scans, acquired from multiple clinical centers via various multi-slice

CT scanners. Collectively, these scans encompass many axial slices,

each containing expert-delineated labels for both the liver and

hepatic tumors. The broad range of imaging protocols and

machines ensures rich diversity making LiTS a key resource for

testing algorithm generalizability.

For both the ATLAS and LiTS datasets, we applied a structured

data preprocessing and augmentation pipeline to enhance

consistency and generalization. The pipeline began by loading the

images and labels, ensuring the correct channel format, and

standardizing spatial resolution and orientation across all

volumes. Intensity values were normalized to a fixed range to

reduce variability due to differing acquisition settings. Foreground

cropping was used to focus on the region of interest, and padding

ensured that the spatial dimensions were compatible with the model

architecture. To improve the model’s robustness, we employed

patch-based sampling with a balanced ratio of foreground and

background, followed by a series of spatial and intensity-based
Frontiers in Oncology 07
augmentations, including random flips, rotations, scaling, and

shifting. These transformations helped to simulate real-world

variability and reduce overfitting.
4.4 Ablation study

We conducted a comparative ablation study using two widely

adopted fusion strategies, such as simple concatenation and weighted

summation within the DynTransNet framework. As presented in

Table 2, our FM-Mmodule consistently outperforms the other fusion

methods across both the ATLAS and LiTS datasets. Specifically, the

proposed module achieves the highest Dice scores of 86.12%

(ATLAS) and 93.12% (LiTS), indicating improved segmentation

accuracy. Furthermore, it yields notable gains in both precision and

recall, demonstrating its ability to retain relevant features while

reducing false positives. These improvements highlight the strength

of our attention-guided fusion design, which adaptively emphasizes

informative features across multiple scales, leading to more precise

and reliable segmentation outcomes.

Table 3 illustrates the ablation study of our proposed model on

the ATLAS and LiTS datasets, evaluated using Dice score, Precision,

and Recall. To enhance the statistical reliability of our results, we also

report the mean ± standard deviation (SD), 95% confidence intervals

(CI), and p-values obtained from paired t-tests against the baseline.

The baseline model achieved a Dice score of 84.16 ± 0.53 (CI: 83.83–

84.49) on ATLAS and 90.58 ± 0.59 (CI: 90.21–90.95) on LiTS. Adding

D-MSA to the baseline led to statistically significant improvements (p

¡ 0.05), increasing the Dice score to 84.99 ± 0.57 (ATLAS) and 91.64 ±

0.74 (LiTS). The inclusion of both D-MSA and FM-M yielded further

gains, with Dice scores reaching 85.79 ± 0.42 (CI: 85.56–86.02) on

ATLAS and 92.49 ± 0.45 (CI: 92.24–92.75) on LiTS. The best

performance was observed when all three submodules—D-MSA,

FM-M, and RM—were combined, achieving Dice scores of 86.12 ±

0.36 (CI: 85.90–86.34) on ATLAS and 93.12 ± 0.35 (CI: 92.92–93.32)

on LiTS, with highly significant p-values (p< 0.001). These results

clearly demonstrate that each proposed submodule contributes

positively to segmentation performance and that the full model

achieves the most accurate and robust results across both datasets.
4.5 Quantitative analysis

Figure 4 represents the training dynamics of our model over 300

epochs in terms of training loss and validation Dice score. The training

loss graph indicates a steady decrease as the number of epochs

increases. Starting at approximately 0.7, the loss significantly reduces

during the initial epochs, reflecting effective model learning. Beyond

150 epochs, the loss converges around 0.3, with minimal fluctuations.

The validation Dice score graph demonstrates consistent

improvement over the epoch. Initially, the Dice score starts near 0

and rises rapidly over the epochs eventually stabilizing around a Dice

score of 0.86. Notably, the model achieved a mean Dice score of 86.12,

which indicates our model’s ability to generalize in our validation data.
TABLE 1 Hyperparameters list of our proposed model.

Parameters Value

Learning Rate 0.0001

Optimizer Adam

Loss Function DiceLoss

Epochs 300

Batch Size 2
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Table 4 shows the segmentation performance across multiple

models using three key metrics: Dice score, Precision, and Recall.

Among the models, SegResNet demonstrates strong performance

with a Dice score of 85.31, a Precision of 86.67, and a Recall of 84.50.

SwinUNETR and DynUNet also achieved competitive results, with

Dice scores of 83.23 and 82.67, respectively. Other models, such as

UNETR and VNet achieved slightly lower Dice scores of 80.19 and

81.59 and ViTAutoEncoder lags significantly, achieving a Dice

score of 59.85. On the other hand, our proposed model achieves

the best results across all metrics, with a Dice score of 86.12, a

Precision of 87.52, and a Recall of 85.82. These findings emphasize

the capability of our method to achieve accurate and consistent

segmentation of the target regions, outperforming current state-of-

the-art techniques. From a clinical perspective, even marginal gains

in Dice score can significantly improve tumor localization and

treatment planning by reducing variability and enhancing boundary

precision. The higher overlap between predicted and actual tumor
Frontiers in Oncology 09
regions supports more reliable radiological assessment and

intervention decisions.

Figure 5 illustrates liver and tumor segmentation results,

comparing ground truth annotations with the model’s predictions

across three different slices of abdominal imaging. The ground truth

shows the accurate delineation of the liver and tumor regions,

marked in distinct colors. The predictions closely align with the

ground truth, demonstrating our model’s ability to accurately

segment both the liver and tumors. While minor deviations may

exist at some boundaries, the overall segmentation quality

highlights the robustness and precision of the proposed model,

effectively capturing both large liver structures and smaller,

irregularly shaped tumor regions.

Figure 6 shows the training loss and validation Dice score over

300 epochs. The training loss shows a steady decline, starting at

around 0.75 and gradually reducing to approximately 0.4, which

shows consistent improvement in the model’s learning. Meanwhile,

the validation Dice score rapidly increases during the initial epochs,

reaching to above 0.9 by around 50 epochs and maintaining stability

with minor fluctuations throughout the remaining epochs. This

trend highlights the model’s ability to generalize well and high

segmentation accuracy while avoiding overfitting as the

training progresses.

Table 5 shows the performance comparison on the LiTS dataset

for liver and tumor segmentation. DeepLabv3+ leads in Precision

with 96.10, while HiFormer achieves the highest Recall at 93.71. In

contrast, LightM-UNet records the lowest Dice score at 84.58. Our

model performs consistently well across all metrics, achieving a

Dice score of 93.12, Precision of 94.05, and Recall of 92.25, which

demonstrates our model’s robustness in segmenting both liver and

tumor regions. This high Dice score reflects a strong spatial overlap

between predicted and ground truth annotations, which is clinically
FIGURE 4

Training loss and validation dice score graph for 300 epochs using DynTransNet on ATLAS dataset.
TABLE 4 Comparison of different models based on dice score, precision,
and recall.

Model
name

Dice score Precision Recall

SegResNet (20) 85.31 86.67 84.50

DynUNet (21) 82.67 83.26 81.04

UNETR (22) 80.19 81.21 79.35

SwinUNETR (23) 83.23 84.46 82.78

ViTAutoEnc (24) 59.85 60.78 58.51

VNet (25) 81.59 82.49 80.66

DynTransNet 86.12 87.52 85.82
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FIGURE 5

The visualization result of DynTransNet using ATLAS dataset.
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significant for accurate tumor boundary identification. Such

precision supports more effective surgical planning and radiation

targeting, potentially leading to improved treatment outcomes and

reduced procedural risks.

Figure 7 shows the segmentation results on the LiTS dataset,

comparing ground truth and predicted segmentations for liver

and tumor regions across three CT slices. The ground truth

annotations provide accurate delineations of liver and tumor

areas, while the model predictions closely match these

annotations, demonstrating high segmentation accuracy.

Notably, even in small or irregularly shaped tumors, the model

successfully captures their boundaries with minimal deviations

from the ground truth. These results highlight our model’s

effectiveness in handling challenging cases and its reliability for

clinical applications.
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5 Conclusion

This work proposes DynTransNet, a deep learning

arch i t ec ture des igned for accura te l iver and tumor

segmentation in multi-modal medical imaging (CT and MRI).

Built on a U-shaped backbone, the framework incorporates

Dynamic Multi-Head Self-Attention and a Feature Mix Module

to enhance spatial dependency modeling and hierarchical feature

fusion. Evaluated on the ATLAS and LiTS datasets, DynTransNet

achieved Dice scores of 86.12 and 93.12, respectively,

outperforming current state-of-the-art methods. Beyond

quantitative performance, these results indicate the model’s

strong potential for supporting radiologists in clinical tasks by

reducing manual segmentation time, enhancing consistency, and

improving tumor localization.
FIGURE 6

The training loss and validation dice score over the epochs for DynTransNet using LiTS dataset.
TABLE 5 Comparison of different models based on dice score, precision, and recall.

Model name Dice score Precision Recall

U-Net (26) 87.19 87.24 90.82

Attention U-Net (27) 89.75 92.91 90.15

DeepLabv3+ (28) 92.95 96.10 92.14

TransUNet (29) 86.71 89.49 87.89

HiFormer (30) 93.06 94.60 93.71

G-Gascade (31) 93.01 95.49 92.87

LightM-UNet (32) 84.58 – –

DynTransNet 93.12 94.78 92.25
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FIGURE 7

The visualization of DynTransNet on LiTS dataset to evaluate the performance of the model.
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However, the current study has several limitations. The model was

trained and evaluated on publicly available datasets, which may not

fully capture the variability present in real-world clinical settings.

Additionally, the computational complexity of the architecture may

pose challenges for deployment in resource-constrained environments.

In future work, we aim to explore real-time deployment,

reduce computational overhead for integration into clinical

workflows, and validate the framework across larger, multi-

institutional datasets to ensure robustness and generalizability in

real-world medical environments.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

SZ: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing. AS: Conceptualization, Resources,

Writing – original draft, Writing – review & editing. YC: Data

curation, Software, Visualization, Writing – original draft, Writing

– review & editing. ZY: Visualization, Writing – original draft,

Writing – review & editing. SY: Visualization, Writing –

original draft, Writing – review & editing. YZ: Formal analysis,

Funding acquisition, Investigation, Project administration,

Supervision, Visualization, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported
Frontiers in Oncology 13
by the Ningbo Municipal Key Research and Development Plan for

2023 (No.2024Z301); the Medical and Health Science and

Technology Plan Project of Zhejiang Province (2022KY1114); the

Medical Science and Technology Project of Zhejiang Province

(No.2024KY1499); the General Program of National Natural

Science Foundation of China (Near-infrared two-zone

fluorescence ratiometric imaging of T cell activation in tumor

microenvironment) (62275050); the National Key Research and

Development Program of China (2022YFC2407304); the Fuzhou

Science and Technology Plan Project (2024-G-015).
Conflict of interest

Author YC was employed by MetaSyntec Co., LTD.

Author SY was employed by Ningbo Wedge Medical Technology

Co., LTD.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Oh JH, Jun DW. The latest global burden of liver cancer: A past and present
threat. Clin Mol Hepatol. (2023) 29:355. doi: 10.3350/cmh.2023.0070

2. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M,
et al. Hepatocellular carcinoma. Nat Rev Dis Primers. (2016) 2:16018–8. doi: 10.1038/
nrdp.2016.18

3. SungH, Ferlay J, Siegel RL, LaversanneM, Soerjomataram I, Jemal A, et al. Global cancer
statistics 2020: Globocan estimates of incidence andmortality worldwide for 36 cancers in 185
countries. CA: Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660

4. Ayalew YA, Fante KA, Mohammed MA. Modified u-net for liver cancer
segmentation from computed tomography images with a new class balancing
method. BMC Biomed Eng. (2021) 3:1–13. doi: 10.1186/s42490-021-00050-y

5. Zang L, Liang W, Ke H, Chen F, Shen C. Research on liver cancer segmentation
method based on pcnn image processing and se-resunet. Sci Rep. (2023) 13:12779.
doi: 10.1038/s41598-023-39240-0

6. Amin J, Anjum MA, Sharif M, Kadry S, Nadeem A, Ahmad SF. Liver tumor
localization based on yolov3 and 3d-semantic segmentation using deep neural
networks. Diagnostics. (2022) 12:823. doi: 10.3390/diagnostics12040823
7. Lal S, Das D, Alabhya K, Kanfade A, Kumar A, Kini J. Nucleisegnet:
Robust deep learning architecture for the nuclei segmentation of liver cancer
histopathology images. Comput Biol Med. (2021) 128:104075. doi: 10.1016/
j.compbiomed.2020.104075

8. Appadurai JP, Kavin BP, Lai W-C. En–denet based segmentation and gradational
modular network classification for liver cancer diagnosis. Biomedicines. (2023) 11:1309.
doi: 10.3390/biomedicines11051309

9. Zhang Z, Gao J, Li S, Wang H. Rmcnet: A liver cancer segmentation network
based on 3d multi-scale convolution, attention, and residual path. Bioengineering.
(2024) 11:1073. doi: 10.3390/bioengineering11111073

10. Lei T, Wang R, Zhang Y, Wan Y, Liu C, Nandi AK. Defed-net: Deformable
encoderdecoder network for liver and liver tumor segmentation. IEEE Trans Radiat
Plasma Med Sci. (2021) 6:68–78. doi: 10.1109/TRPMS.2021.3059780

11. Lambert B, Roca P, Forbes F, Doyle S, Dojat M. Anisotropic hybrid networks for
liver tumor segmentation with uncertainty quantification. In: International conference
on medical image computing and computer-assisted intervention. Vancouver, BC,
Canada: Springer (2023). p. 347–56.
frontiersin.org

https://doi.org/10.3350/cmh.2023.0070
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.3322/caac.21660
https://doi.org/10.1186/s42490-021-00050-y
https://doi.org/10.1038/s41598-023-39240-0
https://doi.org/10.3390/diagnostics12040823
https://doi.org/10.1016/j.compbiomed.2020.104075
https://doi.org/10.1016/j.compbiomed.2020.104075
https://doi.org/10.3390/biomedicines11051309
https://doi.org/10.3390/bioengineering11111073
https://doi.org/10.1109/TRPMS.2021.3059780
https://doi.org/10.3389/fonc.2025.1569083
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2025.1569083
12. Patel N, Celaya A, Eltaher M, Glenn R, Savannah KB, Brock KK, et al. Training
robust t1-weighted magnetic resonance imaging liver segmentation models using
ensembles of datasets with different contrast protocols and liver disease etiologies.
Sci Rep. (2024) 14:20988. doi: 10.1038/s41598-024-71674-y

13. Ye J, Chen Y, Li Y, Wang H, Deng Z, Huang Z, et al. Segbook: A simple baseline
and cookbook for volumetric medical image segmentation. arXiv preprint arXiv. (2024)
2411:14525. doi: 10.48550/arXiv.2411.14525

14. Li M, Yun J, Jiang D, Tao B, Liu R, Li G. Mfharfnet: multi-branch feature hybrid
and adaptive receptive field network for image segmentation.Measurement Sci Technol.
(2024) 36:015704. doi: 10.1088/1361-6501/ad876d

15. Duan J, Huang Z, Xie Y, Wang J, Liu Y. Transformer-and joint learning-based
dual-domain networks for undersampled mri segmentation. Med Phys. (2024)
51:8108–23. doi: 10.1002/mp.v51.11

16. Dai W, Wu Z, Liu R, Zhou J, Wang M, Wu T, et al. Sosegformer: A cross-scale
feature correlated network for small medical object segmentation. In: 2024 IEEE
international symposium on biomedical imaging (ISBI). Athens, Greece: IEEE (2024).
p. 1–4.

17. Qin G, Li W. Mri three-dimensional reconstruction of liver and tumor based
on deep learning. In: Proceedings of the 3rd international conference on computer,
artificial intelligence and control engineering. New York; NY; USA; ACM (2024).
p. 451–6.

18. Quinton F, Popoff R, Presles B, Leclerc S, Meriaudeau F, Nodari G, et al. A
tumour and liver automatic segmentation (atlas) dataset on contrast-enhanced
magnetic resonance imaging for hepatocellular carcinoma. Data. (2023) 8:79.
doi: 10.3390/data8050079

19. Bilic P, Christ P, Li HB, Vorontsov E, Ben-Cohen A, Kaissis G, et al. The liver
tumor segmentation benchmark (lits). Med Image Anal. (2023) 84:102680.
doi: 10.1016/j.media.2022.102680

20. Myronenko A. 3d mri brain tumor segmentation using autoencoder
regularization. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain
injuries: 4th international workshop, brainLes 2018, held in conjunction with MICCAI
2018, granada, Spain, september 16, 2018, revised selected papers, part II 4. Granada,
Spain: Springer (2019). p. 311–20.

21. Ranzini M, Fidon L, Ourselin S, Modat M, Vercauteren T. Monaifbs: Monai-
based fetal brain mri deep learning segmentation. arXiv preprint arXiv. (2021)
2103:13314. doi: 10.48550/arXiv.2103.13314
Frontiers in Oncology 14
22. Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, et al.
Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/
CVF winter conference on applications of computer vision. Waikoloa, Hawaii, USA:
IEEE (2022). p. 574–84.

23. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin unetr: Swin
transformers for semantic segmentation of brain tumors in mri images. In:
International MICCAI brainlesion workshop. Springer (2021). p. 272–84.

24. Dosovitskiy A. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv. (2020) 2010:11929. doi: 10.48550/
arXiv.2010.11929

25. Milletari F, Navab N, Ahmadi S-A. V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 fourth international conference on
3D vision (3DV). Stanford, California, USA: Ieee (2016). p. 565–71.

26. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for
biomedical image segmentation. In: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October
5-9, 2015, proceedings, part III, vol. 18. Munich, Germany: Springer (2015). p. 234–41.

27. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al. Attention
u-net: Learning where to look for the pancreas. arXiv preprint arXiv. (2018)
1804:03999. doi: 10.48550/arXiv.1804.03999

28. Chen L-C, Zhu Y, Papandreou G, Schroff F, AdamH. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Proceedings of the European
conference on computer vision (ECCV). Munich, Germany: Springer (2018). p. 801–18.

29. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, et al. Transunet: Transformers
make strong encoders for medical image segmentation. arXiv preprint arXiv. (2021)
2102:04306. doi: 10.48550/arXiv.2102.04306

30. Heidari M, Kazerouni A, Soltany M, Azad R, Aghdam EK, Cohen-Adad J, et al.
Hiformer: Hierarchical multi-scale representations using transformers for medical
image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications
of computer vision. Waikoloa, Hawaii, USA: IEEE (2023). p. 6202–12.

31. Rahman MM, Marculescu R. G-cascade: Efficient cascaded graph convolutional
decoding for 2d medical image segmentation. In: Proceedings of the IEEE/CVF winter
conference on applications of computer vision. Waikoloa, Hawaii, USA: IEEE (2024). p. 7728–37.

32. Liao W, Zhu Y, Wang X, Pan C, Wang Y, Ma L. Lightm-unet: Mamba assists in
lightweight unet for medical image segmentation. arXiv preprint arXiv. (2024)
2403:05246. doi: 10.48550/arXiv.2403.05246
frontiersin.org

https://doi.org/10.1038/s41598-024-71674-y
https://doi.org/10.48550/arXiv.2411.14525
https://doi.org/10.1088/1361-6501/ad876d
https://doi.org/10.1002/mp.v51.11
https://doi.org/10.3390/data8050079
https://doi.org/10.1016/j.media.2022.102680
https://doi.org/10.48550/arXiv.2103.13314
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.48550/arXiv.2403.05246
https://doi.org/10.3389/fonc.2025.1569083
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	DynTransNet: Dynamic Transformer Network with multi-scale attention for liver cancer segmentation
	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Encoder
	3.1.1 Dynamic Multi-Head Self-Attention

	3.2 Decoder
	3.2.1 Feature mix module
	3.2.2 Residual module


	4 Experimental results analysis
	4.1 Experimental platform and parameters
	4.2 Evaluation metrics
	4.3 Dataset description
	4.4 Ablation study
	4.5 Quantitative analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


