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and peritumoral radiomics
nomogram approach
Jie Li1,2, Dianpei Ma1,2, Xiuting Chen1,2, Junting Wei1,2, Jiali Xu2,
Yingming Zhao3 and Zhizhen Gao2*

1School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China, 2Department of
Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China, 3The First
Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences
and Medicine, University of Science and Technology of China, Hefei, Anhui, China
Objective: To assess the predictive value of a nomogram model incorporating

clinical factors and multisequence MRI intratumoral and peritumoral radiomics

features for estimating recurrence risk in endometrial cancer (EC) patients.

Materials andmethods: This retrospective study included 184 patientswith EC. The

samples were randomly divided into a training set and a test set according to a 7:3

ratio, and intratumoral and peritumoral radiomics features were extracted from

diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) sequences.

Optimal radiomics features were selected using the f-classification function,

minimum redundancy maximum relevance (mRMR) method, and least absolute

shrinkage and selection operator (Lasso). Nine machine learning classifiers were

employed to construct the intratumoral model (RM1). The best-performing

classifiers were then used to develop the intratumoral and peritumoral 2 mm

radiomics model (RM2) and the intratumoral and peritumoral 4 mm radiomics

model (RM3). The radiomics scores (Rad-score) from the top-performing radiomics

model were combinedwith clinical factors to create the nomogrammodel (FM). The

predictive performance of the FM model was evaluated using receiver operating

characteristic (ROC) curve analysis, calibration curve assessment, clinical decision

curve analysis (DCA), clinical impact curve (CIC), and the DeLong test. Feature

importance analysis using the SHapley Additive exPlanations (SHAP) methodology.

Results: The logistic regression classifier (LR) showed optimal predictive efficacy,

and RM2 demonstrated the best diagnostic performance. The clinical decision
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curve and DeLong test results indicated that the FM model was the optimal

recurrence model in EC patients.

Conclusion: A nomogram model integrating MRI radiomics features from

intratumoral and peritumoral regions and clinical factors effectively predicts

recurrence in EC patients.
KEYWORDS

magnetic resonance imaging, peritumoral radiomics, machine learning, endometrial
cancer, recurrence
1 Introduction

Endometrial cancer (EC) is the sixth most common cancer

among women, with 417,000 new cases diagnosed globally in 2020.

Its incidence and disease-related mortality rates have been on the

rise globally, posing a significant threat to women’s health (1, 2).

Research indicates that 10 to 20 percent of patients will experience a

relapse within three years, and more than 95 percent will have a

recurrence within five years (3). While progress has been made in

comprehensive care for recurrent EC, overall effectiveness remains

unsatisfactory, and the prognosis is poor (4). Therefore, it is

increasingly crucial to predict recurrence in patients with EC

shortly after surgery and to develop new biomarkers that can

facilitate personalized treatment strategies.

Magnetic resonance imaging (MRI) offers unique advantages for

soft tissue imaging and has been an effective tool for differential

diagnosis and monitoring recurrence for an extended period.

Radiomics is a rapidly developing discipline that offers extensive

information about the phenotype and microenvironment of tumors

through the quantitative analysis of medical imaging features such as

intensity, shape, size, volume, and texture. These quantitative image

features complement routine clinical reports, laboratory test results,

and genomic or proteomic analyses, providing new insights for

clinical decision-making (5–7). Numerous studies have employed

radiomics to investigate various aspects of EC. However, there has

been less emphasis on studying the recurrence of EC (8). A

nomogram, as a graphical tool for predicting individualized clinical

event probabilities by integrating the effects of multiple variables,

fulfills the requirement for comprehensive clinical models and

provides robust support for personalized medicine (9). While the

majority of studies have concentrated on the tumor itself, some have

incorporated information about the environment surrounding the

tumor to predict vascular invasion and lymph node metastasis,

yielding superior results (10). Furthermore, certain studies have

already included the peritumoral area as a significant component in

the extraction of radiomics features to predict recurrence in patients

with EC (11).

The objective of this study was to combine clinical factors with

radiomics features obtained from MRI to create a nomogram
02
model. This model is designed to predict the risk of recurrence in

EC patients, ultimately guiding precision medicine and

personalized treatment strategies.
2 Materials and methods

2.1 Study population

This study received approval from the Medical Ethics Committee

of the First Affiliated Hospital of Bengbu Medical University.

Furthermore, the study was exempt from the requirement for

informed consent from the subjects. Data from patients who met

the following criteria between January 2019 and December 2021 were

retrospectively collected and analyzed for this study. Based on the

inclusion and exclusion criteria, this retrospective study included 184

patients with EC. The inclusion criteria were as follows: (1) EC was

confirmed based on clinical presentation, auxiliary examinations, and

postoperative histopathological examination; (2) pelvic-enhanced

MRI was performed within two weeks prior to surgery; and (3)

there was no history of other malignant tumors. The exclusion

criteria included: (1) follow-up of less than three years; (2)

incomplete clinical or imaging data; (3) previous biopsy, surgery, or

radiotherapy before the examination; (4) lack of usable lesion tissue to

outline the region of interest (ROI); (5) poor image quality or

presence of artifacts; and (6) International Federation of

Gynecology and Obstetrics (FIGO) stage IV. Ultimately, data from

184 patients with EC cases were included in the analysis. Patients

were followed up for a minimum of 36 months. The specific follow-

up procedures and definitions of recurrence are provided in

Appendix E1.
2.2 Clinical information incorporated

A comprehensive dataset, including clinical, pathological, and

laboratory information, was retrieved from the electronic medical

record system. The following variables were considered: age, age at

menarche, menopausal status, reproductive history, hypertension,
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diabetes mellitus, International Federation of Gynecology and

Obstetrics (FIGO) stage, pathological type, pathological grade,

myometrial invasion, lymph node metastasis, radiation therapy,

chemotherapy, surgical procedure, and laboratory values such as

absolute pre-operative neutrophil count (N) (×109/L), absolute

preoperative lymphocyte count (L) (×109/L), preoperative

fibrinogen (FIB) levels, preoperative serum cancer antigen 125

(CA125) levels, and postoperative serum CA125 levels. The

preoperative indices were obtained from examinations conducted

one week before surgery, while the postoperative indices were

gathered from follow-up examinations conducted 6 to 12 months

after surgery. The pathological type was categorized into two

classifications: endometrioid endometrial carcinoma (EEC) and

non-endometrioid endometrial carcinoma (NEEC), according to

the commonly accepted dichotomy (12). The pathological grading

of the tumor was determined by assigning grades 1 and 2 as low

grade and grade 3 as high grade. The neutrophil-lymphocyte ratio

(NLR) was calculated using the following formula: NLR = N/L.
2.3 Tumor segmentation

The image Acquisition parameters are provided in Appendix

E2. The images obtained were imported into the DARWIN

Intelligent Research Platform (http://www.yizhun-ai.com). The

DARWIN Intelligent Research Platform is an end-to-end

integrated tool dedicated to AI-powered medical imaging

research, designed to lower the barriers for clinicians engaging in

AI medical studies by enabling efficient completion of full-cycle

research workflows from data management to research output

generation. Two radiologists with over five years of experience in

gynecological malignancies independently delineated the three-

dimensional volumes of interest (VOIs) in the sequence at one-

week intervals, while being blinded to the patient’s pathological

information. The T2WI sequence was subsequently matched with

the DWI sequence, and VOIs were delineated based on the

orientations of the lesions in the different sequences. All

annotations were carefully documented (Supplementary Figure

S1). The peritumoral VOIs were obtained by the platform

automatically expanding 2mm and 4mm. When discrepancies

existed, consensus was reached through joint discussion or

determined by a senior physician.
2.4 Feature filtering and dimensionality
reduction

After contouring all patient VOIs, we extracted and analyzed the

radiomics features. Intraclass correlation coefficient (ICC) was

calculated to assess both the intra-observer and inter-observer

reproducibility of radiomics features, with features retaining ICC

values ≥0.8. To eliminate the dimensional differences among these

features, we applied the max-min normalization method to transform
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each feature to a (0, 1) range. Next, we selected the optimal feature

screening method (percentage) to reduce the number of features. The

f-classif function was used to assess the linear correlation between

features and recurrence. Specifically, the top 50% of features were

retained for the intratumoral analysis, while the top 25% of features

were retained for both the intratumoral and peritumoral 2 mm and

the intratumoral and peritumoral 4 mm analyses. For further feature

selection, we used the minimum redundancy maximum relevance

(mRMR) method, which aims to maximize the correlation between

features and recurrence while minimizing redundancy among them.

We selected the top 50 variables most correlated with recurrence

based on the mutual information difference method and removed

features that exhibited high inter-feature correlation. Finally, the least

absolute shrinkage and selection operator (LASSO) regression was

utilized to identify the most valuable features for predicting

recurrence in EC patients.
2.5 Machine learning model development

After the completion of the feature screening, we imported the

optimal intratumoral radiomics features into nine different classifiers

to develop an intratumoral radiomics model (RM1). The following

classifiers were considered: support vector machine (SVM), random

forest (RF), extreme gradient boosting (XGBoost), logistic regression

(LR), decision tree (DT), light gradient boosting machine

(lightGBM), adaptive boosting (AdaBoost), gradient boosting

decision tree (GBDT), and K nearest neighbors (KNN). The

objective of this step is to compare the classification performance

of multiple classifiers and identify the best one for constructing both

the intratumoral and peritumoral 2mm radiomics model (RM2) and

the intratumoral and peritumoral 4mm radiomics model (RM3). The

reliability of these models was verified using ten-fold nested cross-

validation, and the radiomics score (Rad-score) was obtained,

respectively. Following the completion of model construction, the

area under the curve (AUC) of the receiver operating characteristic

(ROC) curve was compared among the three models to identify

which radiomics model demonstrated the best predictive

performance. The clinical information of the patients was initially

analyzed using univariate analysis. The variables that proved

significant in this analysis were then included in a multivariate

analysis. Factors with a statistically significant p-value (p < 0.05)

were retained for constructing the clinical prediction model (CM).

Ten-fold nested cross-validation was also used to assess the stability

of the model. The final step involved creating a nomogram that

integrated clinical independent risk factors alongside the Rad-score,

which was then visually rendered.
2.6 Statistical analysis

The missing data rates were 4.348% for pathological grade,

6.522% for the NLR, 6.522% for serum CA125, and 3.261% for
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http://www.yizhun-ai.com
https://doi.org/10.3389/fonc.2025.1569729
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1569729
postoperative serum CA125. Continuous variables with missing

values were imputed using the mean, while categorical variables

with missing data were imputed using the mode. Statistical analysis

was carried out using SPSS software (version 27.0). The non-

statistical analysis was conducted using the R software (version

4.3.2). Wilcoxon rank sum test, Pearson’s Chi-squared test, and

Fisher’s exact test were used to analyze the differences between the

training group and the validation group. A two-tailed p < 0.05 was

considered statistically significant.
3 Results

3.1 Comparison of clinical information

A total of 184 patients with EC were enrolled in this study

(Figure 1), consisting of 146 non-relapse cases and 38 relapse cases.

The patients were randomly divided into a training set and a

validation set in a 7:3 ratio. The training set included 105 non-

relapse cases and 23 relapse cases, while the validation set contained

41 non-relapse cases and 15 relapse cases. Statistical analysis

indicated that the distribution of relevant clinical factors in both

the training and validation sets did not differ significantly (p > 0.05)

(Table 1). Figure 2 depicts the flow of the experiment.
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3.2 Clinical characteristics screening and
model construction

ROC curves were plotted to determine the optimal critical values

for NLR, FIB, serum CA125, and postoperative serum CA125. The

results of the univariate analysis indicated that several factors

significantly increased the risk of recurrence in patients with EC.

These factors included age, diabetes mellitus, FIGO stage,

pathological grade, lymph node metastasis, radiotherapy,

chemotherapy, FIB, serum CA125, and postoperative serum CA125,

all of which had p-values less than 0.05. The factors identified were

incorporated into a multivariate analysis to determine three clinically

independent risk factors for pathological grade: p=0.009, FIB: p=0.036,

and postoperative serum CA125: p=0.002 (Table 2). In parallel, the

clinical model (CM) was developed. The results indicated that the

mean AUC for the CM in the training set was 0.771 (95% CI: 0.693 -

0.894), while the AUC for the test set was 0.777 (95% CI: 0.622 - 0.933)

(Supplementary Figure S2).
3.3 Optimal classifier selection

For each patient, features were extracted from the

intratumoral, intratumoral with peritumoral 2mm, and
FIGURE 1

Patient screening flowchart.
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TABLE 1 Comparison of clinical information in the training and validation sets of endometrial cancer patients.

Variable
Group

p-value2

Overall N = 1841 Training set N = 1281 Validation set N = 561

Age 54.00 (51.00–58.00) 53.50 (50.00–57.00) 56.00 (51.500–62.00) 0.036

Age at menarche 12.00 (12.00–13·00) 12.00 (12.00–14.00) 12.00 (12.00–12.00) 0.041

Menopausal status 0.764

No 72 (39%) 51 (40%) 21 (38%)

Yes 112 (61%) 77 (60%) 35 (63%)

Reproductive history 0.517

No 2 (1.1%) 1 (0.8%) 1 (1.8%)

Yes 182 (99%) 127 (99%) 55 (98%)

Hypertensive 0.444

No 116 (63%) 83 (65%) 33 (59%)

Yes 68 (37%) 45 (35%) 23 (41%)

Diabetes 0.079

No 160 (87%) 115 (90%) 45 (80%)

Yes 24 (13%) 13 (10%) 11 (20%)

FIGO stage 0.379

I 142 (77%) 95 (74%) 47 (84%)

II 33 (18%) 26 (20%) 7 (13%)

III 9 (4.9%) 7 (5.5%) 2 (3.6%)

Pathological type 0.249

EEC3 176 (96%) 124 (97%) 52 (93%)

NEEC4 8 (4.3%) 4 (3.1%) 4 (7.1%)

Pathological grade 0.617

Low 158 (86%) 111 (87%) 47 (84%)

High 26 (14%) 17 (13%) 9 (16%)

Myometrial invasion 0.168

None 9 (4.9%) 8 (6.3%) 1 (1.8%)

<1/2 136 (74%) 97 (76%) 39 (70%)

≥1/2 39 (21%) 23 (18%) 16 (29%)

Lymph node metastasis 0.844

No 163 (89%) 113 (88%) 50 (89%)

Yes 21 (11%) 15 (12%) 6 (11%)

Radiation therapy 0.690

No 151 (82%) 106 (83%) 45 (80%)

Yes 33 (18%) 22 (17%) 11 (20%)

Chemotherapy 0.614

No 54 (29%) 39 (30%) 15 (27%)

Yes 130 (71%) 89 (70%) 41 (73%)

(Continued)
F
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intratumoral with peritumoral 4mm regions, resulting in 3,562,

7,124, and 7,124 features, respectively. These features underwent a

process of downscaling and filtration (Supplementary Figure S3).

This filtration identified 17 optimal intratumoral features, 15

optimal features for the intratumoral and peritumoral 2mm, and

12 for the intratumoral and peritumoral 4mm. The optimal

intratumoral radiomics features were integrated into nine

machine learning models to identify the most effective classifier

for predicting recurrence in EC patients. Figure 3 illustrates that

the AUC for the nine classifiers in the training set ranges from

0.804 to 0.991, while in the validation set, the AUC ranges from

0.541 to 0.779. These results show that the AUC for LR has

minimal variation between the training and validation sets,

achieving the highest classification efficacy in the validation set

with an AUC of 0.779 (95% CI: 0.500 to 0.988). Furthermore, the

calibration curve for the validation set indicates that LR offers the

best calibration performance at 0.134 (95% CI: 0.119 to 0.149).

Additionally, in the decision curve analysis (DCA) of the

validation set, LR demonstrates good clinical utility. Therefore,

LR is selected as the optimal classifier for constructing the three

radiomics models.
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3.4 Radiomics model construction

The optimal radiomics features were incorporated into the LR

classifier, and the model’s stability was verified through ten-fold nested

cross-validation. The ROC curves were plotted to compare the models’

effectiveness in predicting recurrence in EC patients. The results, as

illustrated in Figure 4, demonstrate that the RM2 achieved higher AUC

values compared to the RM1 and the RM3 across the training, test, and

validation sets. The RM2 demonstrated superior effectiveness in

predicting the risk of recurrence in EC patients compared to the

other two groups. Consequently, the Rad-score values of this model, in

conjunction with the clinically independent risk factors, were selected

for multivariate analysis (Supplementary Table S1).
3.5 Fusion model construction and
evaluation

Thereafter, the FM was constructed and plotted in a nomogram

(Figure 5). As shown in Figure 6, the AUC of the FM is 0.907 (95% CI:

0.824 - 0.990) for the training set and 0.866 (95% CI: 0.761 - 0.971) for
frontiersin.o
TABLE 1 Continued

Variable
Group

p-value2

Overall N = 1841 Training set N = 1281 Validation set N = 561

Recurrence 0.174

No 146 (79%) 105 (82%) 41 (73%)

Yes 38 (21%) 23 (18%) 15 (27%)

Surgical procedure 0.219

Laparoscopic surgery 98 (53%) 72 (56%) 26 (46%)

Laparotomy 86 (47%) 56 (44%) 30 (54%)

NLR5 0.208

≤1.765 109 (59%) 79 (62%) 30 (54%)

>1.765 75 (41%) 49 (38%) 27 (46%)

Fibrinogen 0.393

≤3.790 151 (82%) 103 (80%) 48 (86%)

>3.790 33 (18%) 25 (20%) 8 (14%)

Preoperative serum CA125 >0.999

≤233.700 177 (96%) 123 (96%) 54 (96%)

>233.700 7 (3.8%) 5 (3.9%) 2 (3.6%)

Postoperative serum CA125 0.322

≤13.800 139 (76%) 99 (77%) 40 (71%)

>13.800 45 (24%) 29 (23%) 16 (29%)
1Median (IQR) or Frequency (%); 2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test; 3EEC:endometrioid endometrial carcinoma; 4NEEC:non-endometrioid endometrial
carcinoma; 5NLR: neutrophil-lymphocyte ratio.
Bold values in the table represent the clinical factors included in the study.
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the test set. The calibration curves indicate that the observed curves

closely align with the ideal curves, with Brier scores of 0.073 for the

training set and 0.183 for the validation set. Figure 7 presents DCA for

the three models, indicating that all models provided greater net

benefits compared to the no-action (Treat None) and full-treatment

(Treat All) scenarios within a threshold probability range of 0.1 to 0.8.

The RM2 showed enhanced clinical benefits for threshold probabilities

exceeding 0.6. However, the FM demonstrated the most substantial

advantages for clinical decision-making within the 0.1 to 0.6 threshold

range. This model achieved the highest net benefit and most uniform

variation, suggesting improved generalization and consistent

performance. The CIC of the three models showed that FM had the

largest agreement range, meaning that its clinical predictions and actual

occurrences were highly consistent after the threshold value exceeded

0.2, reflecting higher clinical prediction efficiency. The DeLong test

(Table 3) revealed statistically significant differences in predicting the

risk of recurrence among the three models for EC patients (p < 0.05),

indicating that the FM has superior diagnostic performance.
Frontiers in Oncology 07
3.6 Feature importance analysis

Using the SHapley Addit ive exPlanations (SHAP)

methodology, we visualized the contributions of selected variables

in predicting the risk of EC recurrence. Figure 8A displays the four

most influential features in the model, while Figure 8B quantifies

the feature-specific contributions using SHAP values along the X-

axis. The results indicated that the Rad-score and postoperative

serum CA125 had significantly higher contributions compared to

other features, ranking as the top two predictors. This finding

validates the effectiveness of integrating multi-sequence MRI

peritumoral radiomics with clinical indicators. In contrast, FIB

and pathological grade demonstrated lower contributions,

suggesting that their predictive utility may be partially replaced

by radiomics features in the integrated model. Elevated Rad-score

values (indicated by the red distribution) were strongly associated

with a higher risk of recurrence, highlighting the prognostic

importance of both intratumoral and 2 mm peritumoral textural
FIGURE 2

Experiment flowchart.
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TABLE 2 Univariate and multivariate analysis results table.

Variable Descript P (univariable) 95% CI (univariable) P (multivariable) 95% CI (multivariable)

Age Mean ± SD 0.043 1.05 (1.00-1.10) 0.081 1.06 (0.99-1.13)

Age at menarche Mean ± SD 0.995 1.00 (0.82-1.22)

Menopausal status No

Yes 0.152 1.76 (0.81-3.82)

Reproductive history

Yes 0.338 0.26 (0.02-4.18)

Hypertensive No

Yes 0.718 1.14 (0.55-2.38)

Diabetes No

Yes 0.009 3.37 (1.36-8.35) 0.252 2.09 (0.59-7.39)

F1GO stage I

II 0.861 1.09 (0.41-2.93) 0.613 0.70 (0.18-2.77)

III <0.001 39.33 (4.70-329.21) 0.303 4.28 (0.27-68.13)

Pathological type NEEC1

EEC2 0.051 4.18 (0.99-17.55)

Pathological grade Low

High <0.001 6.51 (2.69-15.78) 0.009 5.00 (1.49-16.72)

Myometrial invasion None

<1/2 0.99 7335312.52 (0.00-NA)

≥1/2 0.99 36466982.23 (0.00-NA)

Lymph node metastasis No

Yes <0.001 8.97 (3.37-23.86) 0.151 3.28 (0.65-16.63)

Radiation therapy No

Yes 0.001 3.90 (1.72-8.82) 0.261 2.04 (0.59-7.03)

Chemotherapy No

Yes 0.007 4.43 (1.49-13.18) 0.303 1.89 (0.56-6.33)

Surgical procedure
Laparoscopic

surgery

Laparotomy 0.239 1.54 (0.75-3.16)

NLR3 ≤1.765

>1.765 0.195 1.61 (0.78-3.30)

Fibrinogen ≤3.790

>3.790 0.001 3.90 (1.72-8.82) 0.036 3.46 (1.08-11.08)

Preoperative serum CA125 ≤233.700

>233.700 0.003 27.19 (3.16-233.71) 0.076 10.82 (0.78-150.90)

Postoperative
serum CA125

≤13.800

>13.800 <0.001 5.38 (2.49-11.60) 0.002 4.97 (1.76-14.03)
F
rontiers in Oncology
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1EEC, endometrioid endometrial carcinoma; 2NEEC, non-endometrioid endometrial carcinoma; 3NLR, neutrophil-lymphocyte ratio.
Bold values in the table represent the clinical factors included in the study.
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heterogeneity. An increase in postoperative CA125 consistently

suggested a greater likelihood of recurrence, which aligns with its

established role as a surveillance biomarker in the ESGO-ESTRO-

ESP guidelines. In contrast, lower Rad-score values (represented by

the blue distribution) were linked to low-risk profiles, which may

indicate well-defined tumor boundaries and limited infiltration into

the surrounding microenvironment.
4 Discussion

In this study, we found that LR outperforms the other eight

machine learning classifiers in assessing recurrence in EC patients.

The intratumoral and peritumoral 2mm radiomics model,
Frontiers in Oncology 09
constructed from 11 radiomics features, demonstrated superior

diagnostic performance compared to the other two radiomics

models. We developed and validated a CM, an RM based on

multiple machine learning, and an FM constructed by combining

clinical factors and a Rad-score to explore and validate the efficacy

of the three models for predicting recurrence in EC patients. This

model has the potential to significantly aid in clinical decision-

making and personalized treatment for patients with EC.

In this study, the clinical characteristics were screened using

univariate and multivariate analyses to identify three independent

risk factors: pathological grade, FIB, and postoperative serum

CA125. These findings are consistent with previous studies (13).

Patients with a high pathological grade tend to be accompanied by a

worse prognosis and are one of the most important indicators for
FIGURE 3

(A) ROC curves of nine machine learning classifiers in training and validation sets, (B) Calibration curves of nine machine learning classifiers in
validation sets, and (C) DCA of nine machine learning classifiers in validation sets. Treat None: no action for all patients. Treat All: all patients
were treated.
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determining the extent at the time of surgery (12), Lee et al. (14)

showed that pathological grade, transvaginal ultrasound, and serum

CA125 levels accurately predicted lymph node metastasis in

patients with EC. There is a complex interplay between FIB and

cancer growth and metastasis (15), with tumor cell invasion and

development destroying procoagulant substances in human blood,

and the body’s coagulation system is activated, resulting in elevated

FIB levels. An increasing number of researchers have included

laboratory markers in their analyses to explore their role in the

prognosis of EC. Li (16) and others found that a nomogram based
Frontiers in Oncology 10
on preoperative FIB and other factors accurately predicted

progression-free survival and overall survival in EC patients; one

study (17) combined serum CA125 and FIB to construct a model

for predicting the occurrence of vascular infiltration in EC patients

and pointed out that FIB ≥2.78 was the best cutoff value for

predicting vascular infiltration. Although serum CA125 is not a

specific tumor marker and elevated levels may be associated with

non-neoplastic diseases, many studies have demonstrated that

changes in its level play an important role in prognostic

assessment (18–20). Postoperative serum CA125 is defined as the
FIGURE 4

ROC curves for the three models in the training, test, and validation sets. (A) RM1, (B) RM2, (C) RM3.
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level of serum CA125 in patients within 6–12 months after surgery,

and few studies have included postoperative serum CA125 in the

prognostic assessment of tumors. Wu et al. (21) found that this

index was an independent risk factor for predicting recurrence in

EC patients, with an optimal threshold of 13.75 U/mL. This is

highly consistent with the present study, further underscoring the

role of postoperative serum CA125 in forecasting recurrence and

progression-free survival in EC patients. These studies have

demonstrated the value of pathologic grading, FIB, and

postoperative serum CA125 in related research areas, and in the

present study, these metrics were included as clinically independent

risk factors in the construction of predictive models to predict

recurrence in EC patients.

In this study, we constructed an RM2 using logistic regression

that incorporated a total of 15 features, with 10 features derived from

DWI and 5 from T2WI. The majority of the selected features came

from DWI, underscoring its critical role in assessing the likelihood of

EC recurrence. DWI is capable of discerning microstructural

alterations in tumor tissues, with the GLCM_Autocorrelation

derived from the image being a salient feature in predicting the risk
FIGURE 5

The nomogram for predicting the risk of recurrence in EC patients.
FIGURE 6

(A) ROC curves of the FM in the training and test sets, and (B) Calibration curves of the FM in the training and test sets. Apparent: empirical
calibration curves. Bias-corrected: bias-corrected calibration curves. Ideal: perfect calibration curve.
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of EC recurrence. Autocorrelation is the self-correlation between

pixel pairs of the same gray-level intensity within a Gray-Level Co-

occurrence Matrix (GLCM). High autocorrelation values typically

indicate a uniform distribution of gray-level intensities in the image,

while low values suggest non-uniformity and heterogeneity in

intensity distribution. In our study, we found that autocorrelation

was significantly higher in recurrent patients compared to non-

recurrent pat ient s . These findings sugges t that the

GLCM_Autocorrelation feature is crucial for enhancing the

accuracy of tumor detection and classification. This aligns with the

conclusions of Dheepak et al. (22), who also emphasized the

significance of this feature in cancer analysis. In tumor biology, E-

cadherin is a critical cell adhesion molecule whose expression level is

closely correlated with the adhesive capacity between tumor cells.

High E-cadherin expression is typically associated with strong
Frontiers in Oncology 12
intercellular adhesion and lower invasive potential, while low

expression is linked to the epithelial-mesenchymal transition

(EMT), a key mechanism underlying tumor recurrence and

metastasis (23–25). In EC, low GLCM_Autocorrelation values

may indicate disrupted intercellular adhesion and initiation

of EMT, conferring elevated recurrence risk. This association

can be validated through histopathological studies and

immunohistochemical analyses, such as assessing E-cadherin

expression and EMT-related markers (e.g., vimentin). The

GLSZM_SmallAreaEmphasis extracted from the T2WI image has

been identified as a critical feature for predicting the risk of EC

recurrence. This measure quantifies the distribution of small-sized

areas within the image, with larger values indicating a finer texture

characterized by numerous small regions. The diagnostic and

differential diagnostic value of this feature has been extensively

investigated. Li et al. (26) applied this feature to differentiate

ovarian granulosa cell tumors (OGCTs) from ovarian fibroma-

fibrosarcoma (OTCA-FTCA). Their findings indicated that OTCA-

FTCA exhibited significantly lower values of this feature compared to

OGCTs, suggesting the presence of smaller areas and finer textures in

the solid lesions of OTCA-FTCA. Our study shows that this feature

plays an important role in predicting recurrence in EC patients,

highlighting its potential as a significant predictor in various

cancer types.
FIGURE 7

(A) Three models of DCA. Model 1: CM. Model 2: RM2. Model 3: FM. None: no action for all patients. All: all patients were treated. (B) CIC for CM,
RM2 and FM.
TABLE 3 Delong test p-value table.

Model CM RM2 FM

CM — 0.72 0.036

RM2 0.72 — 0.014

FM 0.036 0.014 —
Bold values in the table represent the clinical factors included in the study.
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The efficacy of machine learning algorithms largely depends on

their application in optimal scenarios, and the performance of

models constructed using these algorithms can differ significantly.

To date, no comprehensive study has examined the most suitable

machine learning algorithm for predicting the recurrence of EC or

the disease-free survival of EC patients. While some research has

explored the use of specific algorithms, a broader analysis

comparing various algorithms is still necessary to identify the best

approach for EC prediction (11, 27, 28). While most existing studies

rely on a single classifier for model construction, this research

incorporates intratumoral radiomics features into eight different

machine learning classifiers to predict recurrence in EC patients.

The findings indicate that LR is the most effective machine learning

classifier, suitable for binary classification problems, and exhibits

enhanced stability and robustness. Furthermore, it is easily

extensible and modifiable. This study serves as a valuable

reference for future research efforts.

Most existingMRI-based studies on EC radiomics have primarily

focused on analyzing the intratumoral region (29–31). However, as

research on malignant tumors advances, tumor invasion often

infiltrates surrounding normal tissues, providing useful information

in the peritumoral region that reflects tumor progression and

prognostic information (32). Studies have shown that peritumoral

radiomics can effectively predict EC lymph node metastasis and deep

myometrial invasion (33, 34). The selection of 2mm and 4mm

peritumoral regions was based on the unique pathophysiology of
Frontiers in Oncology 13
EC. The depth of myometrial invasion is a known prognostic factor,

with microenvironmental changes, such as angiogenesis and immune

infiltration, typically extending 3-5mm beyond the tumor boundary

according to histopathology studies (35, 36). To capture both

immediate peritumoral stroma (≤2mm) and intermediate-range

microenvironment (≤4mm), we empirically tested these biologically

plausible distances. Previous radiomics studies in solid tumors

suggest that peritumoral regions within 5mm often contain

prognostically relevant heterogeneity (11, 37, 38). For instance, Lin

et al. (39) constructed various radiomics models that combined

intratumoral and peritumoral data from 3mm, 5mm, and 10mm

peritumoral regions derived from contrast-enhanced MR images to

preoperatively predict treatment responses to transarterial

chemoembolization in patients with hepatocellular carcinoma.

Specifically, in the context of EC, Lin et al. (11) utilized 3mm and

5mm peritumoral expansions for predicting recurrence, but they did

not compare multiple ranges. To address this gap, we systematically

evaluated 2mm and 4mm as candidate thresholds.

In our study, we developed three radiomics models. Notably,

the model that incorporated the intratumoral region along with a 2

mm peritumoral margin demonstrated the highest predictive

efficacy. According to the literature (40, 41), the 2 mm

peritumoral region may more accurately reflect the tumor

invasion front and the biological changes occurring in the tumor

microenvironment. In contrast, the 4 mm peritumoral areas likely

contain more non-specific stromal components, which can dilute
FIGURE 8

Overall visualization of the model through SHAP. (A) The SHAP beeswarm plot shows the positive or negative effects of each feature on the
prediction probability through red and blue colors. (B) The SHAP bar chart shows the weight of the four most important characteristics in the model.
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the biological signatures associated with recurrence. As a result, the

RM2 model is better than the RM3 model at capturing the

microenvironmental features that are prognostic of tumor

recurrence. Additionally, spatial heterogeneity plays a critical role

in the tumor microenvironment. The 2 mm peritumoral region may

effectively capture the interactions between the tumor and stroma

that drive invasion and recurrence. For example (42, 43), this zone

is likely to have higher densities of cancer-associated fibroblasts

(CAFs) and immune cell infiltration, both of which are essential in

mediating tumor aggressiveness and the likelihood of recurrence.

This finding contrasts with a similar study conducted by Lin et al.

(11), where an intratumoral-based radiomics model exhibited

optimal predictive performance. In their study, the peritumoral

region did not provide additional information for EC recurrence.

This discrepancy may be attributed to the fact that radiomics

features derived from different MRI sequences contain different

predictive information regarding the recurrence of EC. While it is

true that excessive expansion of the peritumoral ROI can include

too much normal tissue and obscure the potential recurrence

information from the tumor region, expanding the peritumoral

ROI to 2 mm, compared to 1mm, allows for the inclusion of both

more normal tissue and more tumor-related information. This

provides a valuable reference for future studies aiming to expand

the boundaries of the peritumoral region. There is currently no

consensus on the optimal size for this region. Ding et al. (44)

systematically investigated how the size of the peritumoral region

affects prediction performance in radiomics. Their findings indicate

that the selection of peritumoral size depends on the ROI and

significantly influences the final prediction performance of the

radiomics model. These results suggest that peritumoral features

should be optimized in future radiomics studies. Another study (45)

explored the predictive performance of different radiomics models

for predicting vascular invasion, myometrial invasion, and

pathological staging in EC. The results showed that intratumoral

and peritumoral features can provide complementary information

for the comprehensive prognosis of EC, which is consistent with the

results of the current study.

The present study is not without its limitations. Firstly, it is a

single-center study with a limited sample size, which may introduce

bias to the results. To address this limitation, future research should

include multi-center and larger-scale studies. Secondly, long-term

single-site data may still carry unmeasurable temporal variations. In

future work, while integrating data from different periods, we will

attempt to minimize the impact of temporal bias. Thirdly, the study

utilized DWI sequences and T2WI sequences from MRI, which are

limited in terms of image sequences. Incorporating additional

sequences in future studies is expected to enhance the predictive

capacity of the radiomics model. Fourthly, despite the delineation of

the 3D ROI in this study, some discontinuities were observed at the

image level in a limited number of patients during the transfer of

images to the Darwin Research Platform for ROI segmentation, which

may have an impact on the model’s prediction performance. Fifthly,

the peritumoral ROI was obtained by automatically expanding the
Frontiers in Oncology 14
focal area by 2 mm and 4 mm, respectively. However, the optimal

peritumoral range remains to be elucidated, and the range refinement

score can be explored in the future. Lastly, this study focused solely on

patient recurrence, without considering the recurrence site. A more

detailed stratification of recurrence locations could lead to more

targeted predictions and treatment recommendations.

In conclusion, the nomogram model, constructed based on

intratumoral and peritumoral 2mm radiomics combined with

clinical factors, can effectively predict the risk of recurrence in EC

patients. This model provides a scientific basis for clinical decision-

making and personalized patient treatment.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

The studies involving humans were approved by The First

Affiliated Hospital of Bengbu Medical University (Reference

number: 2023-14). The studies were conducted in accordance with

the local legislation and institutional requirements. This study

adhered to the Declaration of Helsinki and used a retrospective

study method, with all patients waiving informed consent.
Author contributions

JL: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Validation,

Visualization, Writing – original draft, Writing – review &

editing. DM: Formal analysis, Project administration, Resources,

Software, Supervision, Writing – review & editing. XC:

Conceptualization, Formal analysis, Investigation, Methodology,

Project administration, Writing – review & editing. JW: Data

curation, Formal analysis, Investigation, Project administration,

Writing – review & editing. JX: Conceptualization, Formal

analysis, Investigation, Methodology, Software, Writing – review

& editing. YZ: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Writing –

review & editing. ZG: Data curation, Formal analysis, Funding

acquisition, Investigation, Project administration, Resources,

Software, Supervision, Validation, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1569729
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1569729
Acknowledgments

The author acknowledges the contributions of all those who

have helped in the completion of this work.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Frontiers in Oncology 15
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1569729/

full#supplementary-material
References
1. Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N.
Endometrial cancer. Lancet (London England). (2022) 399:1412–28. doi: 10.1016/
S0140-6736(22)00323-3

2. Makker V, MacKay H, Ray-Coquard I, Levine DA, Westin SN, Aoki D, et al.
Endometrial cancer. Nat Rev Dis Primers. (2021) 7(1):88. doi: 10.1038/s41572-021-
00324-8

3. Sohaib SA, Houghton SL, Meroni R, Rockall AG, Blake P, Reznek RH. Recurrent
endometrial cancer: patterns of recurrent disease and assessment of prognosis. Clin
Radiol. (2007) 62:28–36. doi: 10.1016/j.crad.2006.06.015

4. Restaino S, Dinoi G, La Fera E, Gui B, Cappuccio S, Campitelli M, et al. Recurrent
endometrial cancer: which is the best treatment? Systematic review of the literature.
Cancers (Basel). (2022) 14(17):4176. doi: 10.3390/cancers14174176

5. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into
radiomics. Radiol Med. (2021) 126:1296–311. doi: 10.1007/s11547-021-01389-x

6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

7. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al.
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