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Prostate cancer is one of the most prevalent malignancies globally. This

cancerous condition originates within the prostate gland, an integral part of

the male reproductive system. The molecular mechanism underlying cancer is

among the key areas of research in the scientific community. Cancer, being a

multifactorial disease, is controlled by many factors ranging from environmental

to genetic to epigenetic factors. Epigenetic regulation holds a crucial role in

tumorigenesis and its progression. Epigenetics refers to alterations in the

genome that happen without any changes to the DNA sequence itself; they

may be triggered by multiple factors ranging from environmental to dietary

factors. It includes methylation of DNA and histone modifications. Histone

modifications, including histone methylation, histone acetylation, and histone

ubiquitination, play a crucial role in the pathogenesis and progression of prostate

cancer. These epigenetic modifications via transcriptional regulation affect key

cellular processes and are thus implicated in prostate cancer and other cancers.

These epigenetic markers could be used as both diagnostic and prognostic

markers and also could be used as novel therapeutic targets against prostate

cancer and other malignancies. Here in this review article, we have summarized

different histone modifications and their mechanistic and therapeutic

implications in prostate cancer.
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GRAPHICAL ABSTRACT
1 Introduction

Prostate tumor stands as the second most prevalent diagnosed

malignancy and the fifth most common cause of mortality due to

cancer globally, with an approximation of new cases reaching 1.4

million and a death toll reaching 3.75 lakhs in 2020 alone (1). The

incidence of prostate cancer is rising among older men. Prostate
Frontiers in Oncology 02
cancer is associated with many risk factors including age, race,

ethnicity, family history, and other factors such as occupational,

environmental, and dietary factors (2, 3). In the early stages,

prostate cancer may be undetected due to its asymptomatic

nature. Delayed diagnosis is a major reason for the high mortality

of prostate cancer. Presently, prostate cancer diagnosis mostly relies

on prostate-specific antigen (PSA) screening and biopsy techniques,
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which are not very efficient and may lead to under- or over-

diagnosis of the disease. Also, current treatment strategies such as

chemotherapy and hormone therapy are associated with risk and

side effects. Therefore, researchers are looking for a more precise

novel diagnostic and prognostic biomarker and novel therapeutic

target for prostate cancer. Epigenetic markers are among such novel

markers that are extensively explored nowadays and are reported to

be implicated in multiple cancers. Epigenetics plays a key role in

tumorigenesis and the progression of tumors, and epigenetic

markers are emerging as a novel hallmark of cancer (4).

Epigenetic modifications such as methylation of DNA as well as

modifications in histone bring out transcriptional activation or

suppression and thus modulate key cellular processes.

Methylation of DNA is directly involved in gene expression

regulation and could be used as both diagnostic and prognostic

biomarkers of prostate cancer (5). However, histone modifications

are also an important epigenetic marker, which are found to be

associated with many cancers including prostate cancer (6). Among

major histone modifications are histone methylation and

acetylation. Histone acetylation entails attaching an acetyl group

to lysine residues located on histone tails (7). This process is

facilitated by two key enzyme groups: histone acetyltransferases

(HATs) and histone deacetylases (HDACs). A distinct acetylation

pattern brings transcriptional changes, thus affecting key

pathophysiological pathways of prostate cancer. However, histone

methylation refers to methyl group addition at the basic amino acid

residue of the histone chain, and it is mediated by two enzymes:

histone methyltransferases (HMTs) and histone demethylases

(HDMs). Differential methylation patterns as well as differential

expression patterns of HMTs and HDMs are reported in prostate

cancer, and these could be used as novel biomarkers as well as

therapeutic targets (8). In addition to acetylation and methylation,

other histone modifications like phosphorylation and

ubiquitination have also been reported to be involved in prostate

cancer (9, 10). In this article, we have thoroughly reviewed different

histone modifications involved in prostate cancer, giving a holistic

view of current scientific knowledge of the molecular mechanism of

epigenetic regulation by histone modification.
2 Prostate cancer

Prostate cancer is a type of malignancy that arises in the

glandular tissues of the prostate, a small, walnut-shaped organ

that contributes significantly to male reproductive functions by

producing enzymes, lipids, amines, and metal ions critical for the

normal functioning of spermatozoa (11). Prostatic enlargement can

be due to benign prostatic hyperplasia (BPH) or prostate cancer,

two distinct conditions with different pathological and clinical

implications. BPH is a non-cancerous enlargement of the

prostate, whereas prostate cancer involves uncontrolled malignant

cell growth. BPH typically affects the transitional zone, while

prostate cancer often arises in the peripheral zone of the prostate.

The progression of prostate cancer involves several stages,

beginning with prostatic intraepithelial neoplasia, advancing to
Frontiers in Oncology 03
localized prostate adenocarcinoma, which may invade nearby

tissues, and then ultimately leading to metastatic prostate cancer

(12). The predominant type of prostate cancer is adenocarcinoma,

although there are other variations also. At the early stage, it

remains asymptotic, but as it progresses, symptoms like difficulty

in starting urination, interrupted or weak urine flow, frequent

urination, mainly during the night, inability to complete

emptying of the urinary bladder, burning sensation and cramps

during urination, blood in semen or urine, and painful ejaculation

may occur. Risk elements associated with it may include age, race

and ethnicity, genetics and family history, physical activity and

sleep, and other dietary and environmental factors (2) (Figure 1).
3 Molecular pathophysiology of
prostate cancer

The multifaceted nature of prostate cancer arises from the

complex interplay of various molecular pathways that govern its

initiation and progression. Its complex pathophysiology involves

various signaling pathways, genetic alterations, and epigenetic

changes such as histone modifications and DNA methylation.
3.1 Androgen receptor signaling pathway

The androgen receptor (AR), a transcription factor activated by

androgens, belongs to the nuclear receptor family. AR plays a

significant role in the progression and development of prostate

cancer (13). AR is expressed in almost all primary as well as

metastatic prostate cancers, irrespective of their grade and stage.

This expression is maintained in most androgen-independent and

castration-resistant prostate cancer (CRPC). AR signaling continues

to be active, promoting the survival and growth of prostate cancer

cells (14). The interaction between androgen receptor signaling

and the tumor microenvironment is intricate, exhibiting both

tumor-promoting and tumor-suppressing effects (15). The role of

AR signaling and androgens in metastatic prostate cancer is well

understood, demonstrating that prostate cancer cells are highly

adaptive at sustaining functional AR signaling to promote cancer

growth (16). In prostate cancer, AR signaling in stromal cells,

initially high during prostate development, progressively decreases

as cancer advances, correlating with worse clinical outcomes and a

shift from androgen-dependent paracrine to autocrine pathways in

cancer cells. This reduction in stromal AR expression is linked to

disease progression, metastasis, and CRPC progression (14). This

direct link of AR signaling to prostate cancer makes it a suitable

therapeutic target, and androgen deprivation therapy remains the

primary treatment option for advanced prostate cancer. These

therapies alleviate symptoms, decrease tumor size, and extend

patient survival. However, they seldom achieve a cure for the

cancer. Prostate cancer frequently returns, leading to lethal CRPC

(Figure 2). Mechanisms enabling this resistance include

upregulation of the androgen receptor gene or enhancer,

androgen receptor mutation, variants of the androgen receptor,
frontiersin.org

https://doi.org/10.3389/fonc.2025.1570193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sharma et al. 10.3389/fonc.2025.1570193
overexpression of coactivators, and intra-tumoral synthesis of

androgens (17). While different mutations in the androgen

receptor have been documented in prostate cancer, particular

mutations (such as L702H, W742L/C, H875Y, F877L, and
Frontiers in Oncology 04
T878A/S) are commonly detected following the development of

treatment resistance (18). While CRPC progression is generally

associated with a gain in AR signaling, a different type of CRPC

relies on the loss of AR dependency leading to AR-indifferent
FIGURE 2

Molecular pathophysiology of prostate cancer. Genetic alterations such as TMPRSS2–ETS fusion, FOXA1 mutation, PTEN deletion/mutation, and
defect in DNA repair genes play key roles in prostate cancer pathophysiology. Furthermore, AR signaling plays a central role in prostate cancer
pathophysiology, making it suitable therapeutic target for PC. Furthermore, targeting AR with androgen deprivation therapy is among primary
therapeutic approaches for PC; however, despite initial favorable outcomes such as reduced tumor size, PC often reoccurs as more lethal CRPC. AR,
androgen receptor; PC, prostate cancer; CRPC, castration-resistant prostate cancer.
FIGURE 1

Risk factors of prostate cancer. Major risk factors involved with prostate cancer include age, race and ethnicity, genetics and family history, lifestyle
and dietary factors, and epigenetic changes.
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conditions such as neuroendocrine prostate cancer (NEPC). NEPC

differentiation is primarily associated with a lack of expression of

RB1, TP53, and PTEN and upregulation of MYCN and AURKA

expression. This transition of PC to NEPC is associated with a key

cellular feature called lineage plasticity. It refers to the ability of

cancer cells to adapt and change their cellular identity in response to

therapeutic pressures such as AR signaling inhibitors (19).
3.2 Genetic alterations

Apart from AR mutations, other genetic alterations are also

observed in prostate cancer. The most common of these are

TMPRSS2–ETS gene fusion, FOXA1 mutation, loss of the PTEN

gene, and defects in DNA repair genes (Figure 2) (20, 21). In over

50% of prostate tumor cases, TMPRSS2–ETS gene fusion has been

documented (20). This fusion involves the androgen-sensitive

TMPRSS2 promoter joining with the ERG coding region. In the

presence of androgens, this fusion drives increased expression of

ERG, significantly influencing cell invasion and the process of

epithelial–mesenchymal transition (EMT) (22). FOXA1 is another

important transcription factor that is often mutated in multiple

types of malignancies including prostate cancer (23). Mutations in

FOXA1 are observed in nearly half of primary prostate cancer

tumors in Asian men and 20% of tumors in men of other ethnicities

(21). FOXA1 is crucial for regulating the expression of numerous

genes, particularly AR, during prostate cancer development and

progression (24). Moreover, FOXA1 has been identified as an

important regulator of alternative splicing in prostate cancer (25).

Deletion or mutation of the PTEN gene is found in approximately

20% of the primary prostate cancer samples during radical

prostatectomy and up to 50% of CRPC cases (26). PTEN loss

leads to the activation of the Akt pathway, enhancing cancer cell

survival (20). Furthermore, mutations in genes that code for DNA

damage response components, such as BRCA1 and BRCA2, are

prevalent in prostate cancer. These mutations diminish the capacity

to repair both single- and double-strand DNA damage, thereby

compromising the integrity of the genome (27).
3.3 Other contributing factors

In addition to AR signaling and genetic alterations, other factors

such as inflammation and epigenetics play important roles in the

pathophysiology of prostate cancer. Chronic inflammation creates a

pro-tumorigenic environment by producing inflammatory

cytokines and reactive oxygen species that lead to DNA damage

(28). Epigenetic changes, including methylation at DNA and

histone modifications, also contribute to the progression of cancer

by altering gene expression. The role of epigenetic modifications, in

particular histone modifications in prostate cancer, will be discussed

in detail in the upcoming section.
Frontiers in Oncology 05
4 Epigenetic dynamics of prostate
cancer

Epigenetic modifications are alterations in the expression of

genes that occur independently of any changes to the DNA

sequence itself. These epigenetic modifications are heritable and

reversible. These modifications commonly include methylation of

DNA and the modifications of histone, and these are important for

the maintenance of gene expression (29). Epigenetic changes can

arise from external environmental factors or exposure to elements

such as diet, drugs, and food (30). Epigenetic modifiers are one of

the key players in cancer development and progression, making

them attractive candidates as prognostic markers and therapeutic

targets. These non-mutational epigenetic regulations of gene

expression are emerging hallmarks of cancer and are subject to

extensive study nowadays (4).

Epigenetic abnormalities, such as DNA methylation, histone

modifications, and remodeling of nucleosomes, happen at all stages

of the development and advancement of prostate cancer (31)

(Figure 3). These epigenetic markers can be used as biomarkers for

both the diagnosis and prognosis of prostate cancer (32). The

methylation of DNA is a fundamental epigenetic mechanism that

regulates gene expression and various cell processes. It refers to the

addition of methyl group to DNA molecules, specifically at cytosine

bases, typically occurring at CpG dinucleotides, and this modification

is catalyzed by enzyme group DNA methyltransferases (33).

Abnormal DNA methylation patterns, especially CpG island

hypermethylator phenotype, are associated with specific clinical

characteristics and outcomes in prostate cancer. These include

tumor aggressiveness, high Gleason scores, elevated PSA level,

advanced stages, poorer prognosis, and reduced survival rates.

Commonly hypermethylated genes in prostate cancer are involved

in functions such as apoptosis, DNA damage repair, cell cycle

regulation, cell adhesion, hormonal responses, and signal

transduction. Examples include GSTP1, RARb, RASSF1A, CDH13,

APC, DAPK, p16, FHIT, CDH1, andMGMT (5). Another epigenetic

phenomenon related to prostate cancer is DNA hypomethylation,

which involves the removal of methyl groups from CpG sites that are

typically methylated, leading to increased expression of genes. In

prostate cancer, hypomethylation influences genes encoding

urokinase-type PLAU (PLAU and its receptor are crucial for tumor

invasion and metastasis development by breaking down the

extracellular matrix), HPSE (a versatile protein involved in

extracellular matrix degradation and heparan sulfate chain

breakdown of proteoglycans), and CYP1B1 (essential for estrogen

metabolism and activation of procarcinogens) (34).

In addition to DNA methylation, histone modifications like

histone acetylation and histone methylation are pivotal in

regulating gene expression and influencing cancer development

and progression. These histone modifications are briefly discussed

in the proceeding sections.
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5 Histone modifications in prostate
cancer

Among epigenetic changes, histone modifications (histone

acetylation, histone methylation, etc.) play a crucial role in gene

expression regulation, and their dysregulation has been implicated in

cancer development and progression (35). Post-translational

modifications, including methylation, phosphorylation, acetylation,

sumoylation, deamination, ubiquitylation, proline isomerization,

ADP-ribosylation, and b-N-acetylglucosamine, can affect the

projecting tail of histones. Histone modification influences DNA

replication, repair, and recombination processes as well as chromatin

structure regulation and remodeling (36). Histone modifications and

differential expression of histone modifiers are reported in different

cancers including prostate cancer (Figure 4). The process of addition

of an acetyl group to lysine amino acid residue in the projecting tail of

histone is known as histone acetylation. Usually linked to

transcriptional activity, it is regulated by two distinct sets of

enzymes: HDACs, which eliminate acetyl groups, and HATs, which

add them (36). Histone methylation is another post-translational

modification process that refers to the methyl group addition to the

histone proteins. Histone methylation occurs on all basic residues:

arginine, lysine, and histidine. Among these, lysine may undergo

mono-methylation, di-methylation, or tri-methylation, whereas

arginine may undergo mono-methylation, symmetrical di-
Frontiers in Oncology 06
methylation, or asymmetrical di-methylation, and histidine could

be mono-methylated, although this is relatively rare (37). S-Adenosyl

methionine, the methyl-donating substrate of histone

methyltransferases, mediates histone methylation (38). Apart from

acetylation and methylation, histone ubiquitination (removal or

addition of ubiquitin at the C-terminal end of histone H2A and

H2B) and ubiquitin-activating enzymes are also associated with

prostate cancer (34). Other histone modifications implicated in

cancer include phosphorylation and ADP-ribosylation (35).
5.1 Histone acetylation in prostate cancer

As discussed earlier, histone acetylation refers to the acetyl

group addition to lysine amino acid residues at histone tails, and it

is regulated by two opposing enzyme groups: HATs and HDACs.

HATs (often referred to as writers), using acetyl CoA as a cofactor,

add acetyl moiety at the e-amino group of lysine residue; this

modification weakens the interaction between histone and DNA,

leading to transcriptional activation. However, HDACs, also known

as erasers, are enzymes that remove the acetyl moiety from the

lysine amino acid residues; this interaction leads to the

condensation of chromatin and finally transcriptional repression

(36). Bromodomains, also known as “readers”, are tiny protein

modules that read the acetylation on lysine amino acid

residues (39).
FIGURE 3

Epigenetic dynamics of prostate cancer. Epigenetic changes implicated in prostate cancer involve aberrant methylation at DNA and histone
modifications such as acetylation, methylation, phosphorylation, and ubiquitination. These epigenetic changes regulate gene expression and are thus
involved in tumorigenesis and tumor progression.
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The acetylation level of histone H3 at the N-terminal end at

different positions such as lysine 9, lysine 14, lysine 18, and lysine 23

is reduced in cancer cell lines such as PC-3, LNCaP, DU-145, and

clinical prostatic adenocarcinomas, in comparison to that in the

non-cancerous prostate cell lines such as RC170N/h and RC165N/

h. This reduced acetylation is associated with significantly elevated

HDAC activity in cancer cells. Inhibiting HDACs restores the

acetylation of histone and increases the expression of the p21

gene, highlighting that increased HDAC activity underlies the

deficient histone acetylation seen in prostate cancer (40).

Furthermore, a recent study by Nguyen et al. revealed a novel

mechanism including histone acetylation by which prostate cancer

cells adapt to androgen deficiency through dual phosphorylation of

sterol regulatory element-binding protein 1 (SREBF1) at Y673 and

Y951. Dual-phosphorylated SREBF1 senses low androgen levels and

dissociates from AR, enabling its nuclear translocation. In the

nucleus, SREBF1 recruits KAT2A/GCN5, leading to the

acetylation of H2A at lysine 130. This epigenetic marker

promotes the transcription of genes necessary for de novo

lipogenesis and steroidogenesis (41).

Furthermore, dysregulation of HAT and HDAC expression is

often observed in prostate cancer. Histone acetyltransferases such as

p300 and CBP are prominent coactivators of androgen receptors

and have a pro-tumor role in prostate cancer (34). A recent study

reported that histone acetyltransferase 1 (HAT1) is upregulated in

prostate cancer cells and correlated to disease progression to CRPC.

The same study further reported that HAT1 knockdown re-

sensitizes the drug response to CRPC cells (42). Similarly, histone

deacetylase is also found to be implicated in prostate cancer, and the
Frontiers in Oncology 07
use of histone deacetylase inhibitors has shown enhanced

therapeutic outcomes (43, 44).

Different histone acetyltransferases and histone deacetylases

implicated in prostate cancer are summarized in Table 1.
5.2 Histone methylation in prostate cancer

Histone methylation is another epigenetic marker associated

with prostate cancer, and distinct patterns of gene expression of

HMTs and HDMs have been reported in different studies. Histone

methylation refers to the addition of methyl group to basic amino

acid residue (arginine, lysine, and histidine) of the histone chain.

It is mediated by S-adenosyl methionine, which acts as a

methyl-donating substrate (59). Some of the most studied histone

methylation patterns include H3K4 methylation (i.e., methylation

at lysine 4 residue of histone H3), H3K9 methylation (i.e.,

methylation at lysine 9 of histone H3), H3K27 methylation

(histone H3 lysine 27 methylation), H3K36 methylation (histone

H3 lysine 36 methylation), and H4K20 methylation (histone H4

lysine 20 methylation) (60, 61). These methylation patterns can be

associated with either transcription activation (H3K4me3) or

repression (H3K9me2/3), thus modulating key cellular processes

(61). Methylation, in contrast to acetylation, does not change the

histone protein’s net charge. Instead, methylation recruits different

effector proteins, referred to as histone methylation readers, to cause

the transcriptional alteration (60).

A number of studies have reported differential methylation

patterns and dysregulated expression of HDMs and HMTs in
FIGURE 4

Histone modifications in prostate cancer. Methylation at histone occurs at H3K4, H3K9, H3K27, H3K36, and H4K20 positions. Acetylation occurs at
H3K9, H3K14, H3K18, H3K23, and H2AK130 positions. Ubiquitination occurs at H2BK120 position and phosphorylation at H3T11 position in
prostate cancer.
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TABLE 1 Different HATs and HDACs implicated in prostate cancer.
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prostate cancer. Pang et al. reported that androgen-stimulated

H3K4me2 methylation in prostate cancer is mediated by PI3 K/

p110beta-dependent signaling, which may be exploited as a new

biomarker for disease prognosis and targeted therapy (62). MLL2 is

an important H3K4 methyltransferase that is involved in the

activation of the PI3K/EMT process and also induces DNA

damage in prostate cancer (61). SMYD3 is another HMT that is

found to be implicated in prostate tumors. Its downregulation in

prostate cancer inhibits cancer development by suppressing the

transcription activation of cyclin D2 or AR (63). Among H3K4

demethylases, LSD1 directly suppresses androgen receptor

transcriptional activity through H3K4 demethylation (64).

Additionally, LSD1 can enhance CRPC by controlling mitotic

kinesin and the centromere-binding protein CENPE (65).

Another H3K4 HDM, KDM5D, is also implicated in androgen

receptor signaling and thus prostate cancer (66). Furthermore,

H3K9me3 is critical for the maintenance of heterochromatin and

the development of anti-androgen resistance in prostate cancer, and

the methylation of H3K9 by EHMT1 has been linked to poor

patient outcomes from hormone therapy. Also, H3K9me3 writers’

inhibition suppresses anti-androgen resistance (67). A 2017 study

highlighted that H3K27me3 is a crucial epigenetic modification in

the progression of prostate cancer (68). Furthermore, H3K27- and

H3K36-specific HMTs and HDMs are also implicated in prostate

cancer (69). Among H4 methylation sites, methylation at

H4K20me2 has shown a significant difference in tumor vs.

normal tissues. H4K20me1 pattern is found to significantly

differentiate CRPC tissues from other kinds of prostate tissues.

Additionally, a significant correlation between H4K20me1 with

lymph node metastases and H4K20me2 Gleason score was found

(70). Different HMTs and HDMs implicated in prostate cancer are

summarized in Table 2.
5.3 Other histone modifications in prostate
cancer

Other important histone modifications implicated in

cancer include phosphorylation and ubiquitination. Histone

phosphorylation happens at threonine and serine amino acid

residues. This process is modulated by kinase and phosphatase.

Phosphorylation, like acetylation, leads to the opening of the

chromatin structure by negative charge addition to the histone

and also leads to the recruitment of effector proteins (69). In

prostate cancer, PRK1 phosphorylates histone H3 at threonine

11 (H3T11) upon AR activation, facilitating AR-dependent

transcription by promoting histone demethylation and RNA

polymerase II recruitment. Elevated PRK1 levels and phosphorylated

H3T11 correlate with prostate cancer aggressiveness, suggesting PRK1

inhibition as a potential therapeutic strategy for blocking AR-induced

tumor proliferation (78).

Histone ubiquitination is another post-translational modification

where ubiquitin molecules are covalently attached to histone proteins

within chromatin (79). This modification primarily occurs on histone

H2A and histone H2B. Histone ubiquitination regulates various
T
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TABLE 2 Different HMTs and HDMs implicated in prostate cancer.

Class Name Expression
pattern

Methodology Clinical
association

Survival
impact
(p-value)

Patient
cohort data

References

HMTs SETD1A Upregulated in
prostate tumors
than that in
normal
prostate tissue

Gene expression
analysis, qRT-PCR,
chromatin
immunoprecipitation
(ChIP), and
functional assays in
C4-2B and
LNCaP cells

Promotes
proliferation,
migration, invasion,
and cancer stem cell
formation by
activating FOXM1

High SETD1A
expression correlates
with low survival
rates in prostate
cancer
patients (GSE40272)

LNCaP, PC-3,
DU145, and LNCaP-
LN3 cell lines

(71)

EZH Upregulated in PC
tissue as compared
to normal

RT-qPCR Higher expression in
high Gleason score
(GS) (p = 0.048)

Significant
association with DFS

160 patients with
clinically localized
prostate
adenocarcinoma

(72)

KMT2A Downregulated in
PC tissue as
compared
to normal

RT-qPCR Higher expression in
pT3b cases (p
= 0.041)

Not specified (72)

KMT2B Downregulated in
PC tissue as
compared
to normal

RT-qPCR No significant
association with
clinical stage or GS

Not specified (72)

KMT2C Downregulated in
PC tissue as
compared
to normal

RT-qPCR Increased expression
in high Gleason
score (p = 0.018)

Not specified (72)

KMT2D Downregulated in
PC tissue as
compared
to normal

RT-qPCR No significant
association with
clinical stage or GS

Not specified (72)

SMYD3 Upregulated in PC
tissue as compared
to normal

RT-qPCR Higher expression in
pT3b cases (p =
0.044), retained
prognostic
significance in
multivariate analysis

Significant
association with DFS

(72)

SUV39H2 Upregulated in PC
tissue as compared
to normal

RT-qPCR No significant
association with
clinical stage or GS

Not specified (72)

PRMT6 Upregulated in PC
tissue as compared
to normal

RT-qPCR Showed highest
diagnostic potential
(AUC = 0.923,
sensitivity 90.0%,
specificity 73.3%)

Not specified (72)

SMYD2 Significantly
upregulated in PC
tissues and
cell lines

qRT-PCR, Western
blotting, IHC,
functional assays
(proliferation,
migration, invasion,
and EMT), SMYD2
knockdown,
overexpression
studies,
mouse models

High SMYD2
expression linked to
poor CRPC-free
survival and overall
survival; promotes
drug resistance
in CRPC

High SMYD2
expression associated
with poor prognosis

– (73)

HDMs KDM1A Significantly high
expression in
tumor tissue as
compared to
benign
prostate tissue

– – – – (74)

(Continued)
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chromatin-related processes, including transcriptional regulation,

DNA repair, and chromatin compaction (80). Histone

ubiquitination, specifically at H2BK120 regulated by RNF20 and

RNF40, plays a crucial role in the transcriptional regulation of AR

target genes in prostate cancer. The dynamic nature of H2BK120-ub

and its interplay with other histone modifications are important for

gene expression regulation. Variations in RNF20 expression and its

interaction with AR play a complex role in prostate cancer progression,

offering potential targets for therapeutic intervention (10).
6 Therapeutic implications of histone
modifications in prostate cancer

As we have discussed in previous sections, epigenetic

modifications play an important role in prostate cancer

pathogenesis and progression. In this section, we will discuss the

therapeutic implications of targeting epigenetic modifications in

prostate cancer, exploring various strategies and their potential

benefits. Epigenetic modifiers such as HATs, HDACs, HMTs, and

HDMs play key roles in prostate cancer progression through various

mechanisms, and targeting these modulators has shown significant

therapeutic outcomes (81).

HAT inhibitors are being explored as potential therapeutic agents

in prostate cancer, particularly in the context of more lethal CRPC.
Frontiers in Oncology 12
Presently, several inhibitors targeting HATs have been explored and

shown therapeutic effects against different cancers such as breast

cancer, Renal Cell Carcinoma (RCC), bladder cancer, and prostate

cancer (82). CCS1477, a novel small-molecule inhibitor targeting the

bromodomain of histone acetyltransferases p300 and CBP,

demonstrates antitumor activity by inhibiting AR and C-MYC

signaling in CRPC. It shows potential in reducing AR signaling and

affecting metastatic CRPC target expression in clinical settings (83).

Furthermore, various HDAC inhibitors are also in clinical trials for

different cancers including prostate cancer. Several HDAC inhibitors,

such as vorinostat (SAHA), belinostat (PXD-101), panobinostat

(LBH589), chidamide (CS055, HBI-8000), and romidepsin

(FK228), have been approved by the U.S. Food and Drug

Administration (FDA) as medicines for the treatment of skin T-cell

lymphoma (TCL) and peripheral TCL (79). Hematological

malignancies have demonstrated encouraging responses to HDAC

inhibitors. However, HDAC inhibitors have not successfully passed

clinical trials for solid tumors, even though there have been

promising results in biological studies, preclinical research, and

early clinical trials. For instance, clinical trials involving vorinostat

(SAHA) have shown drug toxicity and no promising results in

clinical outcomes (84).

Furthermore, inhibitors of HMTs and HDMs are also explored for

their possible therapeutic benefits in different cancers including

prostate cancer. One of the most thoroughly researched histone
TABLE 2 Continued

Class Name Expression
pattern

Methodology Clinical
association

Survival
impact
(p-value)

Patient
cohort data

References

KDM5A Upregulated in PC
tissue as compared
to normal

RT-qPCR No significant
association with
clinical stage or GS

Not specified 160 patients with
clinically localized
prostate
adenocarcinoma

(72)

KDM6A Upregulated in PC
tissue as compared
to normal

RT-qPCR No significant
association with
clinical stage or GS

Not specified (72)

KDM7A Significantly
upregulated in
prostate
cancer tissue

– – – – (75)

KDM4C A much higher
expression in
prostate carcinoma
as compared to
paired adjacent
normal
prostate tissues

(76)

KDM5C Upregulated in
prostate cancer

IHC on TMA
Western
blotting validation

Higher nuclear
KDM5C correlates
with lower Gleason
scores (p = 0.004)
Cytoplasmic
expression not
significantly
associated with
clinical parameters

High nuclear
KDM5C correlates
with better
biochemical
recurrence-free
survival (p = 0.027)

Bonn cohort: 262
patients
Berlin cohort: 560
patients
PSA relapse: Bonn
19.1% (44/230),
Berlin 17.1%
(91/531)

(77)
HMTs, histone methyltransferases; HDMs, histone demethylases; PC, prostate cancer; EMT, epithelial–mesenchymal transition; CRPC, castration-resistant prostate cancer; PSA, prostate-
specific antigen; AUC, Area Under the Curve; TMA, Tissue Microarray.
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methylation inhibitors is the class of EZH2 inhibitors. Blocking EZH2

has shown promising outcomes, especially in lymphomas; however,

targeting EZH2 has not yet demonstrated significant clinical activity in

solid tumors (85). Among SMYD family HMTs, SMYD3 inhibition by

inhibitor molecule BCI-121 has shown decreased proliferation in colon

cancer cell lines (86). Among inhibitors of HDM, LSD1 inhibitors are

the most extensively studied, and many LSD2 inhibitors such as

tranylcypromine (TCP), ORY-1001 iadademstat, and bomedemstat

are already in phase 1/2 of clinical trials, but mostly in breast cancer

and leukemia (87). In prostate cancer, pargyline (an inhibitor of LSD1)

has also shown promising therapeutic potential. Pargyline decreased

the migration and invasion capabilities of LNCap cells and hindered

the EMT process by upregulating E-cadherin expression while

downregulating N-cadherin and vimentin expressions both in vitro

and in vivo. Additionally, pargyline delayed the transition of prostate

cancer from an androgen-dependent state to an androgen-independent

one (88).

In conclusion, targeting histone modifications offers promising

therapeutic potential for prostate cancer, particularly in overcoming

treatment-resistant forms like CRPC. Ongoing research and clinical

trials are crucial to optimize these strategies.

7 Conclusion and future prospects

Histone modifications are pivotal in the regulation of gene

expression in prostate cancer, influencing various aspects of the

disease’s progression and resistance to therapy. The dysregulation of

histone acetylation and methylation, along with other modifications,

has been implicated in critical processes such as DNA damage repair,

cell cycle regulation, and hormone response. These modifications

provide valuable biomarkers for the diagnosis and prognosis of

prostate cancer, highlighting the potential for personalized treatment

approaches. Although significant advancements have been made in

epigenetic biomarkers and their association with prostate cancer,

several challenges remain in their clinical transition. These include

evaluating the role of epigenetic alterations in normal biological

processes and disease progression and interpreting large-scale

epigenetic data to ensure robust validation of biomarkers.

Current research emphasizes the importance of developing

therapies that target specific histone modifications and the

enzymes that regulate them, such as HDACs, HATs, HMTs, and

HDMs. The therapeutic potential of these targets is particularly

promising in addressing treatment-resistant forms of prostate

cancer, such as CRPC. Future studies should focus on further
Frontiers in Oncology 13
elucidating the role of these modifications in cancer biology and

exploring novel inhibitors that can selectively modulate these

epigenetic changes. By advancing our understanding of histone

modifications in prostate cancer, we can pave the way for more

effective, targeted therapeutic strategies that improve patient

outcomes and address the complexities of this disease.
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