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Bilirubin, a metabolite of hemoglobin, was long thought to be a harmful waste

product, but recent studies have found it to have antioxidant and anti-tumor

effects. With the extensive research on the mechanism of malignant tumor

development, the antioxidant effect of bilirubin is increasingly becoming a

hotspot in anti-cancer research. At present, there are two main views on the

relationship between bilirubin and cancer, namely, its pro-cancer and anti-

cancer effects, and in recent years, studies on the relationship between

bilirubin and cancer have not been systematically summarized, which is not

conducive to the further investigation of the role of bilirubin on cancer. To

understand the multifaceted role of bilirubin in tumorigenesis as well as to

develop more effective and affordable antitumor therapies, this review provides

an overview of the effects of bilirubin on tumors in terms of oxidative,

inflammatory, and cellular signaling pathways, as well as the resulting

therapeutic ideas and approaches.
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1 Introduction

Cancer, an increasingly prevalent disease internationally, has become one of the

principal causes of morbidity and death globally, with serious economic costs to society.

As reported by the International Agency for Research on Cancer, the global cancer burden

has risen, resulting in 19.3 million new cancer incidences and nearly 10 million deaths from

cancer in 2020 alone (1). Although there are multiple treatment options for cancer, the

outcomes remain unsatisfactory. Bilirubin, an endogenous antioxidant, is a widely used

biomarker for diagnosing liver diseases. For a considerable time, bilirubin was regarded as a

harmful metabolic waste. However, recent studies have revealed that there is a link between

cancer and bilirubin levels. Mildly elevated bilirubin levels are generally related to a lower

incidence of cancer and a better prognosis, but excessively high levels are linked to a higher

incidence of cancer (2, 3). This article provides an overview of the diverse impacts of

bilirubin metabolism on tumor progression and its utilization in cancer therapy, aiming to

offer new ideas for improving tumor treatment.
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2 Bilirubin metabolism process

Bilirubin presents as a product of hemoglobin degradation and a

bile pigment. Under physiological conditions, about three-quarters

comes from senescent erythrocytes undergoing catabolism in the

reticuloendothelial system, which contains splenic macrophages and

hepatic Kupffer cells, and the remaining one-quarter of hemoglobin

comes from ineffective red blood cell production and enzymes

containing hemoglobin (4). In macrophages, heme is first

decomposed to generate biliverdin by heme oxygenase-1 (HO-1),

which then undergoes reduction to bilirubin by biliverdin reductase

(BVR) (5, 6) (Figure 1). Bilirubin is a lipophilic molecule that

accumulates in the cell, diffuses into the bloodstream, and then

binds to circulating albumin to be transported to the liver.

Unconjugated bilirubin (UCB, i.e., indirect bilirubin) is absorbed

actively or passively by hepatocytes, mediated by the hepatic organic

anion transporting polypeptides 1B1 (OATP1B1), and passes through

uridine glucuronosyltransferase family1 memberA1 (UGT1A1)

undergoes mono- or bi-glucuronidation (7) to form bilirubin

monoglucuronide or bilirubin bi-glucuronide (i.e., direct bilirubin),

which is excreted via the bile ducts by themultidrug resistance protein-

2 (MRP2). It is first deposited in the gallbladder after the entry of direct

bilirubin into the bile. Then it passes into the intestines along with

many other bile components to promote the intake of fats and other

fat-soluble chemicals. Bilirubin glucuronide is initially conjugated by

microbial b-glucuronidase, and then the unconjugated bilirubin is

oxidated and reduced by the intestinal flora (8). Several products can

be reabsorbed back into the circulating bilirubin pool; while others are
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cast out through the intestines and kidneys, respectively, resulting in

the characteristic colors of urine and feces.
3 Effects of bilirubin on the body

For a considerable time, bilirubin was regarded as a harmful

metabolic waste. However, Serum bilirubin concentrations’ mild

increases, such as those in patients with Gilbert’s syndrome (GS, a

benign form of unconjugated hyperbilirubinemia), as well as levels

in the upper quartile of the currently accepted physiologic serum

bilirubin range, have been reported to be negatively correlated with

a wide range of disorders within the human body.

It has been shown that bilirubin can down-regulate NAD(P)H

oxidase to prevent diabetic nephropathy by being catabolized into

biliverdin(BV), which has been demonstrated in rodents (9). Several

studies have shown that mildly raised UCB also reduces the

incidence of obesity, Alzheimer’s disease (10), metabolic

syndrome (11, 12), nonalcoholic fatty liver disease (13, 14), and

diabetes mellitus (15, 16). Thus, there is strong proof that bilirubin

is a clinically important biomarker for reducing the prevalence of

chronic diseases (16).

The positive effects of bilirubin on other chronic diseases have

inspired scholars to study its relationship with cancer. It has been

shown that mildly elevated bilirubin levels are generally related to a

lower incidence of cancer and a better prognosis, but excessively

high levels are linked to a higher incidence of cancer. Due to the lack

of statistical studies related to bilirubin covering multiple cancers,
FIGURE 1

Metabolism of bilirubin in the body: Heme is decomposed by HO-1 (reticuloendothelial system) to produce bilirubin, which is then converted into
indirect bilirubin by bilirubin reductase. Indirect bilirubin is absorbed by hepatocytes using UGT1A1, forming direct bilirubin, which is carried into the
gallbladder, excreted via the bile ducts, transported to the intestines, and finally broken down by bacteria. Part of the products are recycled to enter
the circulating pool of bilirubin (i.e., the enterohepatic circulation), and the rest is excreted through the kidneys and the intestines.
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the correlation between different cancers and bilirubin cannot be

quantified at present and can only be roughly analyzed through

existing independent studies. Several studies have shown that

cancers with a strong association with bilirubin include liver,

lung, and digestive tract cancers such as gastric (17), esophageal

(18), and colorectal cancers, and gynecological cancers such as

breast (19–21) and cervical (22) cancers. Since the liver, as an organ

directly involved in many physiological processes including

bilirubin metabolism processes, has a more complex relationship

with bilirubin, the details of which will be described later, the

sections other than hepatocellular carcinoma (HCC) are described

here. As noted in a 2019 observational study, serum bilirubin has a

strong negative correlation with all-cause mortality and is primarily

motivated by the impact of bilirubin on cancer (2). In 2020, Horsfall

et al. conducted a Mendelian randomization study that analyzed

data from over 377,000 individuals from the UK Biobank. They

found that people with the rs887829 and rs4149056 genes (genes

that cause elevated levels of bilirubin) had a 17% reduced risk of

suffering from lung cancer, a percentage that had an even larger

value in the smoker population. This is because the extra bilirubin

may help to counteract some of the effects of the reactive oxygen

molecules that fill the lungs (23). The association of high bilirubin

with low lung tumor risk has also been shown in other studies (22,

24–28). As another example, in several studies, a low prevalence of

colorectal cancer was associated with high serum bilirubin

concentrations or GS genotype presentation (29–31). Serum

bilirubin levels were also found to be significantly lower in CRC

patients than in controls in another study of colorectal cancer (32).

However, Zhang and coworkers found in a retrospective study that

high DBIL was strongly associated with a poorer postoperative

prognosis in patients with stage II and stage III colorectal cancer.

Subsequent studies confirmed these results (33, 34). This reflects the

two-sided nature of bilirubin in cancer.

Genetic factors can influence cancer by affecting bilirubin levels,

and in addition to rs887829 and rs4149056 described above, the

Gilbert syndrome genotype (UGT1A1*28 purebred) (2) has been

associated with elevated bilirubin levels. UGT1A1*28 allele carrier

status is associated with a 20% reduction in CRC risk (32). Although

bilirubin levels are highly heritable and genetic variation in

UGT1A1 explains a large portion of the variance, it has also been

shown that enzymes involved in the production of bilirubin from

hemoglobin, such as HO, may also have an effect (35). There is also

the T(-413)T genotype of rs2071746, which has been shown to have

significantly lower serum bilirubin levels in T(-413)T carriers in

both the CRC group and the control group (32).
4 The significance of bilirubin in
clinical practice and prognostic
models derived from it

The above article describes the association of bilirubin with some

cancers, which naturally leads to the question of whether bilirubin can
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be used as a way to optimize bilirubin-related cancer treatment and

patient stratification, but it has been shown that, while individual

serum markers are useful prognostic factors in the study of patients

with cancer, individual markers may not be sufficient for predicting

survival in the clinical setting. Combining multiple markers in a single

index can improve their predictive ability (36–38). In addition to this,

the performance of the single factor of bilirubin varies in studies

targeting different cancers, e.g., in a study including male smokers as

subjects, each 0.1 mg/dL decrease in bilirubin was associated with a

5% and 6% increase in the risk of lung cancer incidence and death,

respectively (26), whereas an increase in bilirubin levels of 5 mmol/L in

another study of smokers was associated with a lung cancer incidence

rate decreased by 10.2/10,000 person-years (23). Therefore, this paper

will only present the standard model related to bilirubin that has

gainedmore acceptance. Several of these representative models will be

described next.
4.1 total bilirubin

Total bilirubin (TB or TBIL) is one of the biomarkers reflecting

the development of cancer and can be abnormal in diagnostic tests

for cancers such as adenocarcinoma of the jugular and stomach.

Total bilirubin can be used as a valid prognostic predictor for

determining cancer prognosis, and valid prognostic evaluation tools

can be developed based on total bilirubin. For example, researchers

have developed a new prognostic score for adenocarcinoma of the

jugular abdominal region according to the preoperative ratio of

total bilirubin-albumin and fibrinogen-albumin by using a

controlled study approach (39). Other researchers used a

prospectively trained and retrospectively validated study

methodology in 778 gastric cancer patients and analyzed using X-

tile software, determined that the serum levels of TBIL and albumin

were independent OS forecasters in patients of gastric cancer (17),

and then low serum TBIL was linked to advanced gastric cancer and

worse prognosis. Another study demonstrates a strong connection

between high-level DBIL and poor postoperative prognostic results

in stage II and stage III colorectal cancer patients (40). A

multicenter study of the association between serum TB and

mortality of all causes in cancer patients with cachexia also

showed that patients with high TBIL levels had worse OS in the

presence of serum total bilirubin greater than the normal range of

between 1.7-17.1 mmol/L (≥21.7 mmol/L) (41). The prediction of

cancer prognosis by TBIL has shown different results in different

studies, which requires further research to explore its internal logic.
4.2 ALBI grade

The ALBI grade is a serviceable tool proposed by Philip J et al. in

2015 for assessing cancer status, as they ascertained objective

measures of hepatic function (albumin and bilirubin) that

independently affect the survival of HCC patients by utilizing

data from extensive global databanks, assembling those to form a
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model comparable with the traditional C-P classification (42),

which has a linear prediction equation of Linear prediction =

(log10 bilirubin × 0.66)(albumin × -0.085), bilirubin in mmol/L

and albumin in g/L. This model calculates patient-level linear

predictions (xb) as well as applies cutpoints to assign every

patient to any of the three prognosis divisions, now labeled ALBI

classification, grades 1 to 3. Points of cut are xb ≤ -2.60 (ALBI class

1), > -2.60 ~ ≤ -1.39 (ALBI class 2), xb > -1.39 (ALBI class 3). Earlier

studies have demonstrated that ALBI can help determine the

prognosis of cancers such as HCC. In a study published in 2024,

researchers found that ALBI and platelet-albumin-bilirubin

(PALBI) grade were related to the prognosis of small cell lung

cancer(SCLC) and could be utilized as simple, affordable, and a

useful marker for the determination of follow-up therapies and

prognosis of SCLC patients (43) by examining the association

between ALBI grade and the PALBI grade and prognosis in SCLC

patients, and as the grade scale increased, the mortality rate of the

patients improves. Several studies published between 2021 and 2024

for HCC have shown that the ALBI grade plays a role in aiding

outcome evaluation and liver reserve evaluation at several stages in

stereotactic body radiotherapy of the liver, and thus it is helpful in

determining the prognosis of HCC patients who undergo this

therapy (44–46), and that the rate of hepatotoxicity occurs at an

elevated rate as the grade increases. In addition, ALBI has been used

in the assessment of the prognosis of various cancers such as

squamous cell cancer of the esophagus (47) and SCLC (43). In

summary, ALBI can be used as one of the factors for evaluating the

prognosis of a wide range of cancers and can be a useful tool for

determining prognosis as well as helping to make decisions related

to cancer treatment.

Although the ALBI grade is very objective, its calculation

process is quite complex. So Kariyama et al. introduced the easy-

albumin-bilirubin grade (easy-albumin-bilirubin) in 2020, which is

much easier to calculate in estimating hepatic functional reserve

and is strongly linked with the original ALBI grade (48). A study

published in 2024 in HCC has confirmed that the simple albumin-

bilirubin grade is an objective and feasible prognostic model for

assessing the abnormalities of liver function in HCC patients and is

independent of the patient’s performance status.
4.3 PALBI grade

Platelets play a marker role during the course of portal

hypertension in cirrhosis and may reflect HCC. Thus Roayaie et al.

proposed the PALBI class at the liver meeting in 2015. The PALBI

classification includes bilirubin, albumin, and platelet count in serum

levels to signify liver reserve in HCC. When this score rises, it usually

signals a poor prognosis for the cancer. The score has been validated

in the prognostic assessment of cancers such as small-cell lung cancer

(43) and HCC (49–51), and it has even been pointed out that in the

model of platelet-albumin (PAL), the easy (EZ)-ALBI grade and the

ALBI grade, PALBI, and end-stage liver disease (MELD), which are

the several hepatic reserve models, PALBI was the best model (52). In
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summary, PALBI is an available prognostic assessment model in

HCC as well as other cancers.
5 The effects and their mechanism of
bilirubin on tumors

5.1 Tumor inhibitory effects of bilirubin

5.1.1 Bilirubin inhibits oxidative stress to suppress
tumor development

In normal physiological circumstances, the presence of

antioxidants counteracts the reactive oxygen species (ROS),

resulting in a balance (53), while oxidative stress is a situation when

the balance is disrupted. Cancer development and progression are

closely associated with the processes of intracellular oxidative stress.

The ROS overproduction results in oxidative impairment of lipids,

proteins, and DNA (53), where the accumulation of DNA damage

induced by ROS may lead to genetic destabilization in the case of

cancer, thus facilitating the development of cancer (54). In addition to

this, oxidative stress acts as a second messenger to promote cell

proliferation (55) and angiogenesis (56), creating favorable conditions

for tumor growth and development. Bilirubin is a potent free radical

scavenger with antioxidant properties and reduces ROS, especially in

lipid peroxidation (57, 58). In 1987, Stocker et al. proved in a study

that bilirubin possesses characteristics of a natural ROS scavenger

with superior antioxidant properties compared to those of vitamins C

and E (59). Another study showed that every 1 mol of bilirubin

scavenges 2 mol of oxygen free radicals, which in turn prevents

excessive ROS from causing damage to the body (60). In addition to

direct antioxidant responses, it has also been shown that bilirubin can

indirectly function to the alleviation of oxidative stress, examples

including activation of the nuclear factor erythroid 2-related factor 2

(Nrf2) pathway through covalently binding to Kelch-like ECH-

associated protein 1 (KEAP1) (54, 61) and thus acting as an

antioxidant in the cell. Thus bilirubin’s ability to scavenge ROS

gives it an inhibitory function on cancer development and cancer-

related inflammation. Bilirubin may also inhibit other diseases

through its inhibitory effect on oxidative stress and thus inhibit

tumors, for example, the occurrence of metabolic syndrome is

closely related to oxidative stress (62), and some studies have also

shown a negative relationship between the level of human serum total

bilirubin and the incidence of metabolic syndrome (63–65), which in

turn is positively correlated with the occurrence of many cancers, e.g.,

cancers of lung and colorectal (66–68), so bilirubin may inhibit the

development of related cancers in this way. Besides that, in cancers

that have already developed, bilirubin may also function to inhibit

tumor progression while preserving normal cells. In studies on a

variety of cancers, cancer cells have been shown to be under high

levels of oxidative stress (69–75). In a model proposed in the

literature, a decrease in the level of oxidative stress may contribute

to the apoptosis of malignant cells and may serve as one of the

mechanisms by which bilirubin screens malignant cells

(76) (Figure 2).
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5.1.2 Tumor suppression by bilirubin effects on
proto-oncogene/oncogene signaling pathways
5.1.2.1 B-cell lymphoma-2

The Bcl-2 protein family supervises the integrity of the cellular

genome to inhibit tumor growth (77). According to their function and

structure, the proteins can be classified into three categories (78). The

first is the Bcl-2 subfamily, which possesses a characteristic of

apoptosis resistance (79). Then there is the Bcl-2-associated X

protein(Bax) subfamily, which has pro-apoptotic activity and can

form holes within the mitochondrial membrane (80), resulting in

mitochondrial outer membrane permeabilization (MOMP) as well as a

short discharge of cytochrome c (81, 82). The third group, the BH3

domain-containing proteins subfamily, is considered to be a lethal

structural domain essential for apoptosis and critical for pro-apoptotic

activity. UCB causes mitochondrial ROS production, which

consequently causes activating p38 and p53 downstream, ultimately

leading to the increased regulation of the pro-apoptotic protein Bax

and the decreased regulation of the anti-apoptotic protein Bcl-2 and

phosphorylation of Bcl-xL/Bcl-2 associated death promoter (Bad) (83),

thus causing apoptosis. The same results can be found in another study

for breast cancer (84). It follows that bilirubin may induce apoptosis in

tumor cells by upregulating Bax and downregulating Bcl-2.

Bilirubin, an endogenous antioxidant, has a dramatic antitumor

impact on the carcinoma of colon and rectum cell lines. It

influences cell survival and tumor cell progress, possibly by

regulating the expression level of the p53 protein, and

consequently controls apoptosis and autophagy. Autophagy being

a complex and environmentally relevant event, has been described

to be associated with the occurrence of the carcinoma of colon and

rectum. Autophagy confines the proliferation of cancer cells in the

early stages and promotes cancer progression under stressful

situations in the later stages. In one study, researchers found that

bilirubin significantly inhibited autophagy in the human colon

adenocarcinoma cell lines of LS180 and SW480 cells by

suppressing Beclin-1 and Microtubule-Associated Protein 1 Light

Chain 3B (LC-3B) in the cells, and increased apoptosis by the
Frontiers in Oncology 05
upregulation of p53 in LS180 cells and downregulation of the Bcl-2

gene which inhibits apoptosis in SW480 cells (85). However, the

study of bilirubin’s influence on cancer development through

autophagy is still incomplete, and the above study did not address

the impact of autophagy in the progression of cancer, which still

needs to be demonstrated in subsequent studies.

5.1.2.2 NF-kB
Nuclear factor-kB (NF-kB) is a nuclear factor family consisting

of multiple transcription factors involved in regulating

inflammatory response, cell proliferation, tumor development,

and invasion. Studies have shown that bilirubin and its metabolite

biliverdin can inhibit this transcription factor.

A substantial quantity of experimental evidence demonstrates

that NF-kB participates in the epithelial-mesenchymal transition

(EMT) process vital for the local and distant progression of cancer

by up-expressing the marker N-cadherin of mesenchymal and

down-expressing the marker E-cadherin of epithelium (86). In

addition, matrix metalloproteinases (MMPs), as the target of NF-

kB action, play critical parts in physiological processes, e.g., organ

growth and tissue metastasis (87). Studies in cervical cancer cells

have found that NF-kB induces Epithelial-mesenchymal transition

and stem cell-like characteristics of the tumor and promotes the

tumor cells, self-renewal and migration (88). In cervical cancer cells,

the modifications after translations of NF-kB were also reported to

regulate tumor cell metastasis and invasion. The o-linked b-n-
acetylglucosamine (o-glcnacylation) modification, dramatically

elevated in cervical cancer cells, is the only intracellular glycan

modification engaged in signaling. O-glcnacylation enhances the

translocation of NF-kB by inhibiting the interaction of NF-kB with

IkB. This enhanced the C-X-C chemokine receptor 4 (CXCR4)

expression downstream, upregulated the expression of HPV E6/E7,

and Ki-67, and then promoted the metastasis of uterine cervical

cancer cells to the lung (89).

It is confirmed in mouse myocardial microvascular endothelial

cell line H5V that UCB may influence the regulatory pathway of
FIGURE 2

Bilirubin inhibits oxidative stress and thus tumor development: Bilirubin inhibits oxidative stress through two main pathways. First, it acts directly as
an antioxidant to scavenge oxygen radicals, thereby inhibiting the high level of oxidative stress of cancer cells and selectively causing cancer cell
apoptosis; second, it promotes the expression of several antioxidant genes by covalently binding to KEAP1 and activating the Nrf2 pathway. Through
these two pathways, bilirubin also inhibits oxidative stress-induced diseases that are highly associated with cancer, such as metabolic syndrome.
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NF-kB via interaction with IKK proteins by inhibiting tnfa-
stimulated NF-kB nuclear translocation (90). Another study also

showed that astrocyte cultures showed a dramatic increase in tumor

necrosis factor receptor1(TNFR1) levels, as well as subsequent

activation of MAPKs p38, Jun N-terminal kinase1/2, and NF-kB,
and signal-regulated kinase1/2, which is outside of the cell, when

stimulated with UCB (91). The results suggest that bilirubin exerts a

protective effect in intrinsic immune-related inflammation at

certain doses by a mechanism associated with the NF-kB
signaling pathway inhibition and the NOD-like receptor family

CARD domain-containing protein 4 (NLRC4) activation, Absent in

Melanoma 2 (AIM2), and NOD-like receptor family pyrin domain

containing 3 (NLRP3) inflammatory vesicles, of which the

inhibition contributes to the control of cancer (92–94).

Studies have shown that the metabolite of bilirubin, biliverdin,

suppresses NF-kB activation caused by TNF-a, and overexpression

of NF-kB stimulated by hbvr causes the cell cycle to halt in phase 1/

0. This supports BVR and its substrates to regulate NF-kB, thus
biliverdin can be used as a potential therapeutic tool to regulate NF-

kB and is expected to inhibit the proliferation of tumor cells

through this pathway (95). Biliverdin may affect NF-kB through

at least two pathways. Biliverdin may inhibit NF-kB function by

directly binding (96, 97). Biliverdin may also interfere with NF-kB
activation signaling through its tetrapyrrole molecular structural

properties (98). It has also been shown that bilirubin treatment

reduced p-p65, p-IkBa, and IkBa protein levels to normal levels,

suggesting that bilirubin specifically reduces NF-kB pathway

activation associated with inflammation. Therefore, besides its

potent anti-oxidative stress effects, bilirubin may also attenuate

inflammation in osteoarthritis (OA) by inhibiting the NF-kB
pathway (99), and some studies have suggested that osteoarthritis

may promote the development of cancer, so bilirubin may serve to

decrease the cancer development risk in this way (100).

5.1.2.3 Ras/Raf/MEK/ERK

The Ras-Raf-MEK-ERK pathway integrates signals coming

from the cell surface receptors into signaling pathways

downstream that promote cell growth processes and proliferation

in many categories of cells.

Bilirubin exerts an inhibitory effect on multiple sites of the RAS/

RAF/MEK/ERK signaling pathway. For example, in vitro bilirubin

damages the Raf/ERK/MAPK pathway activation and intracellular

levels of Raf and cyclin D1, leading to hypophosphorylation of

amino acids S608 and S780 by retinoblastoma proteins, which

prevents the release of Yin Yang 1(YY1) into the nucleus and

hinders the capability of YY1 to regulate gene expression and

support cell proliferation. Bilirubin was also found to promote

growth arrest in the cultures of human vascular smooth muscle

primary cells stimulated by serum. Researchers have proposed that

this is a result of the interaction of bilirubin with the Raf/ERK/

MAPK pathway, its impact on the content of cyclin D1 and Raf,

altering the hypophosphorylation profile of retinoblastoma protein,

calcium efflux, and YY1 protein hydrolysis (101).

As for vascular growth, which is highly correlated with tumor

development, bilirubin inhibits ERK activity in damaged blood
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vessels, and because ERK activation is associated with the

mitogenic stimulation-induced cyclin D1 expression (102, 103),

the reduction of ERK activity caused by bilirubin may be

responsible for the down-regulation of cyclinD1 by bilirubin after

arterial injury. Furthermore, the expression of the transcription

factor p53 and the cyclin-dependent kinase inhibitor p21 induced

by bilirubin inhibits the proliferation of established smooth muscle

cells (SMC) and neoplastic endothelial proliferation (104, 105). The

anti-proliferative effects of bilirubin may involve various

mechanisms. In vascular SMC cultured in vitro, bilirubin reduces

the activity of ERK (101), which is a key kinase for entry into the S

phase. In addition, the reduction of ERK activation by bilirubin

correlates with the ability of bilirubin to block airway SMC growth.

However, during the mediation of the anti-proliferative effects of

bilirubin on vascular SMC, the transcription factor p53 appears to

act importantly. In injured blood vessels, researchers found

bilirubin to be a powerful inducer of p53 expression.

Furthermore, bilirubin facilitates p53 expression in a variety of

cell types, and p53 deletion eliminates the anti-proliferative

influence of bilirubin in mouse SMC. What is interesting is that

p53 may also promote the ability of bilirubin to cause apoptosis in

SMC cultured under serum-free or serum-restricted conditions due

to its stimulation of the apoptosis signaling pathway (106). Besides,

as p21 overexpression in vascular SMC has been demonstrated to

restrain their migration, p21 may as well be involved in the anti-

migratory effects of bilirubin (107). Furthermore, bilirubin inhibits

nasopharyngeal cancer cell invasion by decreasing intracellular ROS

levels and inhibiting ERK1/2 activation and MMP-2 expression

(108). While many associations exist between bilirubin and blood

vessels and smooth muscle, studies addressing bilirubin’s effect on

tumor vasculature and smooth muscle tumors are scarce and

require further study.

5.1.2.4 PKA

Bilirubin inhibits PKA-catalyzed histone phosphorylation, as

well as cAMP binding to PKA regulatory subunits, through both

competitive (109) and noncompetitive (110) mechanisms. PKA

anchoring acts importantly in pseudopod formation and

chemotactic cell migration (111). Activation of the cAMP/PKA

pathway induces loss of stress fibers (112), activation of regular

arrangement of collecting venules (Rac) and Cell Division Cycle 42

(Cdc42) (113, 114), formation of filamentous pseudopods and

lamellar pseudopods (114, 115) microfilament assembly (116),

and inhibition of the Rho family of GTPases activity (117, 118),

events which happen at the tip of migrating cells. PKA also affects

integrin-dependent migration in a variety of cells (119) and PKA

and its phosphorylated substrates are enriched in cellular

protrusions (111, 120). Several types of cancers utilize the cAMP/

PKA signaling pathway to behave malignant features of cancer,

such as invasion, relocation, adhesion, and proliferation. PKA has

been proven to inhibit the expression of malignant features of

cancer by inhibiting the cAMP/PKA signaling pathway. Such

correlation has been demonstrated in ovarian cancer (121–123),

glioblastoma (124), colorectal cancer (125), breast cancer (126) and

pituitary tumors (127), esophageal squamous cell carcinoma (128),
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suggesting that bilirubin may inhibit tumor progression by

suppressing PKA (Figures 3, 4).

5.1.3 Bilirubin inhibits tumors development by
suppressing the immune escape of tumors

Bilirubin can not only have a promoting effect on the immune

system, but also an inhibitory effect, and this inhibitory effect can

have an inhibitory effect on tumors. Next, we will talk about the

direct and indirect inhibitory influences of bilirubin on the immune

system, respectively.

5.1.3.1 Direct suppression of the immune micro-
environment by bilirubin

Bilirubin acts as an inhibitor at many sites in the immune system,

including immune cell proliferation, antibody secretion, and

complement activation. Counterintuitively, while bilirubin can act as

a suppressor of the immune system (129), serving to increase the rate

of infection (130–132), this suppression can instead act as a cancer

suppressor. As one study showed (133), unconjugated bilirubin

disrupts the interaction between C1q and immunoglobulins, thereby

suppressing the first step of the classical pathway of complement

activation, which is activated by several factors that are cancer-

promoting (134–136), so this inhibition of the classical pathway
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may act as a cancer-inhibitor. Studies carried out on jaundiced

infants have shown (137, 138) that the lymphocytes extracted from

them are in a state of proliferation inhibition and their total IgA and

IgM levels are reduced. In terms of bilirubin’s effects on immune cells,

a 2017 study showed (139) that unconjugated bilirubin upregulates

CD39 and thus inhibits Th17 immunoreactivity, this promotes several

cancers, such as breast, colorectal, and ovarian cancers (140–142), and

thus, the inhibition of TH17 by unconjugated bilirubin can play a role

in inhibiting related cancer effects. Other than this, UCB activates both

extrinsic and intrinsic pathways of apoptosis as reflected by markers

such as CD95, caspase-8, Bax, MMP, cytoplasmic Ca2+, caspase-3, and

DNA fragmentation (143). This literature also points out that

glutathione is a key molecule in preventing UCB-induced cell death,

which may help to investigate the use of bilirubin in cancer control.
5.1.3.2 Indirect suppression of the inflammation
by bilirubin

Bilirubin can restrain the development of cancer by reducing

inflammation and inhibiting oxidative stress. Inflammation is a

pathological process featuring tissue damage or destruction

resulting from a variety of chemical and cytological reactions. It

usually has typical symptoms such as redness, swelling, fever, pain,
FIGURE 3

1. NF-kB: (1) Bilirubin promotes tumor development by altering immune cell phenotype. (2) Bilirubin, converted from bilirubin, also inhibits IkBa and
P65 associated with NF-kB activity thereby inhibiting NF-kB. (3) Bilirubin also inhibits Tnfa associated with NF-kB activation thereby inhibiting its
function. 2. Raf, Bilirubin inhibits Raf, and thus retinoblastoma protein, which in turn inhibits the release of YY1 into the nucleus and blocks its
proliferation-promoting process. 3. ERK, Bilirubin inhibits proliferation and cancer metastasis by inhibiting ERK, thereby inhibiting cyclin D1 and
MMP-2; Bilirubin can also inhibit proliferation by directly inhibiting cyclin D1. 4. Bcl2, Bilirubin promotes the production of ROS in mitochondria,
which activates P38, and its activation of P53 inhibits Bcl2, which in turn inhibits the anti-apoptotic process. 5. PKA, Bilirubin inhibits the binding of
PKA to cAMP thereby inhibiting its pro-value-added effects.
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and function loss. Asmentioned in the previous section, ROS are pro-

inflammatory, whereas bilirubin is known to scavenge ROS and

reduce oxidative stress. In a 2020 study (144), Lee et al. treated acute

colitis in a mouse model of inflammatory bowel disease using

hyaluronic acid-bilirubin nanoparticles, which reinstated the

epithelial barrier in the mice as well as modulating the intestinal

microbiota, showing promising anti-inflammatory properties by

increasing overall abundance and diversity. In another study done

on a rat model of acute pancreatitis (145), Yao et al. used a similar

approach also to find that bilirubin had an anti-inflammatory effect,

and this treatment was demonstrated to protect alveolar cells from

damage and alleviate acute pancreatitis. The anti-inflammatory effect

of bilirubin can be side-stepped by the fact that serum bilirubin is

negatively related to the markers of oxidative stress in serum (146,

147) and markers of inflammation such as C-reactive protein levels
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(148, 149). Many studies demonstrated that a variety of chronic

inflammatory conditions are strongly associated with cancer

development, such as IBD (150) and pancreatitis (151–153). This

indicates that bilirubin has an anti-inflammation effect with a possible

reduction in inflammation-associated cancers by this pathway.

5.1.3.3 Bilirubin acts as a ligand that binds to cellular
receptors and produces oncogenic effects

The effect of bilirubin on cancer has long been thought to be

primarily associated with its strong antioxidant properties. However,

in recent years, a growing amount of studies have shown that

bilirubin acts as a ligand role in cellular signaling processes and

through this role has an impact on cancer development.

Receptors that can bind bilirubin include aryl hydrocarbon

receptor (AhR), peroxisome proliferator-activated receptors a
FIGURE 4

Bilirubin promotes cancer inhibition pathway: Bilirubin promotes ROS production in mitochondria, which activates P38, and its activated P53
activates BaX, which promotes its pro-apoptotic process. Bilirubin can also directly activate P53 and P21 to play an anti-cancer role.
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(PPARa), constitutive androstane receptor (CAR), fatty acid-

binding proteins (FABPs), etc., which will be described below.

AhR is a widespread receptor found in many organs, body

tissues, and cell groups (154), exhibiting both anticancer and

oncogenic properties (155). Experiments carried out on cells

cultured in vitro have shown that both bilirubin and biliverdin

are endogenous agonists of the AhR (97). In vitro experiments in

human colon cancer cells, agonist stimulation of the AhR may

mediate cancer cell cycle arrest (156). In contrast, bilirubin and

biliverdin, as endogenous agonists of the AhR, may reduce the

proliferation of cancer cells due to the AhR stimulation.

PPARs are multi-structural domain proteins belonging to the

nuclear receptor superfamily, acting mainly as ligand-activated

transcription factors (157). PPARa can upregulate genes involved

in fatty acid transport, as well as the fatty acid b-oxidation process

related to the mitochondria and peroxisomal, to facilitate the intake,

utilization, and catabolism of fatty acid (13). Experimental studies

carried out in rodents have also shown that bilirubin reduces liver

fat accumulation by binding to PPARa (13, 158–160), and the

mechanism behind this may be an increase in both number and

function of mitochondria, leading to a reduction in lipid

accumulation (161–163). Several studies in different human

patient populations have also demonstrated that bilirubin levels in

serum, especially direct bilirubin, are negatively correlated with the

prevalence of nonalcoholic steatohepatitis (64, 164–167). Because

bilirubin protects the liver by reducing the incidence of

nonalcoholic steatohepatitis, which another study showed may

progress to cirrhosis and HCC (168, 169), bilirubin may inhibit

cancer by binding to PPARa.
CAR and FABPs are two cellular receptors that are capable of

binding to and exerting effects on bilirubin, and the mechanisms of

action of both are related to PPARa as mentioned above. Firstly, CAR

is introduced, belonging to the nuclear receptor superfamily (170), and

is enriched in the liver (171). It has been shown that intracellular
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bilirubin has ligand transcription factors for CAR (172, 173), which

may enhance its transcriptional levels. In contrast, CAR crosstalks

with peroxisome proliferator-activated receptor (PPAR) (174), and

this crosstalk may allow bilirubin to reduce the incidence of

nonalcoholic steatohepatitis through the interaction between CAR

and PPAR (175), which in turn reduces the incidence of HCC. Then

there are FABPs, FABPs are a class of low molecular weight

intracellular proteins that bind efficiently to bilirubin (176) and

deliver it to the PPAR in the nucleus (177), and this delivering

action contributes to bilirubin’s binding to and functioning on the

PPAR. In contrast, bilirubin, which is a strong regulator of PPARa
(13) and PPARg (178), can also trigger the expression of FABP1

through the regulation of PPAR. In studies of cancers such as HCC

(179, 180) and colorectal cancer (181, 182), it has also been found that

a high incidence of cancer is correlated with low expression of FABP1,

which might be associated with the bilirubin-FABP1 interactions

described previously (Figure 5).
5.2 Tumor-promoting effects of bilirubin

When at high values in the normal range, bilirubin may inhibit

cancer, but bilirubin may promote cancer under certain

circumstances. For instance, a study in 2024 showed that when

the concentration of bilirubin in serum reaches a certain value, the

antioxidant effect of bilirubin begins to reduce, and even induces

oxidative stress and thus promotes the development of cancer (183).

In other studies, bilirubin has shown some promoting effects in

cancers such as the cancers in the liver (18, 184) and lung (185).

This indicates that the relationship between bilirubin levels and

cancer risk is not simply linear and that both too low and too high

concentrations may increase cancer risk (22, 186, 187). For the use

of bilirubin in cancer therapy, research on the dual effects of

bilirubin on cancer is a must, fewer studies have been conducted
FIGURE 5

Bilirubin acts as a ligand that binds to cellular receptors and produces oncogenic effects: 1. Bilirubin activates PPARa via two pathways to inhibit fat
accumulation and thus related cancers. (1) Bilirubin is delivered to the nucleus by binding to FABP1 thereby binding to PPARa. (2) Bilirubin inhibits fat
accumulation by promoting CAR expression and thereby contributing to its crosstalk with PPARa. 2. Bilirubin binds to AhR and promotes cell cycle
arrest thereby inhibiting cancer.
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on its cancer-promoting mechanisms. The cancer-promoting effects

of bilirubin may work through the following mechanisms.

5.2.1 Bilirubin promotes tumor development by
altering immune cell phenotype

Bilirubin can have a promoting effect on some sites of the

immune system and thus on tumors. As shown in an earlier

publication, unconjugated bilirubin stimulates microglia primary

cultures to respond by acquiring a phagocytic phenotype, which is

transformed into an inflammatory response featuring secretion of the

pro-inflammatory cytokines interleukin (IL)-1b, IL-6, and tumor

necrosis factor (TNF)-a, increased regulation of cyclooxygenase

(COX)-2, and enhanced the activities of MMP- 9 and -2 (188). In

another study, an e-polylysine-bilirubin (PLL-BR) coupling was

designed and synthesized to act as a method for bilirubin solubility

and delivery. In vitro experiments, it enhanced M2-type macrophage

polarization, resulting in elevated cytoprotective effects against

antioxidant and inflammatory conditions; in vivo experiments in

diabetic mice, compared to untreated islets, PLL-BR-coated islets led

to the induction of an anti-inflammatory response featuring higher

M2 macrophage markers levels and localized vascularization (189).

In the above description, cancer development has been

associated with inflammation in several ways, and the narrative

here suggests that bilirubin can also promote inflammation in

several ways that may promote cancer. Whereas M2 macrophages

can exert cancer-promoting effects in several ways, such as directly

promoting cancer cell metastasis (190), promoting angiogenesis

(191), and inhibiting tumor-killer cell activity (192), this suggests

that bilirubin may promote cancer through this mechanism.

Although it has been shown that bilirubin is mainly inhibitory in

its effect on the proliferation of tumors, it can also exhibit

promotional properties in some aspects, and further studies on its

inhibitory properties will help to generate new therapies for tumors,

while studies on its promotional properties can give us a better

knowledge of the two-faced nature of bilirubin, which can be used to

aid in the side-by-side development of new treatments for tumors.
6 Therapeutic significance of bilirubin

As mentioned above, bilirubin is a substance with two sides: it is

cytotoxic at high concentrations. Still, when bilirubin is only mildly

elevated, such as in GS, bilirubin substantially benefits humans in

maintaining good health and reducing the incidence of various

oxidative stress-mediated diseases(including tumors). That is why

there have been attempts to increase bilirubin levels in the body

(mimicking the GS state) to prevent or treat cancer. Here are a few

ways to increase the concentration of bilirubin in your body.
6.1 Dietary supplementation of bilirubin-
like structure

Since bilirubin-like structures in plants share similar structure and

function with bilirubin, complementing natural bilirubin-like
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structures through dietary supplementation is an effective way to

elevate bilirubin levels, and one of the inexpensive and most studied

bilirubin-like structures is Phycocyanobilin (PCB).PCB is a natural

blue-coloring chromone with a linear tetrapyrrole structure in

cyanobacteria and red algae and binds to phycocyanin (PC). It has

antioxidant, anti-inflammatory, immunomodulatory, and anticancer

activities due to its similarity to biliverdin or bilirubin (193). Currently,

several animal experiments are proving the efficacy of PC in preventing

or treating various diseases, as well as clinical trials of PC in cancer.

Spirulina, a cyanobacterium with various nutritional and

therapeutic properties (194), is an important PC and allophycocyanin

(APC) source in the phycobiliprotein family. There is research proving

that the proliferation of pancreatic cancer cells was greatly inhibited in

vitro by PC purified from Spirulina and that the inhibitory effect on the

growth of a broad-spectrum cancer cell was enhanced with increasing

doses of PC (195). Yang et al. found that the consumption of Spirulina

by cancer patients during the first two cycles of chemotherapy

increased IgM levels and CD8+T cell counts in vivo. This suggests

that spirulina can reduce the incidence of myelosuppression and

enhance immune function in tumor patients (196). Another study

indicated that taking Spirulina reduced HBsAg levels in patients with

chronic hepatitis B who were on continuous nucleoside analogs, and

relieved liver inflammation, hepatic steatosis, and cirrhosis, thereby

potentially lowering the probability of HCC (197). The above

experiments show that PC has a widely suppressive effect on various

tumor cells, which has crucial clinical significance.

Therefore, scientists’ research has become the direction of

isolating and purifying PCB from natural algae to obtain a high

concentration and maintain biological activity. Brião et al. produced

food-grade PCs from spirulina by increasing the purity of PCs from

0.53 to 0.76 using phosphate buffer extraction combined with

ultrafiltration and diafiltration (198). Furthermore, an investigator

conducted ultrafiltration experiments using a 0.02g/mL Spirulina

water extract sample. The purification/fractionation steps were

carried out utilizing a polyethersulfone membrane. After the

procedure, the purity of the rough extract improved from 0.74 to

0.93 due to the elimination of approximately 91.7% of the DNA, and

the purification procedure was enhanced by applying six percolation

cycles, forming the PC extract whose purity is up to 1.16, making it

more favorable for food intake and biomedical applications (199).

In addition, it has been shown that the addition of 3 mM

succinic acid to Spirulina medium increased biomass production

rates to 164.05 mg/L(2-fold higher than the control)and increased

PC production rates to 26.70 mg/L(3-fold higher than the control)

(200). Moreover, the use of organic acids not only boosted the

thermal stability of the PC but also increased the purity to 2.2.

It remains a challenge to develop a green and sustainable

method to purify PCBs from algae to obtain high purity, suitable

for biomedical applications.
6.2 Drug-induced GS status

Various drugs can affect key enzymes in bilirubin metabolism,

resulting in mildly elevated serum bilirubin levels (mimicking a GS
frontiersin.org

https://doi.org/10.3389/fonc.2025.1570288
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yi et al. 10.3389/fonc.2025.1570288
state) (Figure 6). This can potentially prevent and treat cancer to

some extent. In addition, pharmacologic hyperbilirubinemia is

typically benign and reversible, without underlying severe liver

lesions such as cholestasis or hepatocyte necrosis. Therefore, drug

induction can be considered a safe and reliable approach.

As is well known, ursodeoxycholic acid can hinder UCB from

entering liver cells for transformation by inhibiting OATP1B1,

leading to a notable increase in bilirubin concentration. A

randomized controlled trial showed that low-dose ursodeoxycholic

acid (500mg) increased serum bilirubin concentrations by 30% (201).

Furthermore, it has been reported that the use of ursodeoxycholic

acid seems to have a positive influence on the prevention of radiation-

induced liver disease after radioembolization in patients with liver

metastases from breast cancer (202).

Atazanavir is an HIV protease inhibitor. A retrospective cohort

study of 1,020 HIV patients demonstrated that HIV patients taking

atazanavir had mildly increased serum bilirubin levels and a

significantly decreased risk of developing new-onset cardiovascular

disease (203). This effect appears to be reliably induced by indirect

hyperbilirubinemia mediated by competitive inhibition of UGT1A1,

which induces a Gilbert phenotype. In addition, atazanavir also

inhibits OATP1B1 and OATP1B3, and indinavir, amprenavir,

saquinavir, rifampicin, cyclosporin A, and rifamycin SV have the

same mechanism (204, 205).
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The suppression function of octreotide on OATP1B1-mediated

transport is stronger, while it exhibits weaker inhibitory effects on

OATP1B3 and MRP2, which is consistent with clinical

observations. Hyperbilirubinemia occurs in a small portion of

patients accepting octreotide treatment (206). If properly applied,

it may inhibit cancer development by mimicking the GS state.

Clinically widely used NSAIDs, such as celecoxib (207) or

acetylsalicylic acid (208), can induce HO-1. According to reports,

after 24 hours of treatment with celecoxib, an increase in its

concentration can enhance the levels of HO-1 mRNA and protein

expression in endothelial cells of humans, and the bilirubin content

reaches its highest level after 48 hours of celecoxib treatment.

A Mendelian randomization analysis study (209) detected that

lowering LDL-C and PCSK9 protein levels by PCSK9 variants was

relevant to an increase in CB, demonstrating that direct bilirubin is

increased with the use of newer lipid-lowering therapies like the

preprotein convertase chytokeratase/kexin type 9 (PCSK9),

monoclonal antibody inhibitors: alirocumab and evolocumab, and

hepatic PCSK9 siRNA inhibitor inclisiran. PCSK9 is inversely

related to liver function and bilirubin (210, 211). Similarly, the

drugs of the fibrates (212, 213) upregulate the expression of HO-1

mRNA and protein to increase bilirubin levels. Whereas statins

(214–216), and niacin (217) in addition to the HO-1 induction
FIGURE 6

Targets of mildly elevated bilirubin concentrations induced by various drugs: The sharp red arrow suggests a promoting effect, while the blunt red
one indicates inhibition. Class A drugs act by inhibiting OATP1B1, preventing the entry of UCB into the hepatocyte. Class B drugs inhibit OATP1B1,
OATP1B3, and UGT1A1.Class C drugs inhibit UGT1A1 which affects the aldolization of bilirubin. Class D drugs inhibit bilirubin excretion through
MRP2.Class E drugs induce HO-1 expression to promote bilirubin production.
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mentioned above, include inhibition of basolateral transport of

unconjugated bilirubin, the latter may be more important.

Kinase inhibitors such as erlotinib, nilotinib, pazopanib,

regorafenib, sorafenib, and verofenib inhibit UGT1A1. Since the

clinical steady-state Cmax concentration is higher than their IC50,

these TKI agents can make patients with a high incidence of

hyperbilirubinemia by effectively inhibiting UGT1A1 (218, 219).

In addition, it has been shown that most of the FDA-approved

tyrosine kinases (TKIs) dramatically inhibit OATP1B1 for

its function.

Irinotecan (220), methotrexate (221), cyclosporine A (222), and

rifampicin (204) share similar UGT1A1 inhibitory activity in the

treatment of cancer.

It is worth noting that hyperbilirubinemia caused by a variety of

drugs is often seen as a symbol of deferred drug biotransformation

and signs of drug-induced hepatic injury, so care should be taken to

control the bilirubin concentration during the clinical application of

drugs to induce a GS state; excessively high levels may be

counterproductive. Bilirubin concentration levels and drug side

effects should still be monitored several times while using

these drugs.
6.3 Targeted bilirubin nanoparticles

Tumors generate large amounts of ROS during rapid metabolic

proliferation, which can promote tumor cell survival, invasion,

proliferation, and metastasis by regulating various signaling

pathways (223, 224). Therefore, bilirubin can exert anticancer

effects by scavenging reactive oxygen radicals in cancer cells.

Bilirubin nanoparticles (BRNPs) can preferentially accumulate in

tumors due to enhanced permeability and retention (EPR) effects

(225). In addition, bilirubin’s rapid ROS and light response, efficient

photothermal conversion, biodegradability, and biocompatibility

make it more suitable than other liposomes as a carrier for

encapsulating anticancer drugs (Table 1).

6.3.1 Bilirubin as a multi stimulus reactant
Bilirubin is insoluble in water because of the formation of

intramolecular hydrogen bonds by its hydrophilic groups (carboxylic

acid and amide bonds). However, bilirubin can target ROS and be

oxidized to biliverdin, resulting in increased water solubility. When

irradiated with light of a suitable wavelength, bilirubin can also occur

in photoisomerization (through intramolecular hydrogen bonds

breaking) and be converted to the more water-soluble photoisomer,

which is readily disposed of and eliminated by the liver and kidneys

(226, 235). This ability to respond to both ROS and external light

stimuli demonstrates that bilirubin can be used as a multi-stimulus

response system to construct nanomedicines.

In 2016, Lee et al. first developed BRNPs for cancer therapy

(226). They combined bilirubin and polyethylene glycol into a

coupling via a steady amide bond and loaded the anticancer drug

doxorubicin (DOX) into BRNPs via film-forming and rehydration

to form DOX-loaded BRNPs (DOX@BRNPs). In vivo, experiments

in xenograft mice bearing human lung adenocarcinoma cells
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indicated that tumor growth was restrained by 27.8% in mice

treated with free DOX, 55.0% in the DOX@BRNPs group, and

even as high as 71.9% in the laser-irradiated DOX@BRNPs group.

This indicates that the use of BRNPs can greatly enhance the anti-

tumor efficacy of DOX chemotherapy drugs. In addition, 38.1% of

tumor growth was inhibited when treated with BRNPs individually,

suggesting that BRNPs, as well as free bilirubins, also have inherent

anticancer efficacy.

Another interesting experiment was published (227). The

bilirubin-chitosan conjugate (BR-Chitosan) was labeled with

Sulfo-Cyanine7 fluorescent dye and injected into HeLa tumor-

bearing mice. Eight hours later, it primarily accumulated in the

tumor region, whereas free Sulfo-Cyanine7 exhibited a systemic

distribution. Experimental results indicate that BR-Chitosan

exhibits significant tumor-targeting properties. In an exception to

the catabolism of the BR-Chitosan at the tumor site to release the

internal hypoxia-activated prodrug HAPTH-302, it also exhibited

intrinsic oxygen-consuming properties in the tumor region in the

presence of overexpression of ROS, including H2O2, which greatly

increased the degree of hypoxia around the tumor tissues and

converted HAPTH-302 from nontoxic to toxic in a hypoxic

environment, exerting selective antitumor effects. Bilirubin not

only compensates for the limitation of HAPTH-302’s inability to

function in the region of normoxic tumors but also has a strong

absorbance that allows for chemo-thermal synergistic treatment. It

also has a simpler and safer composition than other deoxidizers and

carriers. In HeLa tumor-bearing mice, drug cytotoxicity was

significantly increased and tumor hypoxia was enhanced.

To enhance the antitumor effects, Lee et al. sought to further

refine BRNPs by incorporating immune responses. Hyaluronic acid

(HA) has targeted CD44 and immunomodulatory properties.

Recently, they developed a hyaluronic acid-bilirubin nanoparticles

loaded with SC144(SC144@HABN) (228). Experimental data

showed that intravenously injected HABN accumulated in tumor

cells and tumor-associated myeloid cells, (possibly as a result of the

enhanced permeability and retention effect and targeting of CD44,

ROS effect) allowing SC144 to act: radicalizing macrophages into

the M1 phenotype, inducing killing effect of CD8+ T cells, enhanced

PD-L1 expression in tumor cells and inducing immunogenic cell

death in vitro. The significant tumor-targeting and lysis-releasing

effects of HABN vectors attenuated the toxicity of SC144 on human

normal cells and CD8+ T cells, and enhanced the synergistic anti-

cancer efficacy of immunotherapy. In addition, Animal experiments

have shown that the SC144@HABN+anti-PD-L1 combination

treatment can complementarily increase anti-neoplastic efficiency

and effectively eliminate MC38 colon tumors and immune

checkpoint blockade-resistant 4T1 breast tumors. Subsequently,

articles have also reported that HABN containing adriamycin

(DOX@HABN) showed significant tumor targeting and

synergistic anti-tumor capabilities in HeLa-loaded mice (229).

In addit ion, a Ce6/BR-FFVLK-PEG nanomedic ine

encapsulating dimeric paclitaxel (PTX) & indolimod (IND) was

reported (230) Its surface-covered macrophage membrane

facilitates nanomedicine circulation and tumor targeting. Chlorin

e6 (Ce6) or BR can generate ROS under laser beam irradiation,
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which triggers the conversion of micelles into nanofibers and

facilitates the release of core anticancer agents. Growth and lung

metastasis of breast cancer in situ were considerably inhibited by

this nanomedicine through BR-induced photodynamic therapy,

PTX-induced typical immunogenic cell death (ICD) effect, and

activation of immune response in combination with IND.

6.3.2 Bilirubin as a photosensitizer for diagnosis
and treatment

Due to bilirubin’s high photosensitivity (PS), blue light is often

utilized to reduce unconjugated bilirubin levels in neonates or

preterm infants. When laser light irradiates accumulated PS

reagents (e.g., bilirubin), photoactivation generates toxic ROS and

induces cell death to provide local antitumor therapy. Moreover, the
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liganding of bilirubin with particular metal ions may enhance its

effectiveness in photoacoustic imaging (PAI) and photothermal

therapy (PTT).

Inspired by the binding mode of melanin gallstones, Lee et al.

exploited cisplatin-chelated bilirubin nanoparticles (cisPt@BRNPs)

(231). They found that under laser irradiation, with its great

photothermal conversion efficiency, it could generate considerable

heat, causing cell death in more than 70% of HT-29 human

colorectal adenocarcinoma cells (while cisplatin exerted a small

anti-tumor effect). Interestingly, substantial photoacoustic activity

was generated by cisPt@BRNPs, enabling tumor visualization, which

can be used as a PAI probe for cancer diagnosis and treatment.

Because of the shallow depth of light penetration in the tissue, it

cannot treat tumors deeper in. So novel PEGylated bilirubin-
TABLE 1 Bilirubin-targeting nanomedicines for cancer treatment.

Classifications Nanomedicines Loaded drugs Experimental models
Therapeutic

effects
Tumor Types Refs

As a multi-
stimulus reactant

DOX@BRNPs DOX
Xenograft mice bearing

A549 tumors

Tumor growth was
inhibited by 55.0% and

up to 71.9% when
combined with
laser irradiation

Lung
adenocarcinoma

(226)

TH-302@BR-
Chitosan NPs

TH-302 HeLa tumor-bearing mice.

Drug cytotoxicity was
significantly increased
and tumor hypoxia

was enhanced

Cervical cancer (227)

SC144@HABN SC144
MC38 tumor-bearing mice, BALB/c

mice bearing 4T1 tumors

Combined anti-PD-L1
therapy significantly

inhibits tumor growth in
both mouse models

Colon carcinoma,
breast cancer

(228)

DOX@HABN DOX HeLa tumor-bearing mice.
Inhibits tumor growth by
approximately 83.8%

Cervical cancer (229)

Ce6/BR-FFVLK-PEG
PTX,
IND

4T1 breast cancer BALB/c nude
mice models

Combined laser therapy
achieved an inhibition
rate of 85.27% ± 12.80%

and significantly
inhibited lung metastasis.

Breast cancer (230)

As a photosensitizer
for diagnosis
and treatment

CisPt@BRNPs Cisplatin
HT-29 human colorectal cancer

xenograft tumor model

Induced over 70% of
tumor cell death and

achieved
tumor visualization

Colon carcinoma (231)

PEG-BR/CWONPs CaWO4
Murine xenograft models of head

and neck cancer

Combined X-ray
irradiation enhances the

efficacy of anti-
cancer treatment

Head and
neck cancer

(232)

Mn@bt-BRNPs DOX
Xenograft mice carrying human
lung adenocarcinoma cells (A549)

Effectively inhibits the
growth of A549 lung

cancer cells and induces
T1-weighted MRI
signal enhancement

Lung
adenocarcinoma

(233)

Self-assembling
endogenous biliverdin

– MCF-7 xenograft tumor model

Induces efficient
photothermal ablation of

tumors under near-
infrared irradiation,

better imaging of tumors
in ultrasound and MRI

Breast cancer (234)
frontie
DOX, doxorubicin; @, loaded with; BR, bilirubin; NPs, nanoparticles; TH-302, evofosfamide; SC144, a gp130 inhibitor; HA, hyaluronic acid; BN, bilirubin nanoparticles; Ce6, chlorin e6; FFVLK, Phe-
Phe-Val-Leu-Lys peptide; PEG, polyethylene glycol; PTX, paclitaxel; IND, Indoximod; cisPt, cisplatin; CWO, CaWO4; Mn, manganese ion; bt, biotinylate; MRI, magnetic resonance imaging.
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encapsulated CaWO4 nanoparticles(PEG-BR/CWO NPs) were

reported by Pizzuti et al (232). When the nanoparticles were

irradiated by X-rays, the CaWO4 core emitted ultraviolet and

blue light, which was absorbed by bilirubin to produce a

photodynamic effect, generating ROS to enhance cancer cell

death. Animal studies of head and neck cancer transplants have

shown that combining radiation and photodynamic therapy

enhances the anti-cancer treatment effect.

Recently, Mn2+-chelated, biotinylated bilirubin nanoparticles

(Mn@bt-BRNPs) were reported. Unlike conventional MR contrast

agents, BRNPs release internal Mn2+ in response to ROS

stimulation, which allows for better display of ROS in the tumor

and tumor microenvironment, thereby inducing T1-weighted MRI

signal enhancement. Moreover, experimental data indicated that

adriamycin-loaded Mn@bt-BRNPs could effectively inhibit the

growth of A549 lung cancer cells (233). This combined antitumor

effect and tumor visualization in one of the BRNPs is a significant

advantage of them as nanocarriers. Similar bilirubin nanomedicines

have been reported to monitor the progression of cirrhosis (236).

In addition, BV nanoparticles with long-term fixity were

constructed by Xing et al. through supramolecular self-assembly

of BV and metal-binding short peptides. Metal ions, being

incorporated into the BV nanoparticles such as Mn2+, can

strengthen their photostability and endow them with magnetic

resonance. Data from in vivo studies show that its selective

accumulation in tumors can locally raise the temperature of

tumors under near-infrared illumination, thus leading to the

induction of effective photothermal tumor ablation for selective

treatment (234). In addition, BV nanoparticles can also be used as

multimodal contrast agents for better imaging of tumors in

ultrasound and magnetic resonance, thus having great potential

in precision medicine.

It is worth noting that the anticancer and immunomodulatory

role of bilirubin in nanomedicines was overlooked in some of the

above experiments, which focused on its high photothermal

conversion efficiency as a photosensitizer on tumors, without

noting that the anticancer role of bilirubin/biliverdin as a ROS

scavenger in its own right should not be underestimated. Moreover,

BRNPs have better efficacy in ROS-overproducing tumor cells than

in ROS-low-expressing tumors. The therapeutic efficacy of passively

targeted BRNPs dependent on the EPR effect is largely influenced by

differences in the strength of the EPR effect exhibited within

different tumors (225). It remains a challenge to effectively utilize

the benefits of bilirubin to target tumor cells highly selectively.
7 Conclusions and outlook

Bilirubin has a complex interaction with cancer, and bilirubin

can inhibit tumorigenesis and development through a variety of

mechanisms, including influencing cellular redox reactions,

signaling, and the immune system, while the effects of cancer on

bilirubin have derived several prognostic models. Current research

on the effects of bilirubin on tumors has some contradictory results
Frontiers in Oncology 14
and perhaps unexplored underlying mechanisms. Some studies

have found antiproliferative effects of bilirubin in specific human

tissue cells, but have not gone on to investigate its role in the

corresponding tumors. The effect of bilirubin on the intestinal flora,

which plays a key role in its metabolism, has also not been explored.

Dietary supplementation with PC and drug induction can

elevate serum bilirubin concentrations, but only modest

elevations are strongly associated with reduced cancer incidence.

In constructing BRNPs, bilirubin is a versatile carrier for antitumor

drugs and a photosensitizer for diagnosing and treating cancer,

enabling better imaging of tumors. However, the antitumor effects

of bilirubin itself were overlooked in most experiments. The efficacy

of BRNPs in ROS overproducing tumors was better than that in

ROS low-expressing tumors, which might be the limitation of

BRNPs. Despite this, bilirubin-targeted nanomedicines remain a

suitable approach for future cancer prevention and treatment.
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82. Zha H, Aimé-Sempé C, Sato T, Reed JC. Proapoptotic protein Bax
heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3)
distinct from BH1 and BH2. J Biol Chem. (1996) 271:7440–4. doi: 10.1074/
jbc.271.13.7440

83. NaveenKumar SK, Thushara RM, Sundaram MS, Hemshekhar M, Paul M,
Thirunavukkarasu C, et al. Unconjugated Bilirubin exerts Pro-Apoptotic Effect on
Platelets via p38-MAPK activation. Sci Rep. (2015) 5:15045. doi: 10.1038/srep15045

84. Shahrokhi SZ, Tehrani FSK, Salami S. Molecular mechanisms of bilirubin
induced G1 cell cycle arrest and apoptosis in human breast cancer cell lines:
involvement of the intrinsic pathway. Mol Biol Rep. (2022) 49:10421–9. doi: 10.1007/
s11033-022-07757-8

85. Niknam M, Maleki MH, Khakshournia S, Rasouli M, Vakili O, Shafiee SM.
Bilirubin, an endogenous antioxidant that affects p53 protein and its downstream
apoptosis/autophagy-related genes in LS180 and SW480 cell culture models of
colorectal cancer. Biochem Biophys Res Commun. (2023) 672:161–7. doi: 10.1016/
j.bbrc.2023.06.050

86. Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, et al. NF-kB as
a regulator of cancer metastasis and therapy response: A focus on epithelial-
mesenchymal transition. J Cell Physiol. (2022) 237:2770–95. doi: 10.1002/jcp.30759

87. Tune BXJ, Sim MS, Poh CL, Guad RM, Woon CK, Hazarika I, et al. Matrix
metalloproteinases in chemoresistance: regulatory roles, molecular interactions, and
potential inhibitors. J Oncol. (2022) 2022:3249766. doi: 10.1155/2022/3249766

88. DongW, Sun S, Cao X, Cui Y, Chen A, Li X, et al. Exposure to TNF−a combined
with TGF−b induces carcinogenesis in vitro via NF-kB/Twist axis. Oncol Rep. (2017)
37:1873–82. doi: 10.3892/or.2017.5369

89. Ali A, Kim SH, Kim MJ, Choi MY, Kang SS, Cho GJ, et al. O-glcNAcylation of
NF-kB promotes lung metastasis of cervical cancer cells via upregulation of CXCR4
expression. Molecules Cells. (2017) 40:476–84. doi: 10.14348/molcells.2017.2309

90. Malek S, Chen Y, Huxford T, Ghosh G. IkappaBbeta, but not IkappaBalpha,
functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both
NF-kappaB nuclear localization sequences in resting cells. J Biol Chem. (2001)
276:45225–35. doi: 10.1074/jbc.M105865200

91. Fernandes A, Falcão AS, Silva RFM, Gordo AC, Gama MJ, Brito MA, et al.
Inflammatory signalling pathways involved in astroglial activation by unconjugated
bilirubin. J Neurochemistry. (2006) 96:1667–79. doi: 10.1111/j.1471-4159.2006.03680.x
frontiersin.org

https://doi.org/10.1016/j.ijrobp.2021.04.012
https://doi.org/10.1093/jrr/rrae006
https://doi.org/10.1016/j.jss.2023.08.056
https://doi.org/10.1159/000508971
https://doi.org/10.2147/JHC.S396433
https://doi.org/10.2147/CMAR.S277013
https://doi.org/10.3390/medicina59061099
https://doi.org/10.3390/cancers15071925
https://doi.org/10.1016/j.ctrv.2008.07.004
https://doi.org/10.1016/j.ctrv.2008.07.004
https://doi.org/10.2174/0929867328666210218110550
https://doi.org/10.7150/thno.56747
https://doi.org/10.7150/thno.56747
https://doi.org/10.1158/0008-5472.CAN-07-0783
https://doi.org/10.1016/S1357-2725(01)00130-3
https://doi.org/10.1073/pnas.0813132106
https://doi.org/10.1126/science.3029864
https://doi.org/10.1073/pnas.84.16.5918
https://doi.org/10.1073/pnas.84.16.5918
https://doi.org/10.1016/j.freeradbiomed.2018.06.010
https://doi.org/10.1016/j.lfs.2009.02.026
https://doi.org/10.1186/s12933-024-02182-6
https://doi.org/10.3389/fendo.2022.869579
https://doi.org/10.3389/fendo.2022.869579
https://doi.org/10.1186/s12902-020-00563-y
https://doi.org/10.1016/j.dsx.2023.102896
https://doi.org/10.1055/a-2179-0809
https://doi.org/10.1186/s12885-023-11537-3
https://doi.org/10.1016/S0891-5849(98)00213-5
https://doi.org/10.1016/S0891-5849(98)00213-5
https://doi.org/10.1183/09031936.00000106
https://doi.org/10.1016/s0009-9120(00)00062-x
https://doi.org/10.1016/j.clinbiochem.2005.11.018
https://doi.org/10.1016/j.clinbiochem.2005.11.018
https://doi.org/10.1016/j.cccn.2003.08.017
https://doi.org/10.1016/j.cca.2006.06.028
https://doi.org/10.1080/07357900500449603
https://doi.org/10.1158/1078-0432.ccr-06-2082
https://doi.org/10.1158/1078-0432.ccr-06-2082
https://doi.org/10.1007/s00204-014-1448-7
https://doi.org/10.1016/j.coi.2007.05.004
https://doi.org/10.1038/sj.cdd.4401975
https://doi.org/10.1093/emboj/17.14.3878
https://doi.org/10.1074/jbc.M010810200
https://doi.org/10.1074/jbc.271.13.7440
https://doi.org/10.1074/jbc.271.13.7440
https://doi.org/10.1038/srep15045
https://doi.org/10.1007/s11033-022-07757-8
https://doi.org/10.1007/s11033-022-07757-8
https://doi.org/10.1016/j.bbrc.2023.06.050
https://doi.org/10.1016/j.bbrc.2023.06.050
https://doi.org/10.1002/jcp.30759
https://doi.org/10.1155/2022/3249766
https://doi.org/10.3892/or.2017.5369
https://doi.org/10.14348/molcells.2017.2309
https://doi.org/10.1074/jbc.M105865200
https://doi.org/10.1111/j.1471-4159.2006.03680.x
https://doi.org/10.3389/fonc.2025.1570288
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yi et al. 10.3389/fonc.2025.1570288
92. Chiu H-W, Lee H-L, Lee H-H, Lu H-W, Lin KY-H, Lin Y-F, et al. AIM2
promotes irradiation resistance, migration ability and PD-L1 expression through
STAT1/NF-kB activation in oral squamous cell carcinoma. J Trans Med. (2024)
22:13. doi: 10.1186/s12967-023-04825-w

93. Domblides C, Crampton S, Liu H, Bartleson JM, Nguyen A, Champagne C, et al.
Human NLRC4 expression promotes cancer survival and associates with type I
interferon signaling and immune infiltration. J Clin Invest. (2024) 134:e166085.
doi: 10.1172/JCI166085

94. Zhao H, Xu J, Zhong YN, He S, Hao Z, Zhang B, et al. Mammary hydroxylated
oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to
promote breast cancer progression and metastasis. Int Immunopharmacol. (2024)
142:113034. doi: 10.1016/j.intimp.2024.113034

95. Gibbs PEM, Maines MD. Biliverdin inhibits activation of NF-kappaB: reversal of
inhibition by human biliverdin reductase. Int J Cancer. (2007) 121:2567–74.
doi: 10.1002/ijc.v121:11

96. Sinal CJ, Bend JR. Aryl hydrocarbon receptor-dependent induction of cyp1a1 by
bilirubin in mouse hepatoma hepa 1c1c7 cells. Mol Pharmacol. (1997) 52:590–9.
doi: 10.1124/mol.52.4.590

97. Phelan D, Winter GM, Rogers WJ, Lam JC, Denison MS. Activation of the Ah
receptor signal transduction pathway by bilirubin and biliverdin. Arch Biochem
Biophysics. (1998) 357:155–63. doi: 10.1006/abbi.1998.0814

98. Hansen TWR. Recent advances in the pharmacotherapy for hyperbilirubinaemia
in the neonate. Expert Opin On Pharmacotherapy. (2003) 4:1939–48. doi: 10.1517/
14656566.4.11.1939

99. Zhao X, Duan B, Wu J, Huang L, Dai S, Ding J, et al. Bilirubin ameliorates
osteoarthritis via activating Nrf2/HO-1 pathway and suppressing NF-kB signalling. J
Cell Mol Med. (2024) 28:e18173. doi: 10.1111/jcmm.18173

100. Rosas S, Kwok A, Moore J, Shi L, Smith TL, Tallant EA, et al. Osteoarthritis as a
systemic disease promoted prostate cancer in vivo and in vitro. Int J Mol Sci. (2024)
25:6014. doi: 10.3390/ijms25116014

101. Stoeckius M, Erat A, Fujikawa T, Hiromura M, Koulova A, Otterbein L, et al.
Essential roles of Raf/extracellular signal-regulated kinase/mitogen-activated protein
kinase pathway, YY1, and Ca2+ influx in growth arrest of human vascular smooth
muscle cells by bilirubin. J Biol Chem. (2012) 287:15418–26. doi: 10.1074/
jbc.M111.266510

102. Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of
extracellular-signal-regulated kinase 1 (ERK1) is required for the continued
expression of cyclin D1 in G1 phase. Biochem J. (1997) 326:61–8. doi: 10.1042/
bj3260061

103. Villanueva J, Yung Y, Walker JL, Assoian RK. ERK activity and G1 phase
progression: identifying dispensable versus essential activities and primary versus
secondary targets. Mol Biol Cell. (2007) 18:1457–63. doi: 10.1091/mbc.e06-10-0908

104. Yang ZY, Simari RD, Perkins ND, San H, Gordon D, Nabel GJ, et al. Role of the
p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response
to arterial injury. Proc Natl Acad Sci United States America. (1996) 93:7905–10.
doi: 10.1073/pnas.93.15.7905
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