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The GABAergic system is the main inhibitory nervous system. In addition, GABA

has been reported to affect tumor growth and its expression differs between

tumor tissue and normal tissue. However, the impact of GABAergic system on

tumor progression is context-dependent. The dual potential of the GABAergic

system to exert either pro-tumor or anti-tumor effects is fundamentally shaped

by the distinct histological features of the neoplasm. The complex components

of the GABAergic system and signaling pathways involved might be responsible

for this phenomenon. In this study, we reviewed the role of the GABAergic

system in promoting or inhibiting tumorigenesis in different organ systems and

summarized the possible signaling pathways regulated via GABAA receptor-

associated protein (GABARAP). We also discussed the possible role of GABARAP

in tumor progression through the regulation of autophagy. Additionally, this

study suggest novel therapeutic approach targeting the GABAergic system in the

treatment of tumors.
KEYWORDS
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1 Introduction

GABA, as an inhibitory neurotransmitter, plays a crucial role as a metabolite in various

cells within the human body. It has been shown that GABA is predominantly synthesized in

neurons via a specialized metabolic pathway closely integrated with the tricarboxylic acid

(TCA) cycle, requiring the coordinated activity of multiple enzymes including glutamate

decarboxylase (GAD), pyridoxal phosphate-dependent enzymes, and mitochondrial

transporters (1–3). Emerging studies highlight the pleiotropic roles of the GABAergic

system, extending far beyond its canonical function in the central nervous system (CNS).

Current research reveals its critical involvement in maintaining pancreatic b-cell homeostasis,

modulating hormone secretion dynamics, and orchestrating immune responses in
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inflammatory diseases (4, 5). Previous evidences have demonstrated

that GABAergic systems play important roles in tumor proliferation,

metastasis, stemness, and tumor microenvironment (6). However, the

oncogenic regulatory effects of GABAergic signaling have been found

to be contradictory, suggesting bidirectional modulation of

tumorigenic processes through cell type-specific mechanisms. Thus,

a better understanding of the GABAergic signaling could provide

novel insights into cancer treatment (Tables 1, 2).

Autophagy is an essential cellular event for the maintenance of

cell homeostasis. This process is tightly regulated and involved in

virous physiological processes, including metabolism, membrane

trafficking, and immune and inflammatory processes (7). The

dysregulation of autophagy is typically triggered by multilevel

factors including amino acid starvation, decreased insulin levels,

reduced ATP and hypoxia. These dysregulations might lead to a

range of pathological conditions such as oncogenesis (8). The
TABLE 1 The GABA system promotes tumor growth.

Type of tumors GABA energy system

Glioma GABA-A

Medulloblastoma ABAT

Head and neck cancer GABA

Oral squamous cell carcinomas GAD

Nasopharyngeal carcinoma GAD

Thyroid and parotid tumor GABA

Lung cancer GABA-A

Lung adenocarcinoma GABRA3

Breast cancer
GABA and GABA-A

GABAB1e

Basal-like breast cancer
GABA-p

ABAT

Gastric cancer GABA-A

Hepatocellular carcinoma GABA-A-q/a3/g2

Pancreatic ductal adenocarcinoma

GABA-p

GABRP

Colorectal cancer
GABABBR1

GABA

Prostate cancer GABABR

GABBR1

Castration-resistant prostate cancer
GABA

GABAa1

Renal cell carcinoma GABA-B

Ovarian cancer GABA-p
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GABA A-receptor-associated protein (GABARAP), a family of

proteins comprising GABARAP, GABARAPL1, GABARAPL2,

and GABARAPL3, have been identified as key regulators of

autophagy (9). Moreover, GABARAPs showed multifaceted

oncogenic regulatory functions across diverse malignancies.

Current researches highlight their potential as clinical biomarkers

and potential therapeutic targets (10, 11). However, the precise

mechanism of GABARAPs in tumors and other diseases is still

unclear and requires further investigation.

This review discussed the context-dependent duality of

GABAergic signaling in oncobiology, delineating its paradoxical

tumor-promoting and suppressive outcomes across heterogeneous

malignancies. It also summarized recent advances in research

focusing on the GABAergic system and autophagy, which

highlight the GABAergic system as a potential target for the

treatment tumors (Figure 1).
Signaling pathways References

Src-EZH2-OCT4 (10)

ABAT/H3K4ac. (13)

CCND2/BCL2L1 (14)

b-catenin and MMP7/ p38 MAPK (15, 16)

miR-24-3p/CYTOR (17)

cyclic AMP/ ERK 1/2 (19, 20)

JAK1/STAT6/TAMs (21)

JNK/AP-1/ MMP-2 /MMP-9 (22)

Ca2/PKC/CREB (23)

PTPN12/EGFR/AKT (25)

ERK1/2 (24)

Ca2+-NFAT1 (27)

ERK1/2 (33)

GABRA3 (34–36)

Ca2+ (37)

MEK/ERK (38)

KCNN4– Ca2+/NF-kB (39)

– (42)

cMYC (43)

EGFR-ERK1/2– MMPs (45)

GRP (46)

PI3K-PKC Є (131)

EGFR-Src (91)

MAPKs/ERK1/2 (49)

MAPK/ERK (50)
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TABLE 2 The GABA system inhibits tumor growth.

Type of tumors GABA energy system Signaling pathways References

Glioma
GABA-A/ GABA-Aa1 mir-139-5p (51, 52)

GAD1/GAD2/ABAT – (57, 58)

NSCLC GABARAP NIX/ ubiquitin-binding protein p62 (59)

Breast cancer
GABARAP AKT/mTOR (62)

GABA-Aa3 AKT (17)

Gastric cancer GABA-Ab3 Bcl-2/BAX/Caspase axis (63)

Hepatocellular carcinoma

GABA-A-b2/g2 alpha-fetoprotein (65, 66)

GABA-A/r1 miR-183-5p (6, 68)

GABA-B cAMP/p62 (67)

ABAT miR-183-5p (69)

Cholangiocarcinoma

GABA MMP-2 /MMP-9 (71)

GABA/GABA-B JAK/STAT3 (72)

GABA-B GSK3a/b-STATA (73)

GABA cAMP-ERK1/2 (74)

Pancreatic cancer Gabra3 AKT/mTOR (78)

Colorectal cancer

GABABR cAMP- ERK/CREB- cIAP2 (79)

GABA-B Hippo/YAP1-EMT (80)

GSK-3b/NF-kB (81)

Chondrosarcoma GABA-B MAPK/PI3K/AKT/mTOR (82)

Renal cell carcinoma ABAT HNF4A (83)

Yang et al. 10.3389/fonc.2025.1570380
2 The GABAergic system promotes
tumor growth

2.1 Intracranial tumor and head and neck
cancer
Head and neck squamous cell carcinomas (HNSCCs) represent

the sixth most prevalent malignancy globally. Evidences have

indicated that gamma-aminobutyric acid (GABA) plays pivotal

roles in neurotransmission, regulation of cell differentiation,

proliferation, and tumorigenesis in HNSCCs. However, the

precise mechanisms of GABAergic system in HNSCCs are still

unknown. Gliomas are one of the most common types of

neurological malignancies derived from glial cells. The 5th edition

of the World Health Organization (WHO) classification of glioma

was according to specific molecular alterations (12). Results

obtained from a large-scale analysis of multiple omics datasets

showed substantial differences in gene expression, methylation and

miRNAs associated with neurotransmission in adult gliomas,

suggesting that gliomas might warrant reclassification based on

neurotransmitters (13). Additionally, a unique neurotransmitter-

related microenvironment has been identified (14). The results
Frontiers in Oncology 03
obtained by Anja Smits and her colleagues showed a distinct

variation in the subunit proteins of the GABA-A receptor in

glioma, which affects the clinical outcome of glioma (15).

Evidences have indicated that propofol, a GABA-A receptor

agonist, increased the Src expression and further promote the

palmitoylation of EZH2 and OCT4 which facilitates the

development of glioma (16). However, propofol has been shown

to inhibit glioma cell growth and invasion in other studies (17). One

possible explanation for this discrepancy might be the GABA-A

receptor and its subunits. In addition, there is considerable

variability in the expression of GABA-A receptors and their

subunits in different types of gliomas and glioma cell lines.

Further research is needed to elucidate the possible interactions

between these subunits of the receptor (18, 19). Medulloblastoma

(MB) is a malignant brain tumor that mainly affects children. There

is evidence showed the abnormal activation of GABA in MB. In

addition, GABA transaminase (ABAT) has been observed to

maintain MB cell viability and facilitate leptomeningeal metastasis

formation (20).

Previous studies have reported that GABA might play an

important role in regulation the proliferation and apoptosis of

HNSCCs via promoting the expression of cyclin D2 (CCND2)

and B-cell lymphoma 2-like 1 (BCL2L1) (21). Glutamate
frontiersin.org
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decarboxylase 1 (GAD1) expressed in GABAergic neurons is a rate-

limiting enzyme in the production of GABA. Studies have

demonstrated that GAD1 is highly expressed in oral squamous

cell carcinomas (OSCC) and is intricately linked to the metastasis

and invasion of oral cancers via b-catenin and MMP7 (22). In

addition, it has been observed that GABA and its receptor agonists

can promote the proliferation of OSCC cells through the activation

of p38 MAPK (23). GAD1 was found to be upregulated in non-

metastatic nasopharyngeal carcinoma (NPC) biopsies (24). There is

also evidence showed that Cytoskeleton Regulator RNA (CYTOR)

could regulate GAD1 via targeting miR-24-3p. And this gene has

been shown to promote the proliferation, migration and invasion of

NPC cell lines (25). In addition, it has been reported to enhance

tumor invasion and could serve as an important prognostic

indicator of recurrence and metastasis in early and partially

advanced nasopharyngeal carcinoma patients (26). Moreover,

studies have shown that the expression level of GABA receptors

are elevated in tumor tissue compared to normal thyroid and

parotid tissue. These findings suggest that the GABAergic system

may be involved in the etiology of thyroid and parotid gland tumors

(27, 28).
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2.2 Thoracic neoplasms

GAD1 expression is higher in lung cancer than in normal tissue.

It is negatively correlated with overall survival in lung

adenocarcinoma patients. And overexpression of GAD1 might

result in an increase in GABA levels (29). One previous study

also showed that tumor-derived GABA could bind to the GABA-A

receptor on the surface of macrophages, resulting in activation the

JAK1/STAT6 pathway in tumor-associated macrophages (TAMs),

which promotes macrophage polarization towards the M2

phenotype and further facilitate the tumor progression (30). Their

findings suggested that tumor-derived GABA might have complex

mechanisms in promotion the tumorigenesis not only directly

promote the tumor cells proliferation but also modulate the

tumor-microenvironment. In addition, GABRA3, a type A

receptor subunit of GABA, has been reported to induce the

expression of MMP-2 and MMP-9 through activation of the JNK/

AP-1 pathway, further promoting lymphatic metastasis of lung

adenocarcinoma (LUAD) (21).

Integrated metabolomic and transcriptomic profiling in breast

cancer has identified ALDH1A3 as a definitive cancer stem cell
FIGURE 1

Schematic of GABAergic signaling in oncobiology via regulating immune cells in the tumor microenvironment and autophagy.
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(CSC) marker, strongly associated with tumor initiation, therapy

resistance, and metastatic potential. Notably, dysregulated

GABAergic metabolic reprogramming was found to increase the

expression of ALDH1A3 and promote breast cancer metastasis

(31). Alanine aminotransferase 2 (GPT2), a key enzyme bridging

amino acid and GABA metabolism, exerts pro-metastatic effects

through increasing Ca2+ flux through GABA and GABA-A

receptors and activation of the PKC-CREB signaling pathway

(32). However, the proliferation and invasion of breast cancer cell

lines remains to be investigated. Evidence has showed that the pi

subunit of the GABRP is expressed in the basal-like breast cancer

(BLBC) subtype and may be associated with the development of

breast cancer metastasis. This receptor has previously been reported

to be involved in the ERK1/2 signaling pathway, which may

contribute to cancer cell migration (3). In addition to the GABA-

A receptor, studies have demonstrated that phosphorylation at sites

Y230 and Y404, subunits of the GABA-B receptor GABAB1e,

interact with PTPN12, which affects the EGFR/AKT signaling

pathway and promotes the malignancy of breast cancer cells.

GABAB1e is also expressed in other tumor cell lines as

demonstrated by studies (33, 34). It is possible that, in the

absence of relevant in vitro data, there may be a relationship

between gamma-aminobutyrate aminotransferase (ABAT) and

GABA levels. It has been suggested that GABA levels may be

associated with the activity of GABA receptors, which could

potentially contribute to the progression of BLBC (35). Clinical

and epidemiological data have been interpreted to suggest that

GABA could have significant prognostic value in breast cancer, with

a novel risk score model indicating the potential for predicting

survival outcomes for breast cancer patients (36, 37).

Despite advances in the treatment of these diseases, lung cancer

and breast cancer brain metastases remain major challenges in field

of oncology. The pathogenesis of these diseases remains poorly

understood, with limited knowledge of the underlying molecular

pathways and cellular mechanisms involved. Existing literature

suggests that lung and breast cancers establish suitable conditions

for metastasis prior to the onset of metastatic disease (38, 39).

Furthermore, some studies have shown that brain metastases tissues

exhibit a GABAergic energy phenotype similar to that observed in

neurons and have suggested that enhancing GABAmetabolismmay

promote proliferation of tumor tissues (40). These observations

provide a rationale for further investigation of the potential

relationship between the GABAergic energy system and

brain metastasis.
2.3 Abdominal neoplasms

Comparative tissue analysis revealed higher expression level of

GABA and GAD in tumor tissue than adjacent tissues, suggesting

that the GABAergic system might be a potential therapeutic target

for gastric cancer (41). Conversely, studies have shown that GABA

could activate the ERK1/2 signaling pathway via the GABA-A

receptor, which in turn promotes the proliferation of gastric

cancer cell lines (42). However, this finding has not been
Frontiers in Oncology 05
validated by in vivo experiments. Moreover, evidences also

suggest that GABA could promote the cell proliferation in

hepatocellular carcinoma (HCC) via the GABA-A-q subunit.

However, purified GABA fails to influence the proliferation of

tumor cell lines after receptor knockout (43). Further studies have

shown that GABA can promote the proliferation of malignant liver

cancer cells through GABA-Aa3 in a dose-dependent manner (44).

In addition to the direct stimulation of GABA receptors in liver

cancer, Nova-1, a pro-cancer RNA binding protein (RBP), can

directly bind to GABAg2 to promote tumor growth in vivo (45).

Pancreatic ductal carcinoma (PDAC) has the highest mortality rate

among the most common malignancies. A study based on genome-

wide cDNA microarray analysis of PDAC revealed that the GABA

receptor P-subunit (GABRP) was overexpressed in PDAC cells.

Their results also showed that the MAPK/ERK cascade could

promote the proliferation and metastasis of PDAC cells through

the influence of Ca2+ (46). In addition, GABRP has also been shown

to activate the MEK/ERK signaling pathway, thereby promoting

metastasis (38). Furthermore, GABRP interacts with KCNN4 and

stimulates the Ca2
+-NF-kB signaling pathway, leading to increase

tumor cell growth, macrophage aggregation and tumor invasiveness

(39). Those studies also provided new insights into the

immunomodulatory process involved in the initiation and

development of PDAC.

EphB6 is a tyrosine kinase receptor that has been implicated in

colorectal cancer (CRC). Previous studies have shown a correlation

between EphB6 expression and the development of CRC in patients

(47). Recent in vivo experiments have indicated that EphB6

deficiency may be a contributing factor to the development of

colorectal cancer (CRC) tumors. This potential mechanism involves

the upregulation of synaptosomal-associated protein 25 (SNAP-25),

which has been observed to increase GABA levels within the tumor

microenvironment (48). GABAB receptor expression is highly

prevalent in CRC cell lines, and animal studies have shown that

GABA can increase the stability of the cMYC protein, inhibit its

ubiquitination degradation, and promote the proliferation and

migration of colorectal cancer cells (49). In addition, GABABBR1

could facilitate CRC proliferation and invasion through targeted

regulation by miRNAs such as miR-106a/b, miR-20a/b, and miR-17

(50). Moreover, previous studies have also shown that the GABA-A

receptor is expressed in prostate cancer and is involved in the

proliferation of prostate cancer cells (51). GABABR has been shown

to activate the EGFR-ERK1/2 signaling pathway. This leads to

increased expression of MMPs, which contribute to prostate

cancer invasion and migration (52). It has also been observed that

GABA could induce gastrin-releasing peptide (GRP) secretion via

GABBR1, which in turn promotes prostate cancer invasion and

migration (53). Nevertheless, the present body of research fails to

deliver a thoroughgoing elucidation of the interrelationship

between the proliferative and migratory capacities of cells and the

potential cross-talk among the signaling pathways influenced by

diverse receptors and small molecules. Studies have shown that the

enzyme GAD65, a key enzyme in the synthesis of the inhibitory

neurotransmitter GABA, might promote the progression of

castration-resistant prostate cancer (CRPC) by increasing GABA
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diversion, and this process may be mediated by the PI3K-PKC e
signaling axis (54). Moreover, there is evidence that GABAa1 could
activate the EGFR-Src signaling pathway in a paracrine or autocrine

manner, thereby promoting the progression of CRPC. This effect of

GABA on tumor growth through secretion may be a new direction

for studying the mechanism of GABA on tumors (55). Interestingly,

GABA regulates the biological behavior of renal cell carcinoma

(RCC) and ovarian cancer (OC) through the same signaling

pathway via different receptors (56, 57).

In recent years, a growing body of research has suggested that

electrical activity may play an important role in the initiation and

development of tumors (58). Studies have shown that GABAergic

signaling could promote the development of melanoma through its

effect on the basic electrical activity between cells (59). Furthermore,

this study has shown that upregulation of GAD1 is closely

associated with the ability of primary tumors to form, suggesting

that GAD1 may serve as a valuable prognostic marker (60).
3 The GABAergic system inhibits
tumor growth

3.1 Intracranial tumor

The mechanism of the GABAergic system in glioma

development remains controversial. A number of studies have

indicated that endogenous GABA could potentially suppress

glioma cell proliferation via GABAA receptor subunits, while

others have suggested a contrary effect, proposing that GABA

may in fact promote glioma progression (61). However, the

detailed mechanism of action of GABA in vivo remains to be

elucidated. Recent studies have shown that GABA-A receptor

centered miRNA can directly or indirectly regulate glioma

growth. In addition, miRNAs such miR-139-5p affected glioma

malignant biological behavior via targeting gamma-aminobutyric

acid A receptor alpha 1(GABRA1) (62). Furthermore, propofol has

been shown to play an anti-tumor role by regulating non-coding

RNAs. For example, miRNA-206 and lncRNA have been observed

to inhibit glioma cell proliferation by blocking or decreasing the

expression of the PI3K/AKT signaling pathway and c-Myc/GSTM3

(17, 63). A previous study showed that GABA-A receptors are

exclusively expressed in low-grade and anaplastic gliomas. The

observed loss of expression in glioblastoma might be regulated by

miRNAs (64). In recent years, a significant body of research has

demonstrated the existence of a potential bidirectional interaction

between the gut microbiota and the brain (65). Some scientists have

hypothesized the existence of a regulatory mechanism by which the

gut microbial community influences neurotransmitter levels, with

subsequent effects on glioma development (66). The GABAergic

stroma has been shown to inhibit glioma growth (67). A study of the

GBM database showed that GAD1, GAD2 and ABAT levels were

decreased in mesenchymal GBM and that this decrease was

associated with poor prognosis. This suggests that a reduction in

GABA production or an increase in metabolism may be associated
Frontiers in Oncology 06
with GBM progression (68). However, further research is needed to

confirm this mechanism of GABA signaling in glioma.
3.2 Thoracic neoplasms

Pharmacological activation of GABA-A receptors has been

shown to induce autophagy by activating the GABA-A receptor-

associated protein (GABARAP), the mitochondrial receptor NIX

and utilizing the ubiquitin-binding protein p62, which inhibits the

proliferation of non-small cell lung cancer (NSCLC) cells and brain

metastases while reducing the toxicity of radiotherapy (69). In

addition, the intravenous anesthetic propofol has been shown to

inhibit lung cancer invasion and metastasis via the GABA-A

receptor pathway (70). There is also evidence that the GABA

receptor may have multiple roles in the biological behavior of

tumor cells as well as in the signaling pathway in lung cancer (6).

The findings obtained from Zhang and colleagues suggested that the

pattern of GABA receptor gene phenotype expression may be

involved in the regulation of tumorigenesis. And the expression

of GABA receptor may be not only promising genetic therapeutic

targets but may also serve as valuable prognostic markers for

NSCLC (71). However, further research is needed to elucidate the

detailed mechanism by which the GABAergic system exerts its effect

on lung cancer. In contrast to NSCLC, GABARAP is also able to

regulate epithelial-stromal transformation (EMT) in BC via the

AKT/mTOR signaling pathway, thereby inhibiting the proliferation

and invasion of breast cancer cells (72). Interestingly, Kiranmai

Gumireddy et al. showed that GABA-Aa3 could activate the AKT

signaling pathway in breast cancer and promote tumor cell

migration and invasion, while mRNAs and key enzymes that

produce GABA-Aa3 were only expressed in some breast cancer

cell lines. And GABA-Aa3 in the form of mRNA editing has been

shown to inhibit the AKT signaling pathway and breast cancer

metastasis (73). This study may provide a new avenue of research to

investigate the various mechanisms of action of the GABAergic

system in tumor tissues.
3.3 Abdominal neoplasms

Gastric carcinoma (GC) is a malignant neoplasm that imposes a

substantial global burden. GABA and its receptors have been

showed to play vital roles in the occurrence and progression of

GC (74). Recent studies demonstrated that Epberberine (EPI) could

cause cell cycle arrest and induce cell apoptosis via Bcl-2/BAX/

caspase axis by targeting GABA-Ab3 receptor (75). However, this

study did not extend its investigation to the potential consequences

of GABA-Ab3 stimulation by GABA or EPI on GC cell lines. A

recent study has suggested that molecular subtypes associated with

GABA receptor activation may be able to predict the prognosis of

patients with gastric cancer (76).

Minuk et al. proposed that alterations in the expression of

GABAergic signaling in the liver might contribute to the
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pathogenesis of hepatocellular carcinoma (HCC) and inhibit the

proliferation of malignant liver cell lines via GABA-A receptors b2
and g2 (77, 78). In addition, studies have shown that GABA-B

receptor agonists could inhibit the migration of HCC cell lines via

cAMP and p21 (79). Notably, the results obtained from Chen et al.

showed that GABA could suppress the migration, invasion and

metastasis of HCC cells through GABA-A receptors (80). Their

findings emphasized that GABA receptor might represent as

potential therapeutic target for liver cancer treatment.

Bioinformatic analysis showed that the expression of ABAT was

lower in HCC tissues than in normal or adjacent non-cancerous

tissues. And the overexpression of ABAT could inhibit the

proliferation, migration and invasion of HCC cells (81). In

addition, ABAT has been proposed as a prognostic indicator in

HCC. An animal experiment based on the TCGA database also

verified the change in ABAT expression in HCC (82). In contrast,

some researchers have suggested that the GABA-A receptor subunit

r1 is associated with a short overall survival (OS) in HCC and may

also be a potential prognostic indicator in HCC (83). However, the

complex mechanism of action of the GABAergic system in HCC

represents a significant obstacle to the realization of its treatment

for HCC.

Previous research showed that GABA inhibited the invasion

and migration of cholangiocarcinoma (CCA) cell lines by

suppressing the activity and expression of MMP-2 and MMP-9

(84). And their further studies have revealed that GABA binds to

GABA-B receptors, which may inhibit the proliferation of

cholangiocarcinoma cells via JAK/STAT3 (85). In addition, recent

research has demonstrated that GABA-B receptor agonists have the

ability to inhibit the proliferation of bile duct cancer cells via the

GSK3a/b-STATA pathway and its downstream targets in

cholangiocarcinoma from diabetic patients (86). Furthermore,

findings by Giammarco Fava et al. indicated that GABA can

suppress the proliferation of cholangiocarcinoma cell lines via

upregulation of the cAMP-ERK1/2 signaling pathway (87). CCA

is an aggressive tumor, with the majority of patients presenting with

advanced disease at the time of symptom onset. The current

available systemic therapies have limited efficacy and short

survival (88). Therefore, it is imperative to identify new

therapeutic targets. Existing studies have shown that the GABA-B

receptor could significantly inhibit tumor cell growth in CCA.

Therefore, the GABA-B receptor may be a promising therapeutic

target for cholangiocarcinoma. However, no further studies have

been conducted to demonstrate whether the GABA-B receptor

exerts the same inhibitory effect in vivo.

Contrary to previous findings, Banerjee et al. demonstrated that

GABA monotherapy is as effective as gemcitabine in pancreatic

cancer, affecting multiple signaling pathways and effectively

reversing nicotine-induced drug resistance (89). It is noteworthy

that baclofen, a GABA-B receptor agonist, has also been observed to

promote pancreatic cancer progression and potentially increase

drug resistance (90). This phenomenon may be due to the

difference in affinity between GABA and the GABA-A and

GABA-B receptors in pancreatic cancer. However, previous

studies have shown that the GABA-A receptor could also
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facilitate the progression of pancreatic cancer. The multiple roles

of the GABA system in pancreatic cancer are also reflected in the

current state of research into the effects of the GABA system on

tumor tissue (91). Further research is still needed. The results of this

study are similar to previous studies which showed that the

combination of the COX-2 inhibitor celecoxib and GABA can

significantly inhibit pancreatic cancer growth (92). However, the

study did not clearly elucidate whether GABA can independently

play a role in inhibiting tumor growth and the effect of inhibition. In

addition, miR-92b-3p can inhibit the expression of AKT/mTOR

and JNK signaling pathways by inhibiting Gabra3 (GABA-A

receptor subunit) and ultimately inhibit the proliferation,

migration and invasion of PC cells (93).

Colorectal cancer (CRC) is the another most commonly

diagnosed abdominal neoplasms. The GABAergic system also

plays a significant role in colorectal cancer (CRC) by influencing

tumor growth and immune responses. Recent studies have shown

that Lactobacillus plantarum can inhibit cAMP-dependent ERK/

CREB phosphorylation through the GABA receptor (GABABR),

promote the expression of apoptosis protein 2 (cIAP2) and

ultimately induce apoptosis of tumor cells (94). Further studies

have shown that GABAB receptors may inhibit CRC progression by

regulating the Hippo/YAP1 pathway and EMT (95). In addition,

GABA-B has been shown to inhibit the proliferation of colorectal

cancer cell lines by regulating the GSK-3b/NF-kB signaling

pathway (96). The above studies on CRC suggest that GABA-B is

more highly expressed in CRC tissues and has a greater inhibitory

effect on CRC. However, comparative studies of the GABA-A

receptor in CRC are still limited and further verification of its

specific mechanism of action is required.
3.4 Other neoplasms

Chondrosarcoma is a rare type of bone cancer that develops in

cartilage cells. It is the most common bone cancer in adults that

usually begins in the bones, but can sometimes occur in the soft

tissue near bones. Chondrosarcoma happens most often in the

pelvis, hip and shoulder. More rarely, it can happen in the bones

of the spine or extracranial skull base (97). Chondrosarcoma arises

from neural crest cells and the GABAergic system plays a key role in

the development of the nervous system. Therefore, the GABAergic

system may play an important role in the development and

progression of chondrosarcoma. There is evidence that changes in

intracellular calcium can facilitate programmed death in

chondrosarcoma cell lines by inhibiting the MAPK and PI3K/

AKT/mTOR signaling pathways through GABA-B receptor-related

calcium channels (98). The prognoses of chondrosarcomas are

strongly correlated with histologic grading. Generally,

chondrosarcoma has a high incidence of local recurrence and

metastasis despite surgical resection, which is associated with poor

prognosis. However, the studies focused on the elucidation of the

relationship between the GABAergic system and high-grade

chondrosarcomas are limited. The spatial heterogeneity of GABA-

re la ted s igna l ing pathways in anatomica l ly d is t inc t
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chondrosarcomas remains unclear, meriting in-depth exploration.

In contrast to the direct stimulation of GABA-B observed in the

renal cell carcinoma (RCC) cell line, there is evidence that ABAT is

significantly decreased in patients with RCC and can significantly

inhibit cancer cell proliferation and migration following

overexpression (99). This suggests that the GABAergic system may

have a more profound mechanism in RCC, and no studies have yet

demonstrated the role of GABA receptors between RCC cells.

As discussed above, the opposite outcomes of GABAergic

elements in different types of cancers could be attributed to several

factors. The downstream molecular pathways of GABAergic

signaling in different tumors are diverse such as PI3K-PKC

signaling axis, EGFR-ERK1/2 signaling pathway, c-Myc/GSTM3,

AKT signaling pathway, Bcl-2/BAX/caspase axis etc. And the

variation in the subunit proteins of the GABA-A receptor might be

another contributing factor. Variability in the expression of GABA-A

receptors and their subunits in different types of tumor cells has been

reported previously. Moreover, the expression level of GABA in

tumor tissue and adjacent tissues was diverse. And the GABA might

have complex mechanisms in modulating tumorigenesis not only by

directly regulate the tumor cells proliferation but also regulate the

tumor-microenvironment indirectly.
4 GABARAPs and autophagy

Autophagy is a major intracellular degradation process that

transports cytoplasmic components to lysosomes for degradation. It

is a central molecular pathway for the maintenance of cellular and

organismal homeostasis (100). Since its discovery in the 20th

century, autophagy has been extensively studied and its

association with various diseases has gradually emerged (101).

The present study explores the process of GABA-A receptor

cluster formation and maintenance, induced by presynaptic

terminals during the formation of synaptic connections. This

study suggests that autophagy-associated proteins may play a role

in the process of transporting GABA-A from the cell surface,

following endocytosis, to the autophagy-derived compartment for

degradation. This finding suggests the presence of a hitherto

unrecognized link between GABA receptors and autophagy (102).

It has been established that GABARAPs are distributed across the

entirety of the human body. The study of the central nervous system

(CNS) has been identified as providing a reference point for further

studies of GABARAPs in other systems (103). For example, there is

evidence that GABA can attenuate intestinal epithelial apoptosis

caused by enterotoxin-producing Escherichia coli (ETEC) through

the AMPK autophagy pathway (104). In osteoarthritis (OA),

GABARAP has demonstrated efficacy in preserving the viability

of bone mesenchymal stem cells (BMSCs), whilst concomitantly

promoting their osteogenic potential. This effect is achieved

through the initiation of autophagy-related pathways (105). In

addition, autophagy has been studied in the context of metabolic,

pulmonary, renal, infectious, musculoskeletal and ocular diseases
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(100). It should also be noted that certain pathways, which have

been observed to influence autophagy via associated GABA

receptor-related proteins, also play a substantial role in the

development and genesis of tumors.

As research progresses, an increasing body of evidence suggests

that autophagy-related genes may play a pivotal role in the

development of tumors (106). Autophagy is generally considered

to have a dual function in the process of tumor initiation and

development, with the potential to either inhibit or promote

tumorigenesis. Recent studies have shown that the conflicting

roles of autophagy in tumors may be influenced by various

factors, including the specific oncogenes and tumor factors

involved. This may be related to different oncogenes and tumor

factors (107). However, the specific mechanism of autophagy in

different tumors is still not well understood. Further investigation of

the complex molecular regulatory mechanisms and the different

roles of autophagy, GABA and its receptor-related proteins may be

necessary. GABARAPs is a critical component of the mammalian

autophagy-related protein Atg8 (108). GABAA receptor-associated

protein-like 1 (GABARAPL1) is a member of the GABARAPs

family. Studies have shown that knocking down GABARAPL1 in

breast cancer cell lines can lead to inhibition of autophagy, which is

regulated by the mTOR and AMPK signaling pathways. This in

turn affects the growth of tumor cells (109). In addition, studies by

Douglas S. Grunwald and Paula Szalai et al. have shown that

GABARAPs are essential for the proper regulation of autophagy

initiation and progression, as well as partial autophagy in relation to

LC3s (110, 111).

In recent years, GABARAPL1 has been identified as a novel

autophagosome marker. A study in triple negative breast cancer

(TNBC) has shown that high expression of GABARAPL1 is

significantly associated with poor prognosis in TNBC. Inhibition

of GABARAPL1 has been shown to induce apoptosis in TNBC cells

and inhibit metastasis (112). Furthermore, research has

demonstrated that the GABARAPL1 gene is subject to regulatory

influence from CREB-1, otherwise referred to as CREB binding

protein 1. This regulatory association has been observed in specific

breast cancer cell lines (113). In addition to TNBC, GABARAPL1

overexpression in nasopharyngeal carcinoma (NPC) can induce

autophagosome formation, reduce HIF-2a, and then promote

apoptosis of nasopharyngeal carcinoma cells to inhibit tumor cell

growth (114). And overexpression of GABARAPL1 has been shown

to inhibit tumor cell proliferation in hepatocellular carcinoma

(HCC) cell lines and may be associated with prognosis (115).

There is evidence that a long non-coding RNA (lncRNA),

nuclear-enriched abundant transcript 1 (NEAT1) variant 1

(NEAT1v1), could promote autophagy through GABARAP and

lead to radio-resistance of hepatocellular carcinoma (HCC) cells

(116). In prostate cancer, GABARAPL1 is regulated by the

androgen receptor (AR), which affects the proliferation of

prostate cancer cells (117, 118). As previously mentioned in the

treatment of NSCLC, GABARAP-NIX could induce autophagy,

thereby controlling tumor progression and reducing radiation
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toxicity (68). Glioma is one of the most common malignant tumors

of the nervous system. And autophagy-related genes (ARGs) play

an important role in glioma occurrence, progression, and treatment.

Previous have identified GABARAP as one of the ARGs which is

associated with the development of glioma (119). The preceding

research posits the hypothesis that the effects of GABA on particular

tumor tissues may be the consequence of its impact on autophagy.
5 GABA regulates immune cells in the
tumor microenvironment

The tumor microenvironment (TME) is a complex and dynamic

milieu that plays a crucial role in cancer progression and response to

treatment. It is composed of various components, including tumor

cells, immune cells, stromal cells, and extracellular matrices, which

interact and mutually regulate each other (120). The notion that

GABA is exclusively of glial origin, or derived from tumor tissue, is

demonstrably fallacious. Recent findings have revealed that B cells

have the capacity to induce the synthesis and secretion of GABA

following activation by foreign stimulation, thereby constraining anti-

tumor immunity (121). In addition, there is evidence showing that

the GABA-A receptor is associated with the development and

function of the immune system. CD8+ T cells are end effectors of

cancer immunity. Most forms of effective cancer immunotherapy

involve CD8+ T cell effector function (122). GABA has been shown

to regulate the proliferation and migration of T-cells and to influence

the growth and metastasis of tumor cells. This process might be

initiated by GABA stimulation of the GABA-A receptor on the

surface of CD8+ T cells (123). CD4+ T lymphocytes have been

implicated in antigen presentation, cytokine release, and cytotoxicity,

suggesting their contribution to the dynamics of the TME (124). It is

noteworthy that GABA-A receptor activation could reduce the

number of Treg cells, thereby inhibiting the invasion and migration

of lung cancer. However, studies have also shown that GABA can

inhibit CD4+ T cells and promote the proliferation of Treg cells,

limiting anti-tumor immunity (70, 125). The different phenotypes of

macrophages have different effects on tumors. Research suggests that

GABA can enhance IL-10 and oxidative phosphorylation

(OXPHOS), the expression of related proteins, to accelerate the

transformation of the anti-inflammatory macrophage phenotype

and promote its infiltration, thereby facilitating tumor progression.

At the same time, it can inhibit CD8+ T cells, thereby impeding the

anti-tumor immune response (121). In addition, GABA-A receptors

have been shown to affect peripheral blood mononuclear cells and

antigen-presenting cells, including dendritic cells (DCs) (125, 126).

Although existing studies have demonstrated that GABA can directly

affect immune cells through GABA-A receptors, inhibit anti-tumor

immunity and promote tumor cell growth and metastasis, the

mechanism of its immune escape in the tumor immune

microenvironment remains unclear. Some studies have suggested

that GABA signaling may influence the immune microenvironment

in tumors, including pancreatic cancer (91). In addition, GABRP is

positively correlated with the density of macrophages in the tumor.

Macrophages are thought to promote tumor progression by
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(127). Although studies have shown that GABA can influence the

efficacy of immunotherapy, and research on the GABAergic system

in the immune system has increased in recent years, the specific

mechanism by which GABAergic signaling affects the tumor immune

microenvironment remains unclear. One of the most important

questions is how the GABAergic system is induced in tumors and

what are the specific roles of downstream targets of the GABAergic

system and immune cells during tumor progression and metastasis.

In conjunction with the above studies, certain non-coding RNAs have

been shown to influence the expression of GABA-A receptor

subunits. GABA-A plays a central role in immune cells, suggesting

that this pathway may warrant further investigation. In addition,

related ion channels may play a crucial role in the GABAergic system.

For example, Ca2+ ion channels have been shown to play a central

role in breast cancer progression, pancreatic cancer drug resistance

and immune cell development (125).
6 Novel therapeutic targeting
GABAergic system

A growing body of research indicates that the GABAergic system

plays a pivotal role in various tumor tissues through different

mechanisms of action. Thus, a novel therapeutic approach to

tumors involving GABAergic system expression regulation has

been developed and validated in select tumor types. It is

hypothesized that drugs targeting the GABAergic system could

prove effective in treating tumors. A plethora of GABA receptor-

related drugs have been developed, including benzodiazepine analogs,

that can activate GABA-A receptors, thus modulating melanoma

progression and enhancing the efficacy of radiation and PD-1

therapy. This provides a reference for the use of psychotropic drugs

as anti-tumor drugs (128). Meanwhile, it has been demonstrated that

GABA-related receptors are able to influence the radio resistance of

tumor cells via autophagy-related genes. These results suggest that

GABA-related drugs may not only have a direct effect on tumor

treatment, but may also be used as an adjuvant drug to increase the

therapeutic efficacy of specific tumors. However, a critical evaluation

of preceding studies indicates that the impact of GABA receptor

stimulation and suppression on cancerous cell proliferation may be

paradoxical. Consequently, the utilization of this approach in tumor

treatment remains constrained by limitations such as the conflicting

effects of propofol in glioma. Furthermore, as one of the most

commonly used anesthetics, the potential tumor-promoting or

tumor-inhibiting effects of propofol during surgery must be

considered (17). The heterogeneity and intricacy of GABA

receptors, in conjunction with the variations amongst distinct

tumor tissues, could potentially elucidate the equivocal outcomes

pertaining to the utilization of GABA antagonists and agonists within

anti-tumor pharmaceuticals. In comparison to receptor agonists and

inhibitors, the potential applications of ABATs and GADs drugs that

affect GABA metabolism appear to be more promising. Studies have

shown that the FDA-approved drugs bilobalide and vigabatrin, which

can regulate GADs and ABAT, have inhibitory effects on gastric and
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breast cancer BMS cells (107, 108). The development of advanced

gene editing technologies, most notably the clustered regularly

interspaced short palindromic repeats- CRISPR associated protein

(CRISPR-Cas) system, has enabled large-scale and systematic

investigations of genetic interactions (129). Diehl et al. identified

interactions among paralogous genes including GABARAP-

MAP1LC3B and GABARAP-GABARAPL2 which suggested the

utility of CRISPR-based methods to investigate the therapeutic

targets involving GABARAP (130–133). Moreover, the autophagy

flux assays results showed the essential function of the Atg8 family

and identify GABARAP sub-family members (GBRPL1, GBRPL2) as

primary contributors to PINK1/Parkin mitophagy and starvation

autophagy (14). These novel technological approaches provide great

assistance for us to explore their potential molecular mechanisms and

related molecular pathways.
7 Conclusions

A number of studies have showed the dual potential of the

GABAergic system on tumor progression. There is an urgent need

for further investigation into the safety of GABAergic system-

targeted drugs. The regulatory factors centering around GABA,

which play a pivotal role in various physiological and potentially

pathological processes, warrant in - depth investigation. This paper

reviews the possible mechanisms of the GABA signaling system to

promote or inhibit tumor initiation and development, as well as

their impact in immunity and autophagy. However, the precise

mechanism by which the GABAergic system contributes to tumor

metastasis remains to be elucidated. Furthermore, the confinement

of existing research to specific cell lines implies that distinct cell

lines derived from the same tumor may generate divergent

research outcomes.
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