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Ultrasound-based radiomics
combined with B3GALT4 level
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breast cancer
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Chengyi Wang3, Huijie Zhuang1, Jin Shi1, Shiqing He1, Xia Sun1,
Li Ma1, Hao Guo1 and Hui Cheng4*

1Department of General Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China, 2Department of
Ultrasound, Xuzhou Central Hospital, Xuzhou, Jiangsu, China, 3Clinical Medical School, Jining Medical
University, Jining, Shandong, China, 4Department of Gynecology and Obstetrics, Xuzhou Central
Hospital, Xuzhou, Jiangsu, China
Objective: To evaluate the value of the clinical model for predicting axillary

lymph node metastasis (ALNM) of breast cancer before operation by integrating

ultrasound (US) and b-1,3-galactosyltransferase-4 (B3GALT4) expression level of

the primary tumor.

Methods: A total of 135 breast cancer patients who underwent US examination

and axillary lymph nodes dissection (ALND) were enrolled. They were randomly

divided into a training group (95 cases) and a verification group (40 cases). The

ultrasound imaging characteristics of the primary tumor were extracted from

each region of interest (ROI), and the Spearman correlation coefficient, least

absolute shrinkage and selection operator (LASSO), and the minimum

redundancy maximum relevance (mRMR) were used for feature selection. The

radiomics model was constructed by eighteen machine-learning techniques.

B3GALT4 expression level of the primary tumor was analyzed using quantitative

real-time polymerase chain reaction (qRT-PCR). A clinical model was

constructed based on B3GALT4 mRNA level. Further, a nomogram was

established by integrating B3GALT4 and the radiomics signature. The

effectiveness of each model was evaluated by receiver operating characteristic

(ROC) curve, Hosmer-Lemeshow test, calibration curve, and decision curve

analyses (DCA).

Results: A total of 1562 radiomics features were extracted, and 30 features were

selected. The SVM model had the highest AUC values of 0.937 and 0.932 in the

training and validation sets. The AUC of the radiomics model was 0.937 (95% CI:

0.885-0.989) in the training cohort and 0.932 (95% CI: 0.860-1.000) in the

external validation cohort, respectively. The levels of B3GALT4 mRNA were

significantly different between the ALNM and non-ALNM groups (P<0.001). The

clinical model achieved a higher AUC (training group, 0.904; validation group,
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0.887). The nomogram performed well in both the training set (AUC = 0.991) and

the validation set (AUC = 0.975). The nomogram had satisfactory clinical utility.

Conclusion: The nomogram constructed by ultrasound features and B3GALT4 of

the primary tumor can be used as an effective tool for individualized prediction of

ALNM in breast cancer.
KEYWORDS

breast cancer, axillary lymph nodemetastasis, b-1,3-galactosyltransferase-4, ultrasound
radiomics, machine learning
Introduction

Breast cancer is the most prevalent malignancy among women

globally and has increased significantly in recent years (1). The

axillary lymph nodes (ALN) are the most prominent site for breast

cancer metastasis, with multiple studies indicating that patients

with positive axillary lymph node involvement exhibit a 5-year

disease-free survival rate that is 20% lower than that of patients with

negative involvement (2). In addition, ALN status is a key

prognostic factor in the treatment strategy for breast cancer

because it influences the scope of surgical intervention and

evaluates the need for chemotherapy or radiation. Consequently,

the precise assessment of the ALN condition is essential.

In present clinical practice, axillary lymph node dissection

(ALND) and sentinel lymph node biopsy (SLNB) are often used

to assess ALN status. Despite being the most common axillary

staging technique, SLNB has drawbacks, such as lymphoedema or

arm numbness (3). Even if the false-negative rate is acceptable,

axillary lymph node metastasis (ALNM) may have gone undetected

in certain instances (7.8–27.3%) (4). ALND can accurately

determine ALN status and remove metastatic lymph nodes.

However, ALND may result in serious side effects that might

impair quality of life, including arm lymphoedema and shoulder

dyskinesia (5, 6). Hence, precise preoperative evaluation of ALN

metastases becomes especially important for preventing needless

surgeries and creating individualized treatment strategies.

Preoperative imaging, such as computed tomography, magnetic

resonance imaging, positron emission tomography, ultrasound (US),

and mammography, has become more important and widely used in

assessing ALNM in patients with breast cancer (7–10). Ultrasound is

more economical, harmless, and repeatable than other imaging

modalities. Radiomics has made substantial improvements in the

investigation of ALNM in breast cancer. Previous investigations have

demonstrated that multiple ultrasound characteristics of the primary

tumor are associated with ALNM, such as maximum diameter, lesion

margin, and extended range of enhancement lesions (11–14).

However, imaging alone is always unsatisfactory in terms of

diagnostic performance, with low sensitivity or specificity.
02
A number of glycosyltransferases have been identified as

important regulatory factors in a variety of malignancies, including

breast cancer (15–17). The b-1,3-galactosyltransferase-4 (B3GALT4)
gene, which belongs to the family of b-1,3-galactosyltransferase
genes, is significantly overexpressed in a variety of malignant

tumor tissues (18, 19). In breast cancer cells, inhibition of the

Smad3/4 complex binding to the B3GALT4 promoter SBE can

lead to the down-regulation of the B3GALT4 gene expression,

which in turn hinders the epithelial-mesenchymal transition

process in breast cancer cells (20). Additionally, our previous

study has shown that B3GALT4 was markedly overexpressed in

breast cancer tissues and had a strong correlation with certain

characteristics of clinicopathological status and unfavorable

prognosis (21). Therefore, B3GALT4 is strongly linked with the

progression of breast cancer.

Although nomogram models that incorporate ultrasound

features for predicting ALNM have been widely researched, there

is a paucity of studies that consider the integration of gene

expression and ultrasound characteristics of primary tumors. The

current study aimed to incorporate the ultrasonic features of

primary tumors and the expression of B3GALT4 in tumor tissues

to develop a model to predict ALNM in patients with breast cancer.

After collecting ultrasound features and B3GALT4 mRNA

expression data of breast cancer tissues, we would construct a

combined model using machine learning and radiomics

approaches. We sought to assess our model’s accuracy and

dependability by comparing and validating it against real ALN

status. This will help surgeons make better, more evidence-based

therapeutic decisions.
Materials and methods

Data acquisition

All the data were obtained according to the STROBE standards.

The Ethics Committee of Xuzhou Central Hospital approved this

research. Our study included 1045 breast cancer patients treated

with ALND at Xuzhou Central Hospital from October 1, 2021 to
frontiersin.org

https://doi.org/10.3389/fonc.2025.1570493
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sha et al. 10.3389/fonc.2025.1570493
December 31, 2023. The criteria for exclusion were listed below: (1)

patients with distant metastasis; (2) ultrasound over 1 week before

biopsy or surgery; (3) neoadjuvant chemotherapy or radiotherapy

performed prior to ultrasound examination; (4) patients without

complete clinical data and B3GALT4 mRNA analysis results; (5)

patients had other malignancies and serious illnesses; (6)

inapplicable ultrasound images. Finally, 135 breast cancer patients

who met the criteria were included. Figure 1 illustrates the patient

recruitment procedure. The sample size estimation was performed

based on results of previous related studies. In this study, a power

value (probability of correctly rejecting a false null hypothesis) of

0.8 was chosen given a type I error rate of a = 0.05, and the effect

size was set to 0.4. Based on the above sample size calculation

formula and parameters, the estimated minimum sample size to

obtain sufficient test power was 120. Yet, the sample size was

increased to 135 to improve the power of the study.
Ultrasound image acquisition

This research used ultrasound diagnostic devices like the

PHILIPS EPIQ 5, GE LOGIQ E9, and SIEMENS ACUSON

S2000. The probe models consisted of L12-3 (PHILIPS EPIQ 5),

ML6-15-D (GE LOGIQ E9), and 14L5 (SIEMENS ACUSON

S2000). For analysis, the patients were positioned supine with

both arms elevated, thus completely exposing the breasts and

axillary regions. Longitudinal, transverse, and radial scans

focusing on the nipples were performed to assess both breasts. A

scan of both axillary areas was conducted. The pictures were

acquired in DICOM format. The US analysis were conducted by

two professional sonologists who were not informed of the

pathological information. The intra-class correlation coefficient
Frontiers in Oncology 03
(ICC) was conducted to assess the consistency between the two

observers in analyzing radiomics features. Only the features with

good consistency (ICC > 0.75) were selected for further analysis.
Analysis of B3GALT4 mRNA level in breast
cancer tissues

The researchers collected 135 patients’ fresh breast cancer

samples. Quantitative real-time PCR (qRT-PCR) was used to

analyze B3GALT4 mRNA expression in breast cancer tissues.

First, we followed the manufacturer’s protocols to extract total

RNA using TRIzol reagent (Invitrogen, USA). Then, we transcribed

it to cDNA using a commercial reverse transcription supermix

(Bimake, USA). Finally, we quantified it using SYBR The 2xSG Fast

qPCR Master Mix (Sangon Biotech, China) on the Bio-Rad CFX96

machine. An internal reference known as GAPDH was used to

normalize the mRNA levels. To calculate the relative expression,

the 2-DDCt technique was used. This is a list of the B3GALT4

primer sequences: Forward: 5′-CTCCTGGCGGTCCTACTACT-
3′, Reverse: 5′-CCACCACAGGCATGAGAGTT-3′, and the

following were the GAPDH primer sequences: Forward: 5′-
GGTATGACAACGAATTTGGC-3′, Reverse: 5′-GAGCACAGGG
TACTTTATTG-3′.
Image processing, segmentation, and
feature extraction

We manually identified a rectangular region of interest (ROI)

on the ultrasound image using the ITK-SNAP tool (21). The ROI

involved the entire tumor area, including the complete hypoechoic
FIGURE 1

Recruitment scheme for patients in this study. 1045 breast cancer patients who received breast US examination and B3GALT4 mRNA expression
testing were recruited. Based on the exclusion criteria, a total of 135 patients were included, and these patients were divided into training set (n=95)
and validation set (n=40) in a 7:3 ratio. B3GALT4, Beta-1, 3-galactosyltransferase.
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tumor region, any echogenic halo, and other hypoechoic tumor

regions. To ensure consistent voxel spacing, all pictures were

adjusted to 1x1x1 mm. Ultimately, z-score standardization was

used to normalize the data.

PyRadiomics is an open-access software platform designed for

the extraction of features from medical pictures (22). The procedure

included the manual importation of delimited ROI pictures into the

PyRadiomics platform. The radiomic characteristics were

categorized into three groups: geometry, intensity, and texture.

Texture characteristics are retrieved through multiple techniques,

including the gray-level co-occurrence matrix (GLCM), gray-level

run length matrix (GLRLM), gray-level size zone matrix (GLSZM),

and neighborhood gray-tone difference matrix (NGTDM). Z-score

normalization was used to mitigate the problem of disparate scales

in manual radiomic features.
Feature selection and radiomics model
construction

For every radiomic feature, we employed feature selection and

the Mann-Whitney U-test. Radiomic features were only kept unless

their corresponding P value was less than 0.05. Spearman

correlation analysis was conducted on characteristics exhibiting

high repeatability, and the correlation coefficients were then

calculated. If the correlation coefficient between any two

characteristics exceeded 0.9, only one feature was preserved. We

employed the minimal redundancy maximum relevance (mRMR)

technique to select the features that are most connected to ALNM.

We further reduced the number of attributes needed to develop a

signature by using the least absolute shrinkage and selection

operator (LASSO) regression model. Using regulatory weight l,
LASSO minimizes regression coefficients to zero and properly

adjusts many unnecessary attributes to zero. A 10-fold cross-

validation with minimal criteria was used to determine the

optimal l value, resulting in the smallest cross-validation error.

The chosen parameters with non-zero coefficients were merged into

a radiomics signature.

We incorporate the final features from Lasso feature selection

into various machine learning models such as Logistic Regression

(LR), Naive Bayes, k-nearest neighbors (KNN), Decision Tree,

Random Forest, Extra Trees, XGBoost, Support Vector Machine

(SVM), and Multi-Layer Perception (MLP) to develop a model.
Clinical model and radiomics-clinical
nomogram model construction

Our previous research has shown a substantial correlation

between the expression of the B3GALT4 gene in tumor tissues

and axillary lymph node metastases in breast cancer patients (23). A

clinical model was established based on the level of B3GALT4. A

nomogram was constructed by combining B3GALT4 and the

radiomics signature.
Frontiers in Oncology 04
Model evaluation

Every model received independent validation in both the testing

and validation cohorts. Receiver operating characteristic (ROC)

curves were constructed to visually assess each model’s diagnostic

performance. The corresponding area under the curve (AUC),

diagnostic accuracy, sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV) were then

analyzed to identify each model’s diagnostic efficacy.

The conformity between the estimated and true status of

axillary lymph nodes was evaluated using calibration curves. The

variation between the predicted and actual results was evaluated

using the Hosmer-Lemeshow test. The nomogram’s practical value

was evaluated using the decision curve analysis (DCA). The

procedure of this study is shown in Figure 2.
Statistical analysis

Statistical analysis was performed utilizing Python (version

3.70). Student’s t-test or Mann-Whitney U-test was used to

evaluate continuous variables. The Chi-square test or Fisher’s

exact test was used to evaluate categorical variables. A two-sided

P-value of <0.05 was established to indicate statistical significance.
Results

Patient characteristics

The clinical characteristics of all included patients are shown

in Table 1. All 135 patients were randomly divided into the

training cohort (n=94) and the validation cohort (n=41) in a

7:3 ratio. There were no substantial differences in the US features,

clinicopathological indicators, and B3GALT4 levels between the

two groups.
Construction of radiomics model

1562 features were extracted from the ROI of each patient,

including 306 first-order features, 14 shape features, and 1242

texture features. Figures 3A, B shows the amount and percentage

of handcrafted characteristics. There was a total of 306 firstorder

(23.99%), 374 glcm (22.65%), 238 gldm (14.42%), 272 glrlm

(16.47%), 272 glszm (16.47%), 85 ngtdm (5.15%), and 14 shape

(0.85%). A total of 1106 features exhibited significant differences

between the ALNM and the non-ALNM groups. Afterwards, 216

features were retained for further investigation after a Spearman

correlation analysis. Following validation using the mRMR method,

only 30 features were preserved. 12 features with non-zero

coefficients from the original set of 30 features were refined using

LASSO regression screening to construct a radiomics score.

Spearman correlation analysis showed that good agreement
frontiersin.org
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between each features (Figure 3C, coefficients -0.834 to -0.827).

Subsequently, these features were evaluated using 10-fold cross-

validation. Ultimately, LASSO regression model showed the best

prediction performance when l = 0.0391. Figures 4A, B represents

the mean standard error (MSE) and the LASSO regression. The

coefficient values of the non-zero characteristics were shown in

Figure 4C. The calculation formula is as follows:

Label=0.4680851063829788 + 0.014251*lbp_3D_m2_firstorder_

Range+0.053886*wavelet_LLL_glszm_SmallAreaHighGray

L e v e l Empha s i s+0 . 043131 *wa v e l e t _HHH_g l cm_ Idn -

0.044695*log_sigma_2_0_mm_3D_firstorder_Skewness+0.050389*

lbp_3D_m2_ngtdm_Complexity+0.034417*wavelet_HLL_glcm_Idn-

0.082545*lbp_3D_m2_glcm_ClusterShade-0.018325*wavelet_LHL_

firstorder_Skewness+0.058408*wavelet_LHH_firstorder_Skewness-

0.021728*square_glszm_LargeAreaLowGrayLevelEmphasis-

0.065682*square_glszm_SmallAreaLowGrayLevelEmphasis-

0.034928*exponential_gldm_DependenceNonUniformity.

A variety of machine learning models were developed and

evaluated to identify the most effective model. Supplementary Table

S1 presents all models used in this study, revealing the linear-SVM
Frontiers in Oncology 05
model exhibiting superior performance relative to the other models.

Linear-SVM had the highest AUC values in both the training (0.937,

95% CI: 0.885-0.989) and testing (0.932, 95% CI: 0.860-1.000)

cohorts. Consequently, linear-SVM was selected as the basic

algorithm to produce the radiomics scores. The optimal

characteristics were integrated into the linear-SVM machine

learning technique to develop a radiomics model via five-fold

cross-validation. Supplementary Figure S1 displays the sample

prediction histogram of the SVM model. The blue section of the

picture denotes individuals devoid of axillary lymph node metastasis,

whereas the orange section denotes those with positive metastasis.

Figure 4D illustrates that the AUC of this model was 0.937 (95%

CI: 0.885-0.989) in the training cohort and 0.932 (95% CI: 0.860-

1.000) in the validation cohort. Figures 4E, F illustrate the confusion

matrix of the radiomics model. The radiomics model had an

accuracy of 0.894 (95% CI: 0.813-0.948), sensitivity of 0.841,

specificity of 0.940, PPV of 0.925, and NPV of 0.870 in the

training set. In the external validation cohort, the model attained

an accuracy of 0.854 (95% CI: 0.708-0.944), sensitivity of 0.812,

specificity of 0.880, PPV of 0.812, and NPV of 0.880.
FIGURE 2

Workflow of this study. 1562 features were extracted from the ROI on the breast cancer ultrasound image of each patient. 12 features were refined
using LASSO regression screening to construct a radiomics score. Consequently, linear-SVM was selected to develop a radiomics model. QRT-PCR
was used to analyze B3GALT4 mRNA expression in breast cancer tissues. A clinical model was established based on the level of B3GALT4. Finally, a
combined model was generated using the radiomics and clinical models, which was visualized using a nomogram. The model’s diagnostic
performance was evaluated by the ROC curve. ROI, Rectangular region of interest; LASSO, Least absolute shrinkage and selection operator; qRT-
PCR, Quantitative real-time polymerase chain reaction; ROC, Receiver operator characteristic.
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Construction of clinical model

The levels of B3GALT4 mRNA were significantly lower in the

non-ALNM group (1.30 ± 0.31) than the ALNM group (2.13 ± 0.24)

(Figure 5A, P<0.001). Consequently, the SVM method was used to

construct a clinical model using B3GALT4. The clinical model’s

sample prediction histogram is represented in Supplementary

Figure S2. The blue section of the picture denotes individuals

devoid of axillary lymph node metastasis, whereas the orange

section denotes those with positive metastasis.

The clinical model showed an AUC of 0.904 (95% CI 0.848-

0.961), accuracy of 0.819 (95% CI: 0.726-0.891), sensitivity of 0.614,

specificity of 1.000, PPV of 1.000, and NPV of 0.746, respectively, in

the training cohort. In the test cohort, the model achieved an AUC

of 0.887 (95% CI 0.791-0.984), an accuracy of 0.780 (95% CI: 0.624-

0.894), sensitivity of 0.875, specificity of 0.720, PPV of 0.667, and

NPV of 0.900 (Figure 5B). The clinical model’s confusion matrix is

illustrated in Figures 5C, D.
Construction of a combined nomogram
model

A combined model was generated using the radiomics and

clinical models, which was visualized using a nomogram

(Figure 6A). The diagnostic AUC, accuracy, sensitivity, specificity,

PPV, and NPV of the combined model were 0.991 (95% CI: 0.979-

1.000), 0.947 (95% CI: 0.880-0.983), 0.955, 0.94, 0.933, and 0.959,

respectively, in the training cohort (Figure 6B). In the test cohort,

the model achieved an AUC of 0.975 (95% CI 0.933-1.000), an
TABLE 1 Patient characteristics across different cohorts.

Characteristic
Training

Cohort (n=94)
Validation

Cohort (n=41)
P

Clinicopathological characteristics

Age 55.64 ± 11.21 55.79 ± 10.18 0.942

BMI(kg/m2) 24.20 ± 3.70 24.60 ± 3.40 0.555

SLNM 0.645

Positive 43(45.7) 17(41.5)

Negative 51(54.3) 24(58.5)

Pathology 0.981

IDC 64(68.1) 28(68.3)

Others 30(31.9) 13(31.7)

ER 0.663

Positive 61(64.9) 25(61.0)

Negative 33(35.1) 16(39.0)

PR 0.976

Positive 53(56.4) 23(56.1)

Negative 41(43.6) 18(43.9)

Her-2 0.991

Positive 32(34.0) 14(34.1)

Negative 62(66.0) 27(65.9)

Ki-67 0.604

<14 27(28.7) 10(24.4)

≥14 67(71.3) 31(75.6)

Histological grade 0.449

I-II 57(60.6) 22(53.6)

III 37(39.4) 19(46.3)

Tumor size 0.352

T1 54(57.4) 20(48.8)

T2 40(42.6) 21(51.2)

Ultrasound features

Quadrant 0.342

Inner 71(75.5) 34(82.9)

Outer 23(24.5) 7(17.1)

Shape 0.915

Regular 5(5.3) 2(4.9)

Irregular 89(94.7) 39(95.1)

Margin 0.813

Smooth 3(3.2) 1(2.4)

Non-smooth 91(96.8) 40(97.6)

Calcifcation 0.590

(Continued)
TABLE 1 Continued

Characteristic
Training

Cohort (n=94)
Validation

Cohort (n=41)
P

Clinicopathological characteristics

No 46(48.9) 18(43.9)

Yes 48(51.1) 23(56.1)

Echo 0.354

Mixed 12(12.8) 3(7.3)

Low 82(87.2) 38(92.7)

BI-RADS category 0.744

4a 11(11.7) 4(9.8)

4b or 4c 65(69.1) 31(75.6)

5 18(19.2) 6(14.6)

Longitudinal to
transverse ratio

0.813

<1 3(3.2) 1(2.4)

≥1 91(96.8) 40(97.6)

B3GALT4
mRNA level

1.67 ± 0.52 1.65 ± 0.46 0.798
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accuracy of 0.927 (95% CI: 0.801-0.985), sensitivity of 0.875,

specificity of 0.960, PPV of 0.933, and NPV of 0.923 (Figure 6C).

The calibration curves of the nomogram showed an excellent

match of predicted ALNM with the true likelihood (Figures 7A, C).

Moreover, the Hosmer-Lemeshow test revealed that the nomogram

showed a strong fit (P = 0.173 in the training set; P = 0.082 in the

validation set). DCA indicated that the combined model provided

more net benefits than the radiomics and clinical models in

predicting ALNM (Figures 7B, D).
Discussion

Axillary lymph nodes are the predominant metastatic location for

breast cancer. The condition of ALN is pivotal in determining the

prognosis and therapeutic approach for breast cancer patients.

Consequently, the precise prediction of ALNM and the

identification of individuals who have an elevated axillary lymph

node burden are both critical and challenging assignments. Although

traditional US examination may detect markedly enlarged axillary

lymph nodes and assess the likelihood for cancer metastasis based on

morphology, margins, structure, and vascularity, it is not entirely

reliable in predicting high-burden lymph nodes (24, 25). Herein, a

prediction algorithm was developed by merging conventional

ultrasound imaging with B3GALT4 analysis. Our findings indicated

that this integrated model exhibits higher predictive efficacy in

comparison with the single model, suggesting that it is helpful in
Frontiers in Oncology 07
assisting physicians in the selection of the most appropriate

treatment. This study presents a trusted and feasible strategy for

predicting the ALN status in breast cancer patients.

In recent years, with the advancement of radiomics and

machine learning methods, a growing number of researchers have

utilized these two methodologies in clinical imaging research (26,

27). For example, in experiments based on breast cancer ultrasound

pictures, machine learning analysis enabled the development of a

high-accuracy model for the identification of triple-negative breast

cancer (AUC 0.88) (28). In predicting ALN metastasis in breast

cancer, radiomics and machine learning methods have also shown

excellent accuracy (29, 30). Qian et al. applied deep learning and

ultrasound images of primary breast cancer to create a nomogram

for assessing ALNM risk in breast cancer patients aged 75 years or

older, with an excellent predictive accuracy (AUC 0.937) (31). Wu

et al. exploited ultrasound-based radiomics and a deep-learning

algorithm to identify ALN tumor burden in patients with node-

positive breast cancer. The findings demonstrated that the machine

learning model could identify the status of ALN tumor burden with

higher accuracy and specificity than radiologists (32).

This study’s novelty is in the integration of radiomics and

machine learning techniques to create an innovative model. The

radiomics models proved to be effective in accurately distinguishing

the status of ALNs. In the training cohort and test cohort, SVM

obtained the highest AUC values of 0.937 and 0.932, respectively. In

comparison to conventional image evaluation methods, the

integrated model reveals exceptional accuracy and superiority by
FIGURE 3

Definitions of radiomic features used in this study. Ratio (A) and number (B) of handcrafted features. (C) Spearman correlation coefficients between
each feature. firstorder, first order features; glcm, gray level co-occurrence matrix features; gldm, gray level dependence matrix features; glszm, gray
level size zone matrix features; glrlm, gray level run length matrix features; ngtdm, neighboring gray tone difference matrix features; shape, shape
features.
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considerably increasing the AUC from 0.744 (previously reported)

to 0.991 in predicting ALNM. The heterogeneity within tumors can

be non-invasively captured using imaging omics technology. It

utilizes sophisticated feature analysis algorithms to extract high-

dimensional information from medical images. Conventional
Frontiers in Oncology 08
radiomics analysis mainly utilizes a single feature selection

technique. In order to avoid overfitting, our work applies several

machine learning techniques for feature selection first, followed by

the application of LASSO for feature selection subsequently. The

model not only gets higher predictive capacity but also offers
FIGURE 4

Radiomics feature selection based on the LASSO algorithm and construction of the radiomics model. (A): the MSE of LASSO regression. (B): the
coefficients for cross-validation of LASSO regression. (C): Selected features weight coefficients. (D): ROC curve of the radiomics model in training
and validation cohorts. Confusion matrix for the radiomics model in the training (E) and validation (F) cohorts.
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interpretable results, which can assist clinicians in comprehending

and using it.

To further improve the predictability, we combined B3GALT4

levels in tumor tissues with ultrasound imaging characteristics to

create a comprehensive model. The results indicated that the

integrated model had superior accuracy compared to the single-

factor model. B3GALT4 is significantly overexpressed in many

tumor tissues. B3GALT4 could inhibit the epithelial-mesenchymal

transition in breast cancer cells (20). Moreover, our prior research

demonstrated that B3GALT4 displayed elevated expression in

breast cancer and was associated with tumor development. The

negative predictive value achieved 0.959 in the training cohort and

0.923 in the test cohort, demonstrating a high degree of confidence

in the model’s accuracy for predicting a negative ALN. This implies

that the integrated model’s prediction of no axillary lymph node

metastasis has excellent accuracy. The integrated model’s

predictions of negative ALNs may provide doctors with a helpful

reference, allowing them to avoid unnecessary ALN procedures and

reduce the surgical risks. Alternatively, they may choose a fairly

conservative non-surgical therapy strategy.
Frontiers in Oncology 09
Our present study has several limitations. This is a retrospective,

single-center research with a limited sample size; hence, a larger

prospective investigation is required to further confirm its diagnostic

efficiency. Secondly, despite the interpretation of ultrasound pictures by

professional radiologists, a degree of subjectivity exists in evaluating

ultrasound parameters, and the imaging characteristics analyzed in our

research are limited. Consequently, a quantitative and effective

approach to analyze conventional ultrasound images is very

significant, such as integrating radiomics and deep learning to extract

more informative ultrasound characteristics, which is the purpose of

our further study. Moreover, future investigations should aim to clarify

the mechanisms connecting B3GALT4 with ALNM, along with

investigating novel treatment strategies.
Conclusion

In summary, the nomogram combined ultrasound features with

B3GALT4 of the primary tumor shows excellent accuracy and

reliability in predicting the ALN status in breast cancer. This
FIGURE 5

Construction of the clinical model based on B3GALT4 level. (A): The mRNA level of B3GALT4 in the ALNM and non-ALNM groups. (B): ROC curve of
the clinical model in training and validation cohorts. Confusion matrix for the clinical model in the training (C) and validation (D) cohorts. ****
P<0.0001.
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FIGURE 6

Comparison of the efficiency of the clinical, radiomic, and nomogram models. (A) The radiomics-clinical nomogram to predicting ALNM in breast
cancer. The ROC curves and AUC of the clinical, radiomic, and nomogram models in the training (B) and validation (C) cohorts.
FIGURE 7

The performance of clinical, radiomic, and nomogram models in the training and validation cohorts. The calibration curves of three models in the
training cohort (A) and the validation cohort (C). The DCA curves for three models in the training cohort (B) and validation (D) cohorts show that the
combined model has the greatest net benefit.
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method may act as a significant reference for doctors to improve the

effectiveness of personalized therapeutic strategies, assisting

patients in avoiding unnecessary axillary lymph node surgery,

thus minimizing surgical risks.
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