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Unveiling fatty acid subtypes:
immunometabolic interplay and
therapeutic opportunities in
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Liuxing Wu1, Ye Tian1, Hongji Dai1, Kexin Chen1* and Ben Liu1*

1Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology,
Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National
Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin
Medical University, Tianjin, China, 2Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan
Hospital of Wuhan University, Wuhan, China
Background: The goal of this study was to develop a predictive signature using

genes associated with fatty acid metabolism to evaluate the prognosis of

individuals with gastric cancer (GC).

Method: A total of 24 prognostic-related genes were identified by intersecting

differentially expressed genes with 525 fatty acid metabolism (FAM) -related

genes and applying a univariate Cox proportional hazards model. By performing

consensus clustering of 24 genes associated with FAM, two distinct clusters of

GC patients were identified. Subsequently, a risk model was constructed using 39

differentially expressed mRNAs from the two clusters through a random forest

model and univariate Cox regression.

Results: An R package, “GCFAMS”, was developed to assess GC patients’

prognosis based on FAM gene expression. The low-risk group exhibited a

more favorable prognosis compared to the high-risk group across various

datasets (P < 0.05). The model demonstrated strong predictive performance,

with AUC values of 0.86, 0.623, and 0.508 for 5-year survival prediction in the

training and two validation datasets. The high-risk group displayed lower IC50

values for embelin and imatinib, suggesting the potential efficacy of these drugs

in this subgroup. Conversely, the low-risk group demonstrated an elevated

response to immune checkpoints blockade therapy and a higher

immunophenoscore, which was further validated in additional cancer cohorts.

Public data from single-cell RNA sequencing confirmed that the characterized

genes were predominantly expressed in endothelial cells and fibroblasts.

Furthermore, the integration of transcriptomics and metabolomics revealed

notable variations in fatty acid levels between the clusters, underscoring the
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clinical relevance of our fatty acid metabolism signature in shaping the metabolic

profiles of GC patients.

Conclusion: This developed FAM signature demonstrated potential as a

biomarker for guiding treatment and predicting prognosis in GC.
KEYWORDS

gastric cancer, fatty acid metabolism, multi-omics technologies, immunotherapy,
single-cell transcriptomics
1 Introduction

Gastric cancer (GC) is a common form of cancer worldwide,

with nearly 1 million new cases and over half a million deaths

reported in 2022 based on the most recent data from the World

Health Organization International Agency for Research on Cancer

(1). This places GC as the fifth most prevalent form of cancer and

the fifth leading contributor to cancer-related deaths on a global

scale. The risk factors contributing to developing of GC include

infection by Helicobacter pylori, advanced age, high salt intake, and

inappropriate dietary habits (2).

Lipids play a crucial role in the composition of cellular

membranes and structural units of cells. In addition, lipids are

also used for energy storage and metabolism and play essential roles

as signaling molecules in various cell activities. Cancer is

characterized by significant alterations in lipid metabolism,

including fatty acids (FAs) and cholesterol (3). Cancer cells rely

on lipid metabolism to obtain the energy, components for biological

membranes, and signaling molecules needed for their growth,

survival, spread, metastasis, and reaction to the tumor

microenvironment and cancer therapy (4).

Malignant tumors primarily rely on de novo synthesis for

necessary FAs, whereas normal cells typically obtain them

through external sources (5–8). The increased production of

saturated and monounsaturated FAs from de novo FA synthesis

in cancer cells increase cell membrane saturation and resistance to

chemotherapeutic drugs (9). Certain important enzymes involved

in fatty acid synthesis, including ATP citrate lyase (ACLY), acetyl-

CoA carboxylase (ACC), and fatty acid synthase (FASN), are

upregulated in tumors and linked to aggressive tumor behavior

and unfavorable prognosis (10–12). Moreover, the fatty acid

transporter CD36, which is upregulated in cancer cells, facilitates

the spread and resistance to treatment of tumor cells through

increased absorption of long-chain FAs (13, 14).
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FAs and lipid storage can also impact various types of immune

cells, often leading to suppression of the immune system. Lipid

buildup inside bone marrow cells promotes oxidative metabolism

and supports immune-suppressing capabilities (15). The abnormal

accumulation of lipids in tumor-infiltrating DCs (TIDCs) hinders

their ability to present antigens (16). FA oxidation (FAO) is

necessary to form CD8+ memory T cells (17). It is also crucial for

differentiating Tregs and blocking FAO to avoid aggregation of

immunosuppressive effector T-cell populations (18, 19). In

conclusion, fatty acid metabolism (FAM) has impacts on immune

cell function in the tumor microenvironment.

In recent years, the specific phenotype of abnormal FAM in

tumor cells has gradually attracted great attention. Exploring the

role of abnormal FAM in tumor biology and strategies to treat

malignant tumors by targeting FAM pathways is receiving much

attention. The role of FAM in GC in its clinical treatment is

unknown and deserves further exploration. To evaluate the

relationship between the FAM-related gene expression pattern

and clinical outcomes of GC patients, 347 TCGA GC samples

were collected and divided into two clusters. A FAM-related risk

score was constructed to evaluate the prognosis of GC patients and

assess the biological characteristics.
2 Materials and methods

2.1 Data acquisition

Gene expression patterns and detailed clinical information were

acquired from The Cancer Genome Atlas database (TCGA),

accessible through the Genomic Data Commons portal (GDC)

(https://portal.gdc.cancer.gov/). Individuals within the dataset

who did not have detailed survival records were not considered

for further study. The training dataset consisted of a total of 347

clinical samples from GC (The Cancer Genome Atlas-Stomach

Adenocarcinoma, TCGA-STAD). To validate our results, we

included the GC dataset from the Gene Expression Omnibus

(GEO) with the accession number GSE34942, consisting of 56

samples, and the Tianjin GC cohort, which served as validation

sets and included 90 cases (20). Raw RNA-seq data from TCGA and

Tianjin GC cohort were normalized to Transcripts Per Million
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(TPM) values. Microarray data from the GEO dataset (GSE34942,

GSE13861, GSE15459, GSE26901, GSE26899, GSE28541) were

normalized using the Robust Multi-array Average (RMA)

method. To minimize potential batch effects across datasets, we

applied the ComBat algorithm. Quality control measures were

applied to remove low-quality samples and exclude those with

incomplete survival data. Additionally, TCGA mutation data and

copy number variation (CNV) data were extracted from the GDC,

which hosts TCGA data alongside other genomic datasets.
2.2 Identification of the FAM clusters in GC

525 genes associated with FAMwere compiled from the Gene Set

Enrichment Analysis (GSEA) database. Differentially expressed genes

(DEGs) between cancer and paracancerous tissue were identified by

applying the criteria (21) |log2 Fold Change (FC)| > 1 and P < 0.05

using the R package ‘edgeR’, and then intersected with FAM-related

genes. Afterwards, the univariate Cox proportional hazards model

was used to identify 24 genes linked to the survival time of GC

patients. The gene expression levels of 24 genes were used to

uniformly categorize the GC samples into clusters. The

ConsensusClusterPlus package (version 1.58.0) in R was employed

to perform the consensus clustering algorithm, repeated 1000 times

to ensure the stability of clusters (22). This process identified two

clusters, labeled as “cluster1” and “cluster2”. Principal component

analysis (PCA) confirmed the stability and reliability of the subtype

classification. The operating system of the identified clusters was

evaluated utilizing the Kaplan-Meier technique, with the log-rank test

employed to examine any statistical disparities.
2.3 Conducting pathway enrichment
analysis on genes that are expressed
differently across clusters

To identify DEGs in two clusters, we used differential

expression analysis based on an empirical Bayesian approach,

which is implemented in the ‘limma’ package of the R language

(23). DEGs were considered significant if their |log2FC| was greater

than 1 and the adjusted P value was less than 0.05 (24). To adjust for

multiple testing, we applied the Benjamini method and then

conducted Kyoto Encyclopedia of Genes and Genomes (KEGG)

and Gene Ontology (GO) enrichment analyses using the

‘clusterProfiler’ R package to investigate variations in biological

processes between clusters. The findings were considered

statistically significant, as the adjusted p-value was below 0.05.
2.4 Estimation of immune cell infiltration
between clusters

The single-sample genome enrichment analysis (ssGSEA)

algorithm (25) to perform a detailed analysis of 28 immune cell
Frontiers in Oncology 03
types in the tumor microenvironment. This analysis was based on

specific gene panels defined in the literature for each immune cell

subpopulation (26). To fully evaluate the immune status of cancer

patients, we utilized the ‘estimate’ R package to determine the

immune score, stroma score, and tumor purity. In addition, we

employed the CIBERSORT, MCPcounter and TIMER algorithms to

quantitatively assess the level of immune cell infiltration in the two

clusters. The ssGSEA score indicated the proportional presence of

different types of immune cells. Normalization of these scores to a

unity distribution ensures that the minimum score is zero and the

maximum is one, allowing for a standardized comparison across

different immune cell types.
2.5 Changes in gene landscapes and
mutation patterns in the two clusters are
of great importance

Utilizing the GenVisR tool, version 1.26.0, within the R package,

we identified the significantly mutated genes (SMGs). Afterward, two

groups were analyzed for mutation patterns usingMutationalPatterns

version 3.4.0 and maftools version 2.10.0 from R packages. We then

extracted the mutational signature from the GC dataset and

performed a comparative analysis against the COSMIC V2

mutation database (https://cancer.sanger.ac.uk/cosmic), employing

the cosine similarity method.
2.6 Construction and evaluation of the
FAM-related risk signature

DEGs were selected to create a set of signature genes using the R

software ‘limma’, based on the conditions of |log2FC| > 0.5 and P <

0.05 (27, 28). Volcano plots were used to demonstrate differential

genes. The R package “randomForest” was used to identify key

mRNAs, miRNAs, and lncRNAs contributing to the construction of

the FAM signature. Model performance was optimized using 10-

fold cross-validation, with 5 repeated runs to ensure stability and

reduce overfitting. The mean error rate and cross-validation error

were recorded for model selection. Genes significantly associated

with survival risk were identified through univariate Cox regression

analysis, and significant candidates (P < 0.05) were used to

construct prognostic signatures. A multivariate Cox proportional

hazards model was then applied to the selected genes, with the best

model determined via stepwise regression. The model’s predictive

ability was evaluated using the concordance index (C-index) and

log-rank test. A risk score for each sample was computed using the

coefficients derived from the multivariate Cox model. The

correlation between risk scores and survival time was assessed

using the Kaplan-Meier method and log-rank test. Additionally,

the risk models were assessed using receiver operating curves

(ROC). Multivariate Cox regression was used to assess the

difference between this risk signature and traditional risk factors

such as sex and age on the prognosis of GC patients.
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2.7 Immunotherapy response prediction
with FAM prognosis signature

Two groups undergoing immunotherapy were chosen to

confirm the effectiveness of the FAM signature: one with

advanced urothelial cancer (UC) treated with atezolizumab

(IMvigor210 cohort, N = 298) (29) and the other with melanoma

receiving anti-PD1 immunotherapy (Mela cohort, N = 121 (30).

Data on clinical information and gene expression from the

IMvigor210 cohort were obtained from the IMvigor210 dataset.

Gene expression data of the anti-PD1 melanoma cohort were

obtained from previous studies (30). Gene expression and

prognosis data for the Mela cohorts (GSE78220, N = 26;

GSE100797, N = 21) (31, 32) and the bladder cancer cohort

(GSE176307, N = 90) (33), all treated with immunotherapy, were

obtained from publicly available datasets.
2.8 Immunophenoscore analysis and
chemotherapeutic response between
different risk groups

The immunophenoscore (IPS), a highly effective molecular

indicator of immune response, was employed for profiling the

immune environments within tumors and cancer antigen profiles.

Previous research involved gathering data on the weights of

groupings of genes associated with the immune system,

categorized into four main groups: major histocompatibility

complex (MHC) molecules, suppressor cells, effector cells, and

immune checkpoints or immunomodulatory factors. Weighted

average Z-scores were computed using the gene expression levels.

Additionally, we calculated the IPS by adding together the weighted

average Z-scores of the four gene categories, resulting in a score

between 0 and 10. The score measures the amount and behavior of

immune cells in the tumor’s immune system, thus forecasting how

the tumor will respond to immunotherapy. A higher IPS represents

a higher immunotherapy response rate (26).

The study utilized the R package ‘pRRophetic’ to forecast the

sensitivity of chemotherapeutic drugs in GC patients (34),

determining IC50 through ridge regression and evaluating

prediction accuracy with 10-fold cross-validation (35).
2.9 Cluster analysis of single-cell RNA-
sequencing data

Data from individual cells (GSE167297) in five STAD samples

underwent preprocessing and analysis using the ‘Seurat’ R package.

To filter out low-quality cells, only cells with transcript counts

between 300 and 10,000, detected in at least three cells per

transcript, and with mitochondrial read fractions below 5% were

retained for further analysis. For clustering, we employed the

Louvain algorithm with a resolution parameter of 0.5, which was

selected to effectively capture major cell populations while avoiding

over-segmentation. This choice was validated through
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dimensionality reduction techniques (UMAP and t-SNE) and

marker gene expression analysis, confirming that the clusters

aligned with known major cell types. This resolution also aligned

with commonly used thresholds in published scRNA-seq

studies (36, 37). Primary cell categories were identified based on

established cell markers obtained from published sources or the

CellMarker database.
2.10 Study participants

A total of 42 individuals were included in the study, sourced

from the Tumor Tissue Bank at Tianjin Cancer Hospital. Illumina

NovaSeq 6000 was utilized for the RNA sequencing of every sample.

METWARE performed untargeted metabolomics measurements in

plasma. All the samples came from individuals diagnosed with GC

with accurate histological and pathological assessments. All cases in

the study were handled anonymously in compliance with legal and

medical standards, as approved by the Ethics Committee of Tianjin

Medical University Cancer Hospital and Institute, with informed

consent obtained from all patients.
2.11 Collection and preparation of serum
samples

Blood samples were obtained between 6:00 and 8:00 in the

morning following a period of fasting to minimize the impact of

food intake. Subsequently, all specimens were promptly placed in a

freezer at -80°C. Prior to initiating the process, take out the samples

from the -80°C freezer and allow them to thaw on ice until they are

completely free of ice (all following steps should be carried out on

ice). After thawing, vortexed the samples for 10 s and mix well.

Pipetted 50 mL of the sample into a numbered centrifuge tube. Next,

300 microliters of an internal standard extract containing 20%

acetonitrile and methanol in a 1:4 volume-to-volume ratio was

mixed vigorously for 3 minutes, followed by centrifugation at 12000

rotations per minute for 10 minutes at 4°C. Following

centrifugation, transfer 200 mL of the liquid above the sediment

into a separate centrifuge tube with the same number, then store it

in a freezer at -20°C for half an hour. After being spun at 12000

revolutions per minute for 3 minutes at 4 degrees Celsius, 180

microliters of the liquid above the sediment were transferred into a

tube equipped with the appropriate injection vial for analysis using

liquid chromatography-mass spectrometry. All sample extracts

were mixed in equal parts to form a QC sample.
2.12 LC-MS analysis

2.12.1 T3 UPLC conditions
The sample extracts were analyzed using an LC-ESI-MS/MS

system (38–40) (UPLC, ExionLC AD, https://sciex.com.cn/; MS,

QTRAP® System, https://sciex.com/). The analysis parameters

included the use of a UPLC column, specifically the Waters
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ACQUITY UPLC HSS T3 C18 (1.8 µm, 2.1 mm*100 mm), with the

column temperature set at 40°C, a flow rate of 0.4 mL/min, and an

injection volume of either 2 µL or 5 µL. The solvent system

consisted of a mixture of water (0.1% formic acid) and

acetonitrile (0.1% formic acid) with a gradient program starting

at 95% acetonitrile and 5% water at 0 min, transitioning to 10%

acetonitrile and 90% water at 10.0 min, maintaining that ratio until

11.0 min, then returning to 95% acetonitrile and 5% water at 11.1

min and staying at that ratio until 14.0 min.

2.12.2 QTOF-MS/MS
The Triple TOFmass spectrometer was utilized for its capability

to collect MS/MS spectra in an information-dependent manner

(IDA) while conducting an LC/MS analysis. The TripleTOF 6600

acquisition software from AB SCIEX continuously assesses the

complete scan survey MS data in this setting. It gathers and

initiates the collection of MS/MS spectra based on predetermined

conditions. During every iteration, 12 precursor ions with an

intensity exceeding 100 were selected for fragmentation using a

collision energy (CE) of 30 V, resulting in 12 MS/MS events with a

product ion accumulation time of 50 msec each. The ESI source

parameters were established with Ion source gas 1 and Ion source

gas 2 set at 50 Psi each, Curtain gas at 25 Psi, source temperature at

500°C, and Ion Spray Voltage Floating (ISVF) at 5500 V or -4500 V

in positive or negative modes, respectively.

Electrospray ionization quadrupole time-of-flight mass

spectrometry.

Triple quadrupole (QQQ) and LIT scans were obtained using a

QTRAP mass spectrometer, specifically the QTRAP® LC-MS/MS

System. This instrument is equipped with an ESI Turbo Ion-Spray

interface and operates in both positive and negative ion mode.

Analyst 1.6.3 software (Sciex) controls the system. The parameters

for operating the ESI source were temperature of the source at 500°

C; ion spray voltage at 5500 V (positive) and -4500 V (negative); gas

I (GSI), gas II (GSII), and curtain gas (CUR) set at 50, 50, and 25.0

psi, respectively; high collision gas (CAD) was used. Calibration of

the instruments was carried out using solutions of polypropylene

glycol at concentrations of 10 and 100 mmol/L in QQQ and LIT

modes, respectively. Each period was monitored for a distinct group

of MRM transitions based on the metabolites that were eluted

during that time frame.
2.13 Statistical analysis

Consensus clustering was utilized to perform clustering in order

to identify robust structure across multiple clustering iterations

(41). Survival curve for prognosis analysis was generated using the

Kaplan-Meier method, with significance of differences determined

by performing the log-rank test. Hazard ratios (HR) were calculated

using univariate and multivariate Cox regression models, and their

coefficients were displayed in forest plots. The Wilcoxon rank-sum

test was used to compare continuous variables between two groups,

while the chi-square test was employed for comparing classified

variables. Spearman coefficients were applied to evaluate
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performed to detect unique clusters based on the 39 genes’

expression in the signature of FAM. Orthogonal Partial Least

Squares Discriminant Analysis (OPLS-DA) was utilized to

confirm the efficacy of the clustering process (42). Chi-square

tests were used to analyze the variations in baseline characteristics

between cases and controls for categorical variables, while paired t-

tests or Wilcoxon’s signed-rank tests were used for continuous

variables. Significance was established with a P value less than 0.05,

and all P values reported were calculated for both sides of the

distribution. R 4.0.0 software was used for all statistical analyses.
3 Results

3.1 Development and validation of FAM
clusters

We devised a systematic flowchart to illustrate our study

methodology (Figure 1). A total of 525 genes related to FAM

were obtained from GO, Hallmark, KEGG, and Reactome

databases (Figure 2A, Supplementary Table S1). After screening

the DEGs in cancer and paracancerous tissues, intersected with 525

genes in FAM, and 24 prognostic-related genes were further

screened using a univariate Cox proportional hazards model

(Supplementary Table S2).

Subsequently, consensus clustering based on the expression

patterns of the 24 FAM-related genes indicated that the most

suitable number of clusters was two. This finding was confirmed

by Cumulative Distribution Function (CDF) curves (Figures 2B, C).

PCA revealed significant differences in gene expression between the

two identified groups (Figure 2D). The expression patterns of the

genes used for consensus clustering in the two clusters were

visualized in Figure 2E, showing that cluster2 exhibited higher

gene expression levels compared to cluster1.

Survival analysis revealed a significant difference in outcomes

between the two clusters, as indicated by the log-rank test with a P-

value of 0.021 (Figure 2F). Importantly, the observed prognostic

differences were validated across three independent GEO GC

datasets: GSE26899 (N = 93, P = 0.039), GSE26901 (N = 109, P =

0.0015), and GSE28541 (N = 40, P = 0.0011) (Supplementary

Figures S1A–C). These findings demonstrated that GC samples

could be classified into two groups based on 24 FAM-associated

genes, revealing a distinct variation in prognosis between

the groups.
3.2 Immune cell infiltration between FAM
clusters

We evaluated the presence of immune cells in the two groups by

analyzing the tumor immune environment through the immune

score, stromal score, tumor purity score, and the abundance of 28

different immune cell types. A heatmap was used to illustrate the

distribution of immune cell infiltration based on the four algorithms
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mentioned (Figure 3A). Compared to cluster2, which had a poorer

prognosis, cluster1 exhibited a lower immune score and stromal

score but a higher tumor purity score (Figure 3B). The degree of

immune infiltration varied between the clusters, with cluster2

displaying more pronounced immune cell infiltration than

cluster1 (Figure 3C).
3.3 Analysis of mutation patterns between
FAM clusters

To investigate the relationship between FAM clusters and

mutation patterns, we conducted SMG analysis. In our analysis of

the top 20 mutated genes in GC, we found various mutated genes

that differed between clusters, such as TTN, LRBP1, SYNE1, FAT4,

and additional genes (Figure 4A). Four mutated signatures were

derived from the COSMIC database by analyzing GC genomic

somatic mutation data in order to explore differences in the

mutational processes between the two subtypes. From the

mutation data, four mutational patterns (signatures 6, 10, 17, and

21) were identified in cluster1, while cluster2 showed four different

mutational patterns (signatures 3, 6, 17, and 1) as depicted in

Figures 4B, C. Signatures 10 and 21 were unique in cluster1, and

signatures 3 and 1 were distinctive in cluster2. The findings

indicated that the mutation feature of cluster2 was linked to DNA

damage and repair processes, like homologous recombination,

resulting in the inability to repair DNA double-strand breaks.

We further investigated the differential somatic CNV alterations

between FAM subtypes. CNV analysis identified 12 copy number

gains, including 1q21.3 (P < 0.05), 5p15.33 (P < 0.001), 8q24.21 (P <

0.01) and 17q12 (P < 0.05) amplifications, and seven copy number

losses, including 1p36.11 (P < 0.05), 3p14.2 (P < 0.05), and 5q12.1

(P < 0.001) (Figure 4D). The focal and arm level CNVs were
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compared through the GISTIC 2.0 approach. Cluster1 exhibited a

greater overall load of copy number amplifications and deletions

compared to cluster2 (Figure 4E).
3.4 Enrichment analysis between FAM
clusters

To further explore the effects of DEGs between the two clusters,

we analyzed the signaling pathways of DEGs using KEGG and GO

enrichment analysis. The findings indicated that the DEGs in the two

groups were predominantly involved in various well-known signaling

pathways such as the PI3K-Akt and MAPK pathways, as well as

metabolic pathways, cell growth, and immune response (Figures 5A,

B), and the PIA3K-Akt signaling pathway was associated with

metabolism. All these results indicate that the two clusters exhibit

differences in metabolism, immunity, and proliferation.
3.5 Development of a prognostic signature
related to FAM

We screened for DEGs between the two clusters that could be

used to construct a GC prognosis signature. First, we identified 3594

mRNAs, 402 lncRNAs, and 196 miRNAs differentially expressed

between FAM clusters (Figures 5C–E, Supplementary Table

S3).Then, the above genes were further screened, and 165 mRNAs,

22 lncRNAs, and 10 miRNAs were selected through the

“randomForest” package (Figures 5F–K, Supplementary Table S4).

Finally, 39 mRNAs, 4 lncRNAs, and 1 miRNA were further selected

by univariate Cox regression analysis for GC prognosis signature

construction (Supplementary Table S5). The cutoff values of high-

and low-risk mRNAs, miRNAs, and lncRNAs were 0.414, 2.166, and
FIGURE 1

Flow chart of the experimental design and analysis of FAM related signature.
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0.052, respectively, which were calculated by the R package

“survminer”. Prognosis models built using mRNAs, lncRNAs, and

miRNAs indicated a greater likelihood of survival for the low-risk

group compared to the high-risk group (P < 0.0001, P < 0.0001, P =

0.0032; Figures 6A, C, E). The area under the curve values for the 5-

year survival rates in the three categories were 0.860, 0.569, and 0.666,

as shown in the Figures 6B, D, F, indicating that the 39 mRNAs

constructed FAM risk signature could better predict the prognosis of
Frontiers in Oncology 07
GC patients. The heatmap showed the visualization of the expression

level of the mRNAs in GC patient samples (Figure 6G).

The validation dataset (GSE34942) was utilized to confirm the

accuracy of the GC prognosis signature constructed by 39 FAM-

related mRNAs. The high-risk group, as determined by the risk

signature in the TCGA GC cohort, had a worse outcome compared

to the low-risk group (P = 0.035, Figure 6H). Nevertheless, the AUC

values for 1-, 3-, and 5- years were lower compared to the training
FIGURE 2

Classification and analysis of FAM subtypes. (A) The diagram illustrating the overlap of genes related to FAM from databases such as KEGG, GO,
Hallmark, and Reactome. (B, C) The best classification effect was achieved by determining the optimal number of clusters (K=2) from CDF curves.
(D) PCA was conducted on samples from GC using the principal component analysis method. (E) A heatmap illustrating the expression levels of 24
genes specific to each subtype. (F) Kaplan-Meier curves were used to forecast survival rates in individuals categorized into two clusters.
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dataset (Figure 6I). The internal GC dataset we analyzed (Tianjin

GC dataset, N = 90) showed that the low-risk group had a greater

survival rate compared to the high-risk group (P = 0.037, Figure 6J).

Furthermore, the AUC values were still lower than those in the

training dataset (Figure 6K). Furthermore, to strengthen the

generalizability of our risk signature, we included three additional

external validation cohorts (GSE13861, GSE15459, GSE26901)

(Supplementary Figure S2; P = 0.041, P =9e-04, P = 0.0027). The

results further confirmed the prognostic utility of the 39-mRNA

FAM risk signature in independent patient populations.
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3.6 Assessment of the GC prognosis
signature constructed by FAM-related
mRNAs

The AUC values of this constructed signature and common risk

factors for GC were compared to further validate the validity of this

signature. In the TCGA GC cohort, the risk score (AUC = 0.749)

was more effective in predicting GC prognosis compared to

traditional risk factors like pathological stage (AUC = 0.595), age

(AUC = 0.540), and sex (AUC = 0.458) (Figure 7A), which
FIGURE 3

The distribution of immune cell infiltration as determined by four different algorithms. (A) Comparing the infiltration of immune cells in cluster1 and
cluster2 using a Heatmap. (B) Tumor immune microenvironment scores between clusters. (C) There was a difference in the number of immune cells
infiltrating between the two groups. * P < 0.05, ** P < 0.01, *** P < 0.001, ns P ≥ 0.05.
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suggested that the signature had a better prognostic ability for GC.

Furthermore, there were differences in the risk scores of the four

pathological stages in patients with GC (P = 0.023, Figure 7B).

Multivariate Cox regression was employed to determine whether

the signature has a prognostic value in GC independent of

clinicopathological indicators such as age, pathological stage, and

sex. In the multivariate Cox regression, the risk score had a hazard

ratio (HR) of 5.037 with a 95% confidence interval (CI) of 3.523-
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7.202, showing statistical significance (P < 0.001, Figure 7C). A

nomogram, created using a combination of the risk score and

traditional risk factors, was utilized to forecast the chances of

survival at 3- and 5- year for a patient with GC (Figure 7D). In

addition, we developed an R package called “GCFAMS” (Gastric

Cancer Fatty Acid Metabolism Score) for calculating the prognostic

score of FAM in GC patients based on fatty acid metabolism gene

expression (https://github.com/huxintmu/GCFAMS).
FIGURE 4

The mutational patterns and signatures of two FAM clusters. (A) Individuals in cluster1 and cluster2 created the graphical representation of tumor
somatic mutations in the form of a waterfall plot. (B, C) Mutation signature identified in cluster1 (B) and cluster2 (C). (D) Detailed charts showing
copy number amplifications (increases) and copy number deletions (decreases) between different subtypes of FAM. (E) Distribution of specific and
general changes in copy numbers between different subtypes of FAM. Significance levels were denoted as follows: *for P < 0.05, **for P < 0.01,
***for P < 0.001, and ns for non-significant results.
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3.7 FAM-related mRNA signature predicts
the response to immunotherapy and
chemotherapy

We utilized the Tumor Immune Dysfunction and Exclusion

(TIDE) analysis to investigate the potential of the FAM risk model
Frontiers in Oncology 10
in predicting immunotherapy response within the GC cohort (43).

The findings indicated that individuals in the low-risk category

exhibited a more favorable reaction to immunotherapy (Figure 8A).

The findings indicated that the IPS was higher in the low-risk group

compared to the high-risk group, as shown in Figure 8B. The study

found that individuals with a low-risk score may have higher
FIGURE 5

Performing enrichment analysis on DEGs between clusters of FAM using KEGG pathways. (A) and GO pathways (B). (C) The volcano plot indicates
that there were 3594 mRNAs that exhibited differential expression in the two subtypes of FAM. (D) The volcano plot indicates that there were 402
lncRNAs that exhibited differential expression in the two subtypes of FAM. (E) The volcano plot indicates that there were 196 miRNAs that showed
differential expression in the two subtypes of FAM. (F–H) Error rate of the random forest model. (I–K) Cross-validation error of random forest model.
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FIGURE 6

Comparison of different FAM risk models. (A, C, E) Kaplan-Meier plots were generated for GC patients based on their risk scores derived from a
combination of mRNAs, lncRNAs, and miRNAs. Individuals classified as high-risk (red) had a lower overall survival rate (OS) compared to those
classified as low-risk (blue). (B, D, F) ROC curves were generated to forecast the sensitivity and specificity of survival at 1-, 3-, and 5- years based on
the risk scores derived from mRNA, lncRNA, and miRNA signatures. (G) The expression of mRNAs used to construct signature model in GC patients.
(H) Kaplan-Meier analysis was performed on a group categorized as high- or low-risk based on 39 mRNAs in the GEO validation dataset (GSE34942,
N = 56). (I) ROC curves to forecast the sensitivity and specificity of survival at 1-, 3-, and 5-years in the GEO validation dataset containing 56
subjects. (J) A Kaplan-Meier analysis was performed on the high-risk and low-risk groups created based on 39 mRNAs in the Tianjin GC dataset (N =
90). (K) ROC curves were utilized to forecast the sensitivity and specificity of survival at 1-, 3-, and 5- years in the Tianjin GC dataset (N = 90).
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possibility of responding positively to immunotherapy. Next, we

conducted a Spearman correlation analysis to investigate the

connection between the FAM score and the infiltration of

immune cells. As shown in Figure 8C, there was a relationship

observed between the FAM risk score and immune cells.

Moreover, we found that the FAM score had the strongest

positive correlation with mast cells (r = 0.220, P < 0.0001;

Figure 8D) and a negative correlation with CD56dim natural

killer cells (r = -0.12, P = 0.02; Figure 8E). In order to confirm

the significance of the FAM score in immunotherapy, cohorts of

malignant melanoma (Mela) and urothelial carcinoma (UC, the

most prevalent form of bladder cancer) were utilized to investigate

which individuals derive benefits from immunotherapy. Validation

set results indicated that the low-risk group exhibited a greater

response rate to immune-checkpoint blockade (ICB) in the Mela

and UC cohorts (P < 0.05, Figures 8F–I). The findings indicated that

individuals in the low-risk group were more likely to benefit from

immunotherapy. To further confirm the robustness and real-world

applicability of the FAM risk model, we performed external

validation using an independent bladder cancer cohort

(GSE176307) and two Mela cohorts (GSE78220, GSE100797).
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The results showed that low-risk patients had a significantly

higher likelihood of responding to ICB (P = 0.033, P = 0.067, P =

0.032; Supplementary Figure S3), consistent with our findings in

UC and Mela cohorts.

Furthermore, we evaluated the impact of chemotherapy drug

reactions in both the high-risk and low-risk categories of the GC

dataset. Chemotherapy drugs had distinct impacts on the high-risk

and low-risk groups. In the high-risk group, embelin (P = 0.0023)

and imatinib (P = 0.0048) showed lower IC50 values compared to

the low-risk group (Supplementary Figure S4). The findings

indicated variations in the effectiveness of immunotherapy and

chemotherapy among different groups, with immunotherapy

showing greater efficacy in the low-risk group and chemotherapy

being more effective in the high-risk group.
3.8 Single-cell atlas distribution of genes
that make up the signature for FAM

The single cells of GC were clustered unsupervised by

hypervariable genes, and the single-cell atlas comprised 21
FIGURE 7

The predictive significance of the risk model for FAM. (A) ROC curves were used to evaluate the predictive ability of age, gender, stage, and risk
score in determining sensitivity and specificity in GC patients, along with clinicopathological factors and a 39-mRNA signature-derived risk scores.
(B) Comparing risk scores for FAM across various clinical stages. (C) Multivariate Cox regression was performed to analyze the relationship between
clinicopathological factors and overall survival in patients with GC. (D) A nomogram was created utilizing the risk score for FAM along with
established risk factors.
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clusters, as shown with a UMAP plot (Figures 9A, B). A single-cell

atlas of multi-region GC cells included nine major cell populations

(Figure 9C). T cells, B cells, macrophages, plasma cells, mast cells,

epithelial cells, endothelial cells, fibroblasts, and others were

included in the single-cell atlas. Detailed expression profiles and

gene features of single gene markers are shown in Figure 9D. The

expression heatmap of the marker genes of the major cell lineages is

shown in Figure 9E. The gene enrichment analysis of FAM

signature genes indicated that the genes were predominantly

expressed in fibroblasts and endothelial cells, as shown in

Figures 9F, G. Above all, single-cell analysis revealed that FAM
Frontiers in Oncology 13
signature genes were predominantly expressed in fibroblast cells

and endothelial cells.
3.9 Joint analysis using transcriptomic and
fatty acid metabolomic data to validate
signature

We enrolled 42 GC samples and performed a consensus

clustering analysis based on FAM signature expression, showing

the optimal number of clusters was two (cluster1 and clsuter2,
FIGURE 8

The relationship between the risk score for FAM and the effectiveness of immunotherapy. (A) The Tumor Immune Dysfunction and Exclusion (TIDE)
analysis was used to forecast the response to immunotherapy in GC patients with high- and low- risk groups. (B) The boxplot indicates a notable
contrast in IPS between the high- and low-risk groups (P = 0.0097). (C) The lollipop chart displays the correlation between the score of FAM and 28
different types of immune cells. (D, E) Spearman correlation between FAM score and mast cells (D) and activated CD56dim natural killer cells (E). (F,
H) Comparison of immune response to immunotherapy between high- and low- risk subgroups. CR indicates complete response, PR indicates
partial response, SD indicates stable disease, and PD indicates progressive disease. (G, I) Kaplan-Meier analysis and the percentage of immune
response to immunotherapy were compared between high- and low-risk groups in the UC (G) and Mela cohorts (I).
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Figures 10A, E), which was also defined by OPLS-DA analysis and

CDF curves (Figure 10C, Supplementary Figure S5). Kaplan-Meier

curves indicated that compared to cluster1, cluster2 had a better

prognosis (log-rank test, P = 0.054, Figure 10B).
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We identified the metabolites in the samples based on a broadly

targeted metabolomic technique. A total of 1669 metabolites were

detected using a non-targeted metabolomic technique for the

detection of 42 mixed samples. Metabolomic variances among
FIGURE 9

The single-cell atlas shows major cell lineages. (A) UMAP analysis was conducted to visualize and group 21 distinct cell clusters. (B) The distribution
of cells with respect to the five patients (Patient1 to Patient5) is shown. (C) A UMAP plot displays nine primary lineages consisting of 23,060 cells. (D)
UMAP feature plots were selected to display RNA expression of seven primary cell lineages. (E) Heatmap of the marker genes of the seven major cell
lineages. (F) AUCell was used to analyze the gene enrichment of genes related to FAM that were used to create the signature. (G) FAM-related genes
were utilized to create signatures in seven primary cell lineages.
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samples were explored through the utilization of a UPLC-MS/MS

detection system, a custom-built database, and multivariate statistical

techniques. Analysis of the variations between the two groups of

metabolites revealed that a total of seven fatty acid-related metabolites

exhibited statistically significant differences in expression, including

‘12,13-DiHOME’, ‘13R-hydroxy-9Z,11E-octadecadienoic acid’, ‘7,7-

Dimethyl-(5Z,8Z)-eicosadienoic acid’, ‘9,10-DHOME’, ‘9,10-

dihydroxystearic acid’, ‘9R-hydroxy-10E,12Z-octadecadienoic acid’,

and ‘Leukotriene C4-d5’. In addition to Leukotriene C4-d5, other

fatty acid-related metabolites showed higher levels in cluster1. The
Frontiers in Oncology 15
differential FAM pathway diagram was displayed with the content

level differences in Figure 10D. The combined transcriptomic and

metabolomic analysis of the same GC samples further revealed the

importance of signature in FAM.
4 Discussion

Extensive evidence indicates that metabolic reprogramming

plays a critical role in tumor progression (44). Tumor cells
FIGURE 10

The combined examination of gene expression and metabolites in relation to the FAM pattern. (A) The ideal cluster number (K = 2) was identified
based on the expression of signature genes related to FAM in 42 samples of GC. (B) Survival prediction of samples from two clusters was analyzed
using Kaplan-Meier curves. (C) The OPLS-DA analysis of two clusters. (D) The differential FAM pathway diagram with content level differences. (E) A
heatmap illustrating the levels of expression for 39 genes associated with FAM.
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demonstrate increased FA production and uptake to support their

needs, such as proliferation. A previous study utilized a FAM

signature constructed from FAM-related genes to classify and

evaluate the clinical therapies for colorectal cancer patients (45).

In this study, a unique FAM profile was developed to personalize

the evaluation of patients’ FAM levels, aiming to investigate how

these levels influence the clinical outcomes and therapeutic

strategies of GC patients.

To explore the clinical and biological implications of FAM in

GC, we conducted unsupervised clustering based on FAM-related

gene expression, categorizing the TCGA GC cohort into two

distinct clusters. This stratification revealed a significant survival

disparity between the two groups. Additionally, we identified

altered genes and differences in immune cell infiltration between

the two subgroups, and we performed a functional enrichment

analysis of DEGs associated with the FAM subtypes. Subsequently,

DEGs at different levels (mRNA, lncRNA, and miRNA) between the

two clusters were identified for further analysis.

In the analysis of somatic mutations and CNVs, we identified

several gene mutations and CNVs associated with FAM genes.

Among them, LRP1B, a potential tumor suppressor gene (46), has

been shown to enhance responses to immune checkpoint inhibitors

(ICIs) in cancers with mutations in this gene (47). LRP1B mutation

could potentially be used as a biomarker to anticipate the immune

response and is linked to extended survival in melanoma and

NSCLC immunotherapy groups (47). A comprehensive study

across multiple cancer types demonstrated that patients with

pathogenic or likely pathogenic LRP1B alterations experienced

significantly improved outcomes with ICI treatment compared to

those with alterations of unknown significance, regardless of their

TMB/MSI status (48). Furthermore, research indicated that a

solitary LRP1B mutation is associated with a poor response to ICI

therapy and adverse outcomes in patients with HCC (49). In our

study, cluster1 exhibited a higher LRP1B mutation rate compared to

cluster2, suggesting that GC patients in cluster1 might achieve

better outcomes with immunotherapy.

Additionally, SETDB1, located in the 1q21.3 region of human

tumors, acts as an epigenetic barrier that suppresses the intrinsic

immunity of tumors, making it a promising target for

immunotherapy (50). Furthermore, a higher amplification of

8q24.21 was observed in cluster1 compared to cluster2. This

region contains the C-MYC oncogene, which is associated with

the development and progression of numerous types of cancers

(51). Studies have shown that the activation of MYC signaling

enables cancer cells to disrupt the surrounding microenvironment,

allowing them to evade the body’s immune response (52).

Amplification of 8q24.21 has been linked to tumor development

and immune system modulation.

The ARID1A gene, located on 1p36.11, is the fourth most

commonly mutated gene in GC. Han et al. demonstrated that

ARID1A deficiency impairs fatty acid oxidation (FAO) by

downregulating PPARa and altering the epigenetic landscape of

specific metabolism-related genes (53). In our study, a higher

deletion frequency of 1p36.11 was identified in cluster1 compared
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to cluster2. This finding suggests that patients in cluster2 may

exhibit enhanced FAO capabilities.

PIK3CA initiates pathways that regulate cell growth, viability,

division, movement, and morphology. It also promotes increased

arachidonic acid metabolism through downstream mTORC2

signaling to sustain cell proliferation (54, 55). The PI3K-AKT-

mTOR pathway plays a role in FAM in cancer, contributing to

molecular heterogeneity and oncogenic signal transduction (44).

The PI3Kd enzyme complex is primarily found in the immune

system, and its dysregulation-whether overactivation or insufficient

activity-can lead to impaired and uncontrolled immune responses

(56, 57). In this study, KEGG and GO analyses revealed that the two

FAM clusters exhibited distinct differences in both FAM and

immune activity.

Numerous studies have demonstrated a strong correlation

between FAM and cancer progression, treatment, and immunity

(58–60). FAs released by cancer cells influence immune cell

infiltration within the tumor microenvironment. Disrupted lipid

processing, such as upregulated FAO and de novo lipid synthesis,

provides tumors with a competitive advantage against

chemotherapy and radiation therapy, while also mitigating

cellular stress associated with metastasis.

Additionally, T-cell activation requires de novo FA synthesis

(61–63), and like other cell types, T cells rely on b-oxidation to

degrade FAs as an energy source. FAO has been linked to various

cell types, including CD8+ memory T cells and CD4+ regulatory T

cells (19). Furthermore, the growth of B cells depends on

monounsaturated FAs to sustain mitochondrial function and

mTOR activity, thereby preventing excessive autophagy and

endoplasmic reticulum stress (60).

In our research, cluster2 exhibited better survival outcomes

compared to cluster1, potentially due to differences in immune cell

infiltration. Previous study has also demonstrated that a high-fat

diet increases FA uptake by cancer cells without significantly

affecting tumor-infiltrating CD8+ T cells. This imbalance in FA

distribution impairs the infiltration and function of CD8+ T cells,

suggesting that optimizing metabolism could enhance tumor

immunotherapy (64).

The observed AUC reduction in validation cohorts reflects real-

world clinical complexity. Despite this, the model maintained

significant survival stratification (P < 0.05) across all cohorts,

demonstrating preserved clinical utility. Future multi-center

studies with standardized protocols will further validate

its robustness.

To assess the prognosis and effectiveness of immunotherapy

and chemotherapy in patients with GC, we analyzed specific genes

using various statistical methods, developed a signature consisting

of 39 mRNAs, and confirmed its utility in guiding treatment

decisions for immunotherapy and chemotherapy. Our study

demonstrates that the FAM risk model is significantly associated

with immune cell infiltration and immunotherapy response

prediction. Specifically, the low-risk group exhibited a higher IPS

and an improved response to immunotherapy, as validated in both

GC and independent cohorts of Mela and UC. These findings
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suggest that the FAM score could serve as a potential biomarker to

stratify patients for immunotherapy selection.

Moreover, we found that the FAM score was positively

correlated with mast cells and negatively correlated with

CD56dim natural killer cells, indicating that immune cell

infiltration characteristics could influence treatment efficacy.

Given that mast cells can promote an immunosuppressive tumor

microenvironment (65, 66), while CD56dim NK cells play a critical

role in tumor surveillance (67, 68), these correlations provide

mechanistic insights into how the FAM signature may reflect

tumor immune evasion strategies.

Furthermore, the integration of the FAM score with TIDE

analysis revealed that patients in the low-risk category exhibited a

higher likelihood of responding positively to ICB therapies (43),

reinforcing the potential clinical utility of this model. By

incorporating the FAM score into patient stratification strategies,

clinicians may be able to better identify individuals who are most

likely to benefit from immunotherapy, thereby improving

personalized treatment approaches for GC.

The combination of transcriptome data with single-cell analysis

provides a more comprehensive understanding of the mechanisms

underlying cell heterogeneity in GC. A single-cell analysis was

conducted to further investigate the expression of FAM-

associated genes used in constructing the signature. Our results

demonstrated that the genes incorporated into the signature were

primarily expressed in endothelial cells and fibroblasts. Previous

studies have suggested that fibroblasts contribute to the progression

of GC (69), implying that they play a role in the malignancy of

the cancer.

We performed an integrated transcriptomic and metabolomic

analysis of the FAM signature to obtain multiple key differential

fatty acid metabolites in the fatty acid metabolic pathway. Previous

research has indicated that the imbalance in FAM processing can

promote the proliferation of cancer cells, which usually exhibiting

increased lipid storage compared to normal cells (70). An analysis

using Mendelian randomization indicated that stearic acid was

linked to a higher likelihood of developing colorectal cancer (71).

In our study, cluster1 exhibited significantly higher levels of most

fatty acid-related metabolites, except for Leukotriene C4-d5, and

was associated with a relatively poorer prognosis compared to

cluster2. The Leukotriene D4- Cysteinyl Leukotriene 2 receptor

(CysLT2R) signaling pathway plays a key role in colorectal cancer,

where CysLT2R has shown antitumor activity in intestinal epithelial

cells. Since CysLT2R is a receptor for both Leukotriene C4 and

Leukotriene D4, it is plausible that Leukotriene C4 may possess

tumor-suppressive properties through its interaction with CysLT2R

(72). The seven metabolites identified in our study are all

metabolites of linoleic acid, which as a polyunsaturated fatty acid

(PUFA) and an essential fatty acid, regulates cancer development by

participating in a variety of in vivo metabolic pathways, including

apoptosis, oxidative stress, and cell proliferation (73). A

metabolomic investigation of hepatocellular carcinoma (HCC)

revealed decreased levels of linoleic acid in portal vein and fecal

samples of HCC patients compared to healthy controls (74).
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Further research has demonstrated that linoleic acid can stimulate

CD8 T cells to boost their anti-tumor functions in both in vivo and

in vitro settings (75). Furthermore, it was shown that intestinal-type

GC could not produce arachidonic acid (AA) and adrenic acid

(AdA) from linoleic acid, making GC cells immune to ferroptosis

(76), indicating that polyunsaturated fatty acids might impact GC

via the ferroptosis pathway. Therefore, various fatty acid-related

metabolites can influence cancer development, progression, and

therapeutic efficacy in various ways, while FAM signature, as a vital

cancer biomarker, contributes to guiding the prediction of FAM

levels in the human body.

Our study provided a comprehensive computational analysis of

the FAM signature and its potential role in immune infiltration and

therapeutic response. Using publicly available datasets and

statistical models, we identified key genes associated with survival

risk and validated the prognostic significance of the FAM-based

risk score.

However, we acknowledge certain limitations in our study.

First, our findings were based on bioinformatics analyses without

direct experimental validation. Future studies should include in

vitro and in vivo experiments to confirm the biological role of the

identified genes. Second, prospective clinical validation is needed to

confirm the clinical relevance of the FAM signature. One promising

approach is the use of GC 3D models (77). GC organoids could be

used to functionally validate the FAM signature, assess its impact on

immune cell infiltration and test its predictive value for drug

response. This would help bridge the gap between computational

predictions and clinical applications.

Despite these limitations, our study provides a valuable

framework for identifying prognostic biomarkers and generating

hypotheses for future experimental research.
5 Conclusion

We developed a FAM signature to guide treatment and evaluate

the prognosis of GC patients. Nevertheless, this study still has

certain limitations. Further expansion of the sample size is required

to confirm the findings of this research. Moreover, experiments still

need to verify the relationship between FAM, immune cell

infiltration, and outcomes of GC patients.
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