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Background: Poly(ADP)-ribose polymerase inhibitors (PARPi) have brought a

significant breakthrough in the maintenance treatment of ovarian cancer.

However, beyond BRCA mutation/HRD, the direct impact of other prognostic

factors on PARPi response and prognosis remains inadequately characterized.

Methods: We assessed PARPi prognostic factors from clinical characteristics,

pathological findings, and biochemical indicators from 251 ovarian cancer

patients. Cox univariate and multivariate analyses were employed to identify

the factors which influencing PARPi efficacy and patients prognosis. Feature

screening was conducted using correlation analysis, significance analysis,

Variance Inflation Factor (VIF), and Elastic Net stability analysis. Patient-specific

efficacy and prognosis prediction models were then constructed using various

machine learning algorithms.

Results: Total bile acids (TBAs) and CA-199 present as an independent risk factor

in Cox multivariate analysis for primary and recurrent ovarian cancer patients

respectively (P < 0.05). TBAs emerged as a risk factor, with each unit increase

associated with a 10% rise in recurrence risk. The best-performing model has an

AUC of 0.79 ± 0.09 and an AUC of 0.72 ± 0.03 for primary and recurrent ovarian

cancer patients respectively. External validation(n=36) in multicenter cohorts

maintained robust performance with AUC of 0.74 and an AUC of 0.70 for primary

and recurrent ovarian cancer patients respectively.

Conclusions:We identified TBAs and CA-199 as a significant prognostic factor in

primary and recurrent ovarian cancer patients respectively. The integration of

multimodal data with machine learning holds significant potential for enhancing

prognosis prediction in PARPi treatment for ovarian cancer.
KEYWORDS

PARP inhibitors (PARPi), prognostic factor, ovarian cancer, machine learning,
prediction model
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1 Background

Ovarian cancer, often referred to as the “silent killer”, presents

the highest mortality rate among gynecological malignancies (1).

The standard treatment for ovarian cancer includes cytoreductive

surgery followed by systemic platinum-taxane combination

chemotherapy (2). Although most patients achieve clinical

remission with initial therapy, about 70% of patients may relapse

within 2 to 3 years and eventually develop platinum resistance. The

5-year survival rate remains approximately 40% (3–5). The

introduction of PARPi has significantly advanced the treatment of

ovarian cancer. PARPi can induce apoptosis and death in cancer

cells with BRCA mutations or other homologous recombination

deficiencies (HRD) through a mechanism known as the “synthetic

lethal” effect (6–8). Numerous studies have demonstrated that

PARPi can significantly improve progression-free survival (PFS)

in patients with BRCA-mutated ovarian cancer (9–12).

Consequently, BRCA gene mutations or HRD are commonly

utilized as biomarkers for the application of PARPi therapy (13).

However, clinical evidence indicates that patients without BRCA

mutations or HRD can also derive benefits from PARPi therapy

(14–16). And more than 40% patients with BRCA mutations or

HRD failed to benefit from PARPi (17, 18). One potential reason for

this discrepancy is the insufficient consideration of various

prognostic factors in clinical studies evaluating PARPi efficacy in

ovarian cancer. These studies often fail to thoroughly investigate

which clinicopathological factors might serve as reliable prognostic

indicators for PARPi response. Beyond BRCA mutations and HRD,

few prognostic factors are currently utilized to guide the clinical

application of PARPi. A meta-analysis by Huang et al.,

encompassing 20 prospective studies, identified BRCA mutation,

HRD-positive status, and platinum sensitivity as significant

prognostic factors for PARPi efficacy in ovarian cancer; however,

other clinicopathological variables did not show a significant

predictive value for PFS (19). In contrast, Yusuke et al.

demonstrated that HRD status, age, pathological stage, and

residual disease status post-cytoreductive surgery are critical

prognostic factors for ovarian cancer (20). Bile acids (BAs) have

been recognized for their potential role in preventing ovarian cancer

by inhibiting proliferation, invasion, and epithelial-mesenchymal

transition, as well as enhancing chemotherapy efficacy (21–23).

Furthermore, BAs can modulate the expression and activity of

multiple PARP enzymes, which may ultimately improve patient

survival (24, 25). Lamkin et al. found that higher glucose levels were

associated with shorter survival time in ovarian cancer patients in

univariate analysis (HR = 1.88; P < 0.05). Multivariate analysis,

adjusted for tumor stage, showed that higher glucose levels were

associated with shorter survival time (HR = 2.01; P=0.04) and

disease-free interval(HR = 2.32; P < 0.05) (26). Additionally, Zhu

et al. identified elevated postoperative CA-199 as an independent

risk factor for both PFS and overall survival (OS) in patients with

normal postoperative CA-125 levels. The combination of

postoperative CA-199 and CA-125 levels offers significant

prognostic value for patients with ovarian clear cell carcinoma

following initial debulking surgery (27). Recently, Taliento et al.
Frontiers in Oncology 02
found that circulating tumor DNA was significantly associated with

worse PFS and OS in patients with epithelial ovarian cancer (28). A

recent review provides up-to-date evidence and summarizes the

currently available therapeutic options for the treatment of ovarian

cancer recurrence, investigating the factors that must be considered

when choosing the best therapy, including molecular

characterization and disease burden, while also presenting the

limitations of current treatment options (29). Therefore, relying

solely on BRCA mutation/HRD status as a clinical genetic

indication for PARPi therapy is inadequate. Multiple factors—

including clinical characteristics, tumor type and stage, quality of

prior surgery, chemotherapy regimens, maintenance treatment

protocols, biochemical markers, and pathological profiles—may

influence PARPi efficacy and prognosis. Identifying key

prognostic factors among a vast array of clinicopathological

variables, eliminating redundancies, and constructing a robust

and precise prediction model for PARPi efficacy and prognosis is

complex. Traditional statistical approaches are often insufficient to

address these complexities. Consequently, the integration of

multimodal data using advanced machine learning techniques is

essential. This approach promises to enhance the prediction of

PARPi efficacy and refine prognostic assessments, thereby

informing personalized treatment strategies.

Machine learning (ML) has been widely applied in the medical

field recently (30, 31). Given the vast amount of medical data,

intricate patterns, and individual-specific expressions, ML offers

unique advantages. It can extract significant patterns from complex

medical datasets and achieve optimal model performance by

identifying the most contributory feature combinations. ML has

been extensively employed in cancer prognosis research, providing

effective and accurate prognostic conclusions based on cancer

sample data (32–34). In this work, we set out to investigate the

clinical, pathological, and biochemical information obtained during

routine diagnostic and therapeutic work in patients with ovarian

cancer (Figure 1a). We performed correlation analysis and feature

screening for the three types of features (Figures 1b–d). Finally, ML

algorithms were used to construct a prognostic prediction

model (Figure 1e).
2 Methods

2.1 Patients

This multi-center retrospective study analyzed data from 251

ovarian cancer patients collected between August 2018 and

November 2023. The cohort comprised 215 cases from the initial

single-center dataset at Hunan Cancer Hospital, supplemented by

26 cases from Xiangya Hospital of Central South University and 10

cases from The Second Xiangya Hospital of Central South

University through subsequent multicenter collaboration. The

inclusion criteria were as follows: histologically confirmed ovarian

cancer; R0 residual tumor status; received platinum-based

chemotherapy; received PARPi as maintenance therapy for more

than 3 months. Exclusion criteria were as follows: follow-up time
frontiersin.org
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less than 6 months. This study was approved by the ethics

committee of Hunan Cancer Hospital.
2.2 Data

Basic patient data were retrieved from the electronic medical

record, and tumor recurrence and survival status were obtained by

biweekly telephone follow-up. The dimensions of information

collected included the patient’s clinical data (age, gender,

performance status, height, weight, body mass index, marriage

age, number of pregnancies, number of abortions, history of

endocrine chronic diseases, history of cardiovascular diseases,

history of infectious diseases, history of other cancers,

pathological stage, pathological classification, metastasis type and

platinum sensitive status); immunohistochemical data (P53, ER,

P16, Ki67); biochemical data (blood routine, urine routine et al.);

treatment data (treatment line, chemotherapy, PARPi type, toxicity

and side effects, primary surgery hospital and secondary surgery

hospital); BRCA mutation/HRD status; outcome data (patient

recurrence status). Among the outcome measures, we agreed that

a good outcome was defined as a PFS ≥ 24 months in primary

ovarian cancer patients and a PFS ≥ 12 months in recurrent ovarian

cancer patients. The classification into the primary or recurrent

ovarian cancer patient cohort was determined based on the timing

of the patients’ first use of PARPi. Patients were categorized into the

primary cohort if their first use of PARPi occurred during the initial

diagnosis of ovarian cancer, while those who first used PARPi

during the recurrent phase were classified into the recurrent

patient cohort.
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2.3 Statistical analysis

In the exploration phase of data analysis, the Shapiro-Wilk test

was used to test the normality of features, and the Spearman

correlation coefficient was used to analyze the correlation between

features. The Cox proportional hazards regression model is a

statistical method used in survival analysis. We used the Cox

proportional hazards model to perform univariate analysis for all

variables. Variables that were significant with a P value of less than

0.05 in the Cox univariate analysis were entered into the subsequent

Cox multivariate analysis. All the above analyses were implemented

using Python3.6, where the Shapiro-Wilk test is from the Scipy

library (35), the Spearman correlation coefficient analysis was

performed using Pandas library (36), and Cox variable analysis

was performed using Lifelines library (37).
2.4 Machine learning

2.4.1 Feature selection
To ensure the objectivity and stability of feature selection, the

following features screening strategy was conducted for clinical,

pathological, and biochemical features:

2.4.1.1 Remove features with a correlation value greater
than 0.8

The correlation is calculated for every pair of features. For

feature pairs with a correlation greater than 0.8, the occurrence

frequency of each feature is counted, and the feature with the

highest frequency is removed. The correlation among the remaining
FIGURE 1

Schematic outline of the study. (a–d) Multiple data modalities were acquired through routine diagnosis to provide information for clinical decision
making: (b) clinical information and treatment plan. (c) pathological information. (d) biochemical examination information. (e) Integrated multimodal
analyses to construct efficacy and prognosis prediction model by PFS.
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features is then recalculated, and this process is repeated until the

correlation between all features is less than 0.8.

2.4.1.2 Retain features with P values less than 0.05

Each feature was assessed by fitting a univariate Cox

proportional hazards regression model using the Python Lifelines

software package. The risk model was computed on the training set,

and univariate coefficients and significance confidence were plotted.

For features where the model failed to converge, the fit was retried

using L2 regularization with a parameter c = 0.2. If the model still

failed to converge, a P value of 1 and a hazard ratio (HR) of 1 were

assigned. Features with P values less than 0.05 were retained for

subsequent analysis.

2.4.1.3 Exclude features with a VIF greater than 10

VIF is a statistical tool used to detect multicollinearity among

features, which can lead to model instability and diminish both

explanatory and predictive performance. VIF measures the linear

relationship between each feature and the others by performing

linear regression on each feature against the others, calculating the

regression coefficient, and determining the R2 of the regression

model. VIF is then calculated using the formula VIF = 1
1−R2 .

Generally, VIF values greater than 10 indicate strong collinearity

among features. During feature screening, features with high VIF

values are eliminated to reduce the impact of multicollinearity.

2.4.1.4 Preserve stable features

Elastic Net is a linear regression method that combines L1

regularization (Lasso) and L2 regularization (Ridge), which can be

used for feature selection and model stability enhancement. When

using the Elastic Net method for feature selection, the stability and

reliability of selected features are assessed by observing changes in

different data sets and model parameters. In this study, the scikit-

learn library is used to implement feature selection for Elastic Net

stability (38).
2.4.2 Model construction
In the process of model construction, 7 commonML algorithms

are selected to build the model (38, 39).
Fron
• Linear model: Logistic Regression(LR)

• Nearest neighbor method: K-Nearest Neighbors (KNN)

• Ensemble method: Random Forest (RF), lightGBM,

and XGBoost

• Support Vector Machine: Support Vector Machine (SVM)

• Probabilistic model: Naive Bayes
In the data preprocessing stage, features with more than 50%

missing data were deleted. Given that KNN and SVM algorithms

are highly sensitive to data scale, Z-score normalization was applied

for these models, while normalization was deemed unnecessary for

other models.
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2.4.3 Model parameters tunning
The performance of a ML model is often influenced by its

parameters, which are tuned to optimize the model’s performance

and enhance its generalization capability. The primary objective of

parameter tuning is to identify the optimal combination of

parameters that can maximize or minimize performance metrics

(such as accuracy, precision, recall, etc.), while preventing

overfitting and improving the model’s ability to generalize.

During the model tuning stage, the GridSearch method is

employed to conduct a comprehensive parameter search (38).

2.4.4 Model evaluation
The internal cohort comprised 215 ovarian cancer cases from

Hunan Cancer Hospital (August 2018-November 2023), which

were randomly partitioned into training and internal validation

sets at a 4:1 ratio for model development. External validation was

conducted using two datasets: 26 cases from Xiangya Hospital of

Central South University and 10 cases from The Second Xiangya

Hospital of Central South University, collectively forming a 36-case

multicenter validation cohort.

In the model training and validation process, five-fold cross-

validation was utilized. The dataset was randomly divided into five

equal subsets. Each time, four subsets were used for training, and

the remaining subset was used for testing. This process was repeated

five times, and the average of the results was calculated to reduce the

bias caused by different data partitions. The performance indicators

selected were AUC, accuracy, F1 score, sensitivity, and specificity.

To assess the generalization ability of a ML model, a key step is

to ensure that the model performs well on unseen data (40).

However, numerous factors influence this ability, including model

complexity, training set size, consistency and stability of data

distribution between training and test sets, and the distribution

state of the loss function in parameter space. Prior research has

extensively examined model generalization across various models

and application domains (40–43). Commonly employed techniques

for evaluating generalization encompass comparing model

performance on training and test sets, cross-validation, and

multi-index evaluation. Discrepancies between performance on

training and test sets may indicate overfitting or underfitting.

Additionally, comprehensive evaluation entails consideration of

multiple performance metrics such as accuracy, precision, recall,

F1 score, and area under the ROC curve (AUC). While AUC serves

as a primary metric for generalization evaluation, offering a holistic

view of model performance across classification thresholds and

robustness to class imbalance, it lacks specificity in assessing

individual category performance, particularly for rare events.

Moreover, AUC’s inability to directly address overfitting and

underfi t t ing l imi ts i t s comprehens ive assessment of

model generalization.

To address the limitations of current generalization metrics, we

propose the concept of Model Generalization Ability (MGA). MGA

integrates the AUC metric on the test set (as the primary

generalization metric) with the consistency of AUC between the
frontiersin.org
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training and test sets to evaluate both the stability and

generalization ability of various ML models on a given dataset.

We define MGA as:

MGA = AUCtest   set   � Rmodel   generalization  

where AUCtest set is the AUC value of the model on the test set,

and Rmodel generalization is the ratio of the test set AUC to the training

set AUC, given by:

Rmodel generalization  =  
AUCtest set

AUCtraining set

A higher AUCtest set indicates that the model generalizes well to

unseen data, which is often prioritized over training set performance

when evaluating different models. This is because test set

performance more accurately reflects the model ’s true

generalization ability. Conversely, a higher Rmodel generalization

denotes greater consistency between the model’s performance on

the training and test sets, signifying enhanced model stability. A

model exhibiting both high AUCtest set and Rmodel generalization

demonstrates superior generalization power, characterized by stable

outputs and robust predictive performance on unfamiliar data. This

dual consideration not only meets the requirements for evaluating

generalization ability but also mitigates the issues of multiple

comparisons inherent in multi-metric evaluations. By incorporating

both performance and consistency, MGA provides a comprehensive

assessment of a model’s generalization capabilities.

Finally, calibration curve analyses were utilized to compare the

agreement between predicted probabilities and observed outcomes.

Decision Curve Analysis (DCA) was performed to quantify the net

benefits across different threshold probabilities, thereby assessing

the clinical utility of the model and determining its effectiveness

under various threshold probabilities.

2.4.5 Model interpretation
To account for model features interpretability, we use SHapley

Additive exPlanations(SHAP), which provides a systematic and

unbiased approach to interpreting the predictions of ML models.

The advantages of SHAP are as follows:
Fron
• Interpretability: SHAP enhances the interpretability of

model predictions by assigning weights to each feature.

This enables users to understand the model’s dependency

on different features, thereby gaining more insight into the

model’s decision-making process.

• Fairness: Based on Shapley values, SHAP ensures a fair

contribution of each feature. This method appropriately

weights each feature, preventing excessive emphasis on any

single feature and helping to avoid bias or unfairness in

model interpretation.

• Increase in trust: Understanding model predictions through

SHAP can increase trust in the model. When users

comprehend the reasons behind specific predictions, they

are more likely to trust the model’s reliability, particularly in

critical decision-making domains such as healthcare

and finance.
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• Problem diagnosis: SHAP facilitates the identification of

model weaknesses and potential issues. By analyzing SHAP

values, users can determine which features most

significantly impact the model’s predictions, contributing

to improvements in the model ’s per formance

and robustness.
3 Results

3.1 Patients and disease characteristics

Table 1 presents the distribution of clinical and pathological

characteristics for the internal cohort of 215 patients, respectively.

The mean age of the patients was 55.40 ± 8.73 years. Regarding

prior medical conditions, 3.26% of the patients had chronic

endocrine-related diseases, 13.95% had cardiovascular-related

diseases, 1.86% had infectious diseases, and 8.37% had combined

other cancers. At initial presentation, 65.12% of the patients had

stage III tumors, and 22.79% had stage IV tumors, with 91.16%

exhibiting metastases at diagnosis. 40.93% of the patients were

primary ovarian cancer patients, and 59.07% of the patients were

recurrent ovarian cancer patients. In the primary ovarian cancer

patients, not all patients experienced recurrence, with 47.7% of the

patients having already relapsed. Among the recurrent ovarian

cancer patients, patients with their first recurrence accounted for

73.2%, while those with second or subsequent recurrences

accounted for 27.8%. Taxol plus platinum (TP) regimen was

administered to 40.93% of the patients, and TP plus bevacizumab

to 50.70%. For maintenance therapy, olaparib was used in 56.28% of

the patients, niraparib in 31.02%, and both olaparib and niraparib

in 2.79%.
3.2 Statistical analysis

The mean PFS was 27.93 ± 11.00 months for primary ovarian

cancer patients and 23.04 ± 15.65 months for recurrent ovarian

cancer patients (Supplementary Figure 1). Significant differences

were observed in the PFS distribution between primary and

recurrent ovarian cancer patients (P < 0.001). Consequently,

statistical analyses and predictive model construction were

conducted separately for these patient cohorts and Cox

proportional hazards regression analysis was performed for all

characteristics. The results for primary and recurrent ovarian

cancer patients were presented in Table 2. Only variables with P

< 0.05 in the univariate Cox analysis were included in the tables.

Among primary ovarian cancer patients, the variables significantly

associated with PFS (P < 0.05) in the univariate analysis included

BRCA mutation/HRD status, absolute value of lymphocytes

(AVOL), PARPi type, antibody-ABO, total bile acids (TBAs),

fibrinogen concentration, and thrombin time. While in the

multivariate Cox analysis, only TBAs remained significant (P =

0.04). The hazard ratios (HRs) from both univariate and
frontiersin.org
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TABLE 1 Clinical characteristics of the patients (n=215). Categorical
variables were expressed as Count(Percent), and continuous variables
were expressed as Mean ± SD.

Characteristics Statistics

Age 55.40 ± 8.73 years

Marriage age 23.19 ± 3.05 years

Height 1.56 ± 0.05 m

Weight 54.09 ± 8.03 kg

BMI 22.16 ± 3.08 kg/m2

Number of pregnancies

0 4 (1.86)

1 34 (15.81)

2 53 (24.65)

>=3 103 (47.91)

Missing 21 (9.77)

Number of births

0 7 (3.26)

1 81 (37.67)

2 81 (37.67)

>=3 25 (11.63)

Missing 21 (9.77)

PS

0 score 194 (90.23)

1 score 18 (8.37)

2 score 3 (1.40)

Pathological type

Serous 179 (83.26)

Mucinous 30 (13.95)

Clear cell 2 (0.93)

Endometrioid 4 (1.86)

Stage

I 4 (1.86)

II 12 (5.58)

III 140 (65.12)

IV 49 (22.79)

Missing 10 (4.65)

Tumor metastasis type

Without metastasis 19 (8.84)

Organ metastasis 66 (30.70)

Abdominal cavity, uterus or
intestine metastasis 130 (60.47)

(Continued)
F
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TABLE 1 Continued

Characteristics Statistics

Primary surgery hospital

Cancer Hospital 114 (53.02)

Non Cancer Hospital 101 (46.98)

Chronic endocrine history

No 208 (96.74)

Yes 7 (3.26)

History of cardiovascular disease

No 185 (86.05)

Yes 30 (13.95)

History of infectious diseases

No 211 (98.14)

Yes 4 (1.86)

History of other tumors

No 197 (91.63)

Yes 18 (8.37)

Platinum sensitive

Yes 204 (94.88)

No 11 (5.12)

Treatment before PARP

TP 88 (40.93)

TP + Bevacizumab 109 (50.7)

Others 18 (8.37)

PARPi type

Olaparib 121 (56.28)

Niraparib 71 (33.02)

Olaparib + Niraparib 6 (2.79)

Fluzoparib 16 (7.44)

Missing 1 (0.47)

Treatment line

Primary ovarian cancer 88 (40.93)

Recurrent ovarian cancer 127 (59.07)

Second Surgery Hospital

Hunan Cancer Hospital 90 (41.86)

Others 29 (13.49)

Missing 96 (44.65)

BRCA mutation/HRD status

No 102 (47.44)

Yes 113 (52.56)

(Continued)
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multivariate analyses indicate that BRCA mutation/HRD status is a

protective factor; BRCA mutation/HRD positivity reduces the risk

of recurrence, consistent with the conclusion of numerous current

studies (10–12). Conversely, TBAs was identified as a risk factor in

the multivariate analysis, with each unit increase in TBAs associated

with a 10% increase in recurrence risk. In the cohort of recurrent

ovarian cancer patients, significant variables (P < 0.05) in the

univariate analysis included Ki67, isoenzymes of aspartate

aminotransferase (IOAA), fasting blood glucose (FBG), glycated

hemoglobin, uric acid, and CA-199. In the multivariate Cox

analysis, only CA-199 remained significant (P < 0.01).
3.3 Machine learning

We employed ML to construct PARPi response and prognosis

prediction models in ovarian cancer, consisting of two main stages:

feature selection and model construction/prediction. During the

feature selection stage, correlation analysis was performed for all

features. Features were screened based on the principle of excluding

highly correlated features (Supplementary Figures 2, 3).

Supplementary Tables 1, 2 present the features with P < 0.05
TABLE 1 Continued

Characteristics Statistics

P53

No 30 (13.95)

Yes 112 (52.09)

Missing 73 (33.95)

ER

Weak 72 (33.49)

Medium 50 (23.26)

Strong 14 (6.51)

Missing 79 (36.74)

P16

No 9 (4.19)

Yes 91 (42.33)

Missing 115 (53.49)

Ki67 51.01 ± 23.14%
TABLE 2 Results of Cox univariate and multivariate analysis of primary(n=88) and recurrent(n=127) ovarian cancer patients respectively.

Patient category Feature

Univariate Multivariate

HR P HR P

Primary ovarian
cancer patients

PARPi type 1.38 (1.02, 1.86) 0.04 1.3 0.92, 1.83) 0.13

AVOLa 0.74 (0.56, 1.0) 0.05 0.87 (0.63, 1.2) 0.39

Antibody-ABOb 1.0 (1.0, 1.0) 0.02 1.0 (1.0, 1.0) 0.07

TBAsc 1.09 (1.02, 1.18) 0.02 1.10 (1.0, 1.2) 0.04

Thrombin timed 1.05 (1.0, 1.09) 0.03 0.98 (0.91, 1.06) 0.69

Fibrinogen
concentratione 1.16 (1.05, 1.29) <0.01 1.16(0.98, 1.38) 0.08

BRCA mutation/
HRD status 0.49 (0.26, 0.89) 0.02 0.75 (0.38, 1.50) 0.42

Recurrent ovarian
cancer patients

Ki67 1.36 (1.05, 1.75) 0.02 1.27 (0.98, 1.65) 0.07

IOAAf 1.01 (1.0, 1.02) <0.01 1.01 (1.0, 1.02) 0.07

FBGg 1.13 (1.04, 1.23) <0.01 1.05 (0.95, 1.16) 0.37

Glycated Hemoglobinh 1.12 (1.05, 1.20) <0.01 1.07 (0.99, 1.15) 0.11

Uric Acidi 1.0 (1.0, 1.0) <0.01 1.0 (1.0, 1.0) 0.16

CA-199j 1.0 (1.0, 1.01) <0.01 1.0 (1.0, 1.01) <0.01
aBlood routine: Absolute value of lymphocytes.
bABO blood group: specific antibody-ABO blood type.
cRoutine liver function tests: Total Bile Acids.
dBlood clotting routine four items: Thrombin time.
eBlood clotting routine four items: fibrinogen concentration.
fRoutine liver function tests: Isoenzymes of Aspartate Aminotransferase.
gFasting blood glucose: Fasting blood glucose.
hDetermination of hemoglobin A1c: Glycated Hemoglobin.
iRoutine renal function program: Uric Acid.
jCarbohydrate antigen-199 (CA-199): Carbohydrate antigen-199.
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following Cox univariate analysis. Subsequently, VIF values and

elastic net feature stability values were calculated. Features with VIF

>= 10 and stability <= 0.7 were excluded. For primary ovarian

cancer patients, the final model included the following features:

BRCA mutation/HRD status, PARPi type, antibody-ABO, TBAs,

fibrinogen concentration, and thrombin time. For recurrent ovarian

cancer patients, the final model incorporated Ki67, IOAA, FBG,

glycated hemoglobin, uric acid, and CA-199.
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We selected seven ML models—LR, KNN, RF, LightGBM,

XGBoost, SVM, and Naive Bayes—to construct prediction models

for both primary and recurrent ovarian cancer patient data.

Optimal parameter combinations for each model were identified

through grid search, and model evaluation was conducted using 5-

fold cross-validation. Figure 2 illustrates the ROC curves for each of

the seven models on internal and external datasets for primary and

recurrent ovarian cancer patients. Table 3 presents a comparison of
FIGURE 2

The ROC curves for the classification of patients with good and bad PFS patients. (a) ROC curves of seven models for primary ovarian cancer
patients. (b) ROC curves of seven models for recurrent ovarian cancer patients.
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various performance metrics for these models on primary and

recurrent ovarian cancer patients, respectively. For primary

ovarian cancer patients, the best-performing model according to

the MGA was LightGBM, with an MGA of 0.77 ± 0.19. The

performance metrics for LightGBM in internal test set were: AUC

= 0.79 ± 0.09, accuracy = 0.61 ± 0.10, sensitivity = 0.65 ± 0.19,

specificity = 0.63 ± 0.27, F1 score = 0.68 ± 0.10, precision = 0.78 ±

0.16, and recall = 0.65 ± 0.19. For recurrent ovarian cancer patients,

LightGBM also demonstrated the best performance, with an MGA

of 0.76 ± 0.05. The performance metrics for this model in internal

test set were: AUC = 0.72 ± 0.03, accuracy = 0.60 ± 0.11, sensitivity

= 0.55 ± 0.22, specificity = 0.74 ± 0.28, F1 score = 0.65 ± 0.14,

precision = 0.90 ± 0.07, and recall = 0.55 ± 0.22. Furthermore,

rigorous external validation conducted in independent multicenter

cohorts confirmed the robustness of the LightGBM model,

demonstrating discriminative performance with AUC values of

0.74 in the primary cohort and 0.70 in the recurrent cohort.
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Complete metrics including sensitivity, specificity, and clinical

utility metrics are systematically documented in Table 3.

The calibration curves for both the primary and recurrent

ovarian cancer patient models are presented in Figures 3a, b.

These curves evaluate the reliability of probability predictions by

comparing the model-predicted probabilities (x-axis) with the

observed positive rates (y-axis). The analysis reveals that the solid

blue line (model predictions) closely approximates the dashed line

(perfect calibration) across most intervals (e.g., 0.1–0.5), indicating

accurate efficacy predictions for low-to-moderate probability

ranges. However, in the high-probability interval (>0.6), the

observed positive rates are slightly higher than the predicted

probabilities, suggesting a potential mild underestimation of

efficacy for high-probability samples. This finding underscores the

importance of avoiding overreliance on a single high-probability

threshold for clinical decision-making. The DCA curves for the

primary and recurrent ovarian cancer patient models are illustrated
TABLE 3 Summary of ML algorithms predictive performance for the primary and recurrent ovarian cancer patients(Mean ± SD).

Patient category Dataset
models AUC Accuracy Sensitivity Specificity

F1
score Precision Recall MGA

Primary ovarian
cancer patients

Internal

LR
0.77
± 0.03 0.69 ± 0.07 0.73 ± 0.15 0.61 ± 0.18

0.74
± 0.08 0.78 ± 0.06

0.73
± 0.15

0.77
± 0.09

KNN
0.76
± 0.07 0.62 ± 0.08 0.54 ± 0.16 0.73 ± 0.08

0.61
± 0.14 0.72 ± 0.09

0.54
± 0.16

0.71
± 0.14

RF
0.74
± 0.06 0.74 ± 0.03 0.89 ± 0.03 0.42 ± 0.07

0.82
± 0.02 0.76 ± 0.04

0.89
± 0.03

0.60
± 0.11

SVM
0.66
± 0.06 0.61 ± 0.06 0.6 ± 0.18 0.65 ± 0.21

0.65
± 0.1 0.78 ± 0.08

0.6
± 0.18

0.44
± 0.08

lightGBM
0.79
± 0.09 0.61 ± 0.1 0.65 ± 0.19 0.63 ± 0.27

0.68
± 0.1 0.78 ± 0.16

0.65
± 0.19

0.77
± 0.19

XGBoost
0.69
± 0.07 0.63 ± 0.09 0.71 ± 0.24 0.57 ± 0.22

0.67
± 0.15 0.74 ± 0.14

0.71
± 0.24

0.48
± 0.09

Naive
Bayes

0.75
± 0.05 0.75 ± 0.03 0.77 ± 0.12 0.67 ± 0.19

0.78
± 0.06 0.81 ± 0.04

0.77
± 0.12

0.72
± 0.12

External lightGBM 0.74 0.62 0.62 0.63 0.61 0.77 0.62 –

Recurrent ovarian
cancer patients

Internal

LR
0.69
± 0.1 0.68 ± 0.15 0.73 ± 0.26 0.54 ± 0.27

0.75
± 0.18 0.86 ± 0.08

0.73
± 0.26

0.68
± 0.24

KNN
0.7
± 0.08 0.6 ± 0.07 0.59 ± 0.11 0.69 ± 0.18

0.69
± 0.07 0.86 ± 0.08

0.59
± 0.11

0.49
± 0.11

RF
0.7
± 0.05 0.55 ± 0.08 0.42 ± 0.16 0.86 ± 0.13

0.55
± 0.16 0.88 ± 0.08

0.42
± 0.16

0.49
± 0.07

SVM
0.66
± 0.09 0.68 ± 0.08 0.71 ± 0.15 0.62 ± 0.19

0.76
± 0.08 0.84 ± 0.08

0.71
± 0.15

0.46
± 0.13

lightGBM
0.72
± 0.03 0.6 ± 0.11 0.55 ± 0.22 0.74 ± 0.28

0.65
± 0.14 0.9 ± 0.07

0.55
± 0.22

0.76
± 0.05

XGBoost
0.65
± 0.05 0.57 ± 0.07 0.46 ± 0.13 0.84 ± 0.06

0.6
± 0.12 0.88 ± 0.05

0.46
± 0.13

0.43
± 0.06

Naive
Bayes

0.73
± 0.08 0.63 ± 0.1 0.62 ± 0.18 0.65 ± 0.19

0.7
± 0.13 0.86 ± 0.06

0.62
± 0.18

0.75
± 0.15

External lightGBM 0.70 0.61 0.50 0.67 0.71 0.82 0.60 –
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in Figures 3c, d. These curves assess the clinical utility of the models

across various decision-making scenarios by analyzing the

relationship between threshold probabilities and net benefit. The

red curve (model) demonstrates significantly higher net benefit than

the black line (“Treat all”) and gray line (“Treat none”) across most

threshold probability ranges. This indicates that employing the

model to guide PARP inhibitor treatment could substantially

enhance clinical net benefit within these intervals.

Figures 4a–d presents the results of interpreting the LightGBM

model for primary ovarian cancer patients using SHAP. Figures 4a, b

are global bar and scatter plots, respectively. Figure 4a illustrates the

importance and rank of each feature’s contribution to the model, with

BRCA mutation/HRD status, TBAs, and fibrinogen concentration

ranking as the top three most important features. Figure 4b shows

how each sample contributes to the model based on each feature. As

depicted, samples with positive BRCA mutation/HRD status (value 1,

represented by red dots) generally contribute positively to the model,
Frontiers in Oncology 10
indicating a tendency towards lower relapse risk. In contrast, samples

with negative BRCA mutation/HRD status (value 0, represented by

blue dots) typically contribute negatively, indicating a higher tendency

towards relapse. Additionally, higher values of TBAs and fibrinogen

concentration contributed negatively to themodel. Patients treated with

olaparib (value 0 for PARPi type) generally contributed positively to the

model, while other PARPi types contributed negatively. Figures 4c, d

depict the contribution of each feature to the model for a single sample.

For this particular sample, a BRCAmutation/HRD status of 1 provided

a positive contribution of 0.74 to the model. A TBAs value of 2.8 μmol/

L (within the normal reference range of 0.5-10 μmol/L) contributed

positively with a value of 0.03. Conversely, a fibrinogen concentration of

6.33 g/L (exceeding the normal reference range of 1.8-3.5 g/L)

contributed negatively with a value of 0.28. These contributions are

consistent with the overall trends observed in the global analysis.

Figures 4e–h presents the results of interpreting the LightGBM

model using SHAP for recurrent ovarian cancer patients. Figures 4e, f
FIGURE 3

(a, b) The calibration curve for the lightGBM model: (a) primary ovarian cancer patients. (b) recurrent ovarian cancer patients. (c, d) The DCA curve
for the lightGBM model: (c) primary ovarian cancer patients. (d) recurrent ovarian cancer patients.
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are global bar and scatter plots, respectively. Figure 4e shows the

importance and rank of each feature’s contribution to the model, with

the top three features being FBG, CA-199, and Ki67. Figure 4f

illustrates the contributions of all samples to the model based on
Frontiers in Oncology 11
each feature. The figure indicates a complex contribution trend, with

no clear boundary to distinguish the impact of sample values on the

model. However, in general, higher values of FBG, CA-199, Ki67, and

glycated hemoglobin exhibit a negative trend in their contributions to
FIGURE 4

Feature interpretation using SHAP for primary and recurrent ovarian cancer patients. (a, e) Bar plot of feature importance sorted by mean SHAP value
for primary and recurrent ovarian cancer patients respectively. (b, f) Density scatter plot of SHAP values for each feature for primary and recurrent
ovarian cancer patients respectively. (c, g) Local waterfall plot of feature importance sorted by mean SHAP value for one sample for primary and
recurrent ovarian cancer patients respectively. (d, h) Local bar plot of feature importance sorted by mean SHAP value for one sample for primary and
recurrent ovarian cancer patients respectively.
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the model. Figures 4g, h depict the contribution of each feature to the

model for a single sample. These figures help in understanding how

individual features influence the model’s predictions for

specific cases.
4 Discussion

Ovarian cancer is widely recognized for its significant genomic

disruption and high mutation rate (44). Clinical trials have

demonstrated that patients with BRCA mutation or HRD can

significantly benefit from PARPi (10–12). Interestingly, some

non-HRD or BRCA-wild type patients may also experience

benefits from PARPi (14–16). In the era of precision medicine, it

is crucial to identify patients who will benefit from PARPi therapy,

as from preoperative evaluation to postoperative treatment plans,

personalized approaches for patients are receiving increasing

attention (45, 46). At present, the prognostic factors influencing

the efficacy of PARPi in ovarian cancer remain unclear. While

clinical examinations, pathological and biochemical tests are readily

available in practice, their combined predictive power is yet to be

fully determined. In this study, we explored the impact of 188

potential influencing factors on PFS, including clinical,

pathological, and biochemical information. Although classical

statistical methods can identify associations between variables and

outcomes (47), ML methods are more suitable for multivariate

predictive classification tasks.

In this study, we collected data from 251 patients, encompassing

clinical characteristics, pathological, and biochemical information,

resulting in a total of 188 features. Among primary ovarian cancer

patients, TBAs was identified as a significant prognostic factor for PFS

through both Cox univariate (P = 0.02) and multivariate (P = 0.04)

analyses. In the feature importance analysis of the ML model, the top

three factors were BRCAmutation/HRD status, TBAs, and fibrinogen

concentration. BRCA mutation/HRD status notably influences the

prognosis of ovarian cancer. Consistent with many current studies,
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BRCA mutation/HRD-positive patients in our study tended to have

better prognoses (10–12, 14, 15). TBAs, which are cholesterol-derived

sterols and signaling molecules, play a key role in regulating cancer

cell behavior through receptor-mediated functions. The activation of

receptors such as liver X receptor, pregnane X receptor, vitamin D

receptor, or constitutive androstane receptor has been shown to

protect against ovarian cancer (21–23, 25). These protective effects,

similar to those elicited by bile acids(BAs), include the inhibition of

proliferation, invasion, epithelial-mesenchymal transition, de novo

fatty acid biosynthesis, and the proportion of the cancer stem cell

population, as well as improving the efficacy of chemotherapy (48–

51). Additionally, BAs can influence the expression and activity of

various PARP enzymes (24), and deoxycholic acid can regulate the

expression of BRCA1 and estrogen receptors, thereby controlling the

drug sensitivity of ovarian cancer cells (52). Thus, BAs may modulate

the efficacy of PARPi.

CA-199 was identified as a significant prognostic factor for PFS

in recurrent ovarian cancer through both Cox univariate (P < 0.01)

and multivariate (P < 0.01) analyses. In the feature importance

analysis of the ML model, the top three factors were FBG, CA-199,

and Ki67. Our study findings from both Cox factor analysis and the

ML model suggested that CA-199 and FBG were risk factors

affecting prognosis, with increases in CA-199 and FBG levels

associated with an elevated risk of poor prognosis. CA-199 is

associated with primary cancers of the gastrointestinal system and

ovary, serving as a diagnostic marker for gastrointestinal and

ovarian mucoid cancers (53, 54). Zhu et al. conducted a study

analyzing serum CA-199 levels in patients with normal

postoperative serum CA-125 levels, confirming that an increase in

postoperative serum CA-199 level was an independent risk factor

for PFS and OS. Patients with elevated serum CA-199 levels

exhibited significantly lower 5-year PFS and OS rates compared

to those with normal levels (27). Furthermore, postoperative serum

CA-199 levels have been shown to help identify subgroups of

patients with normal postoperative CA-125 levels who are at

higher risk of recurrence and death.

Additionally, the FBG levels of patients may serve as an

important prognostic indicator. In ovarian tumors, increased

expression of the transmembrane protein glucose transporter 1,

responsible for glucose uptake, has been associated with shortened

survival in ovarian cancer patients. Lamkin et al. found in univariate

analysis that higher blood glucose levels were associated with

shorter survival times (hazard ratio = 1.88; P < 0.05). Multivariate

analysis adjusted for staging revealed that higher blood glucose

levels were associated with shorter survival times (hazard ratio =

2.01; P = 0.04) and disease-free interval (hazard ratio = 2.32; P <

0.05). These findings suggest the prognostic value of blood glucose

levels in ovarian cancer (26). In 2019, elevated fasting blood glucose

was identified as the highest risk factor for ovarian cancer deaths,

with a global increase in age-standardized mortality rates attributed

to elevated fasting blood glucose across all Socio-demographic

Index quintiles. This trend may be related to diabetes

comorbidity-related deaths (55). Currently, diabetes has been

confirmed as an independent risk factor for ovarian cancer

mortality (56), and elevated blood glucose levels in ovarian cancer
FIGURE 5

Interactive interface of the PARP inhibitor efficacy and prognosis
prediction model for clinical use. Taking the PARP inhibitor efficacy
and prognosis prediction model of primary ovarian cancer patient as
an example, further details can be found at the GitHub link.
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patients are predictive factors for poorer survival rates (26). Rapidly

proliferating cancer cells benefit from the nutrient-rich

microenvironment of high blood glucose levels, as they have

increased metabolic demands and utilize glucose faster than

healthy cells (57). Chronic hyperglycemia can increase oxidative

stress, reduce the tumor-suppressive activity of adenosine

monophosphate-activated protein kinase, impair the diversion

capacity of hexosamine monophosphate, and lead to the

accumulation of advanced glycation end products, affecting the

mitogen-activated protein kinase NF-KB pathway (58).

Angiogenesis is crucial for the growth of ovarian cancer, as solid

tumors typically require the formation of new blood vessels to grow

larger than 1-2mm (59). The expression of vascular endothelial

growth factor(VEGF) has been found to be correlated with blood

glucose levels, and VEGF is now recognized as an effective pro-

angiogenic factor, suggesting that patients with uncontrolled

diabetes may be more susceptible to ovarian cancer.

In this study, we employed ML techniques to construct separate

efficacy prognosis prediction models for primary and recurrent

ovarian cancer patients based on multimodal data. Both models

demonstrated favorable performance, with AUC values of 0.79 ± 0.09

and 0.72 ± 0.03, respectively. Furthermore, we identified the top three

factors with the greatest impact on the models: for primary ovarian

cancer patients, these were BRCA mutation/HRD status, TBAs, and

fibrinogen concentration, while for recurrent ovarian cancer patients,

they were FBG, CA-199, and Ki67. Considering the interpretability

limitations ofMLmodels, we conducted feature analysis using SHAP.

In primary ovarian cancer patients, BRCA mutation/HRD status

positivity contributed positively to the model, while higher values of

TBAs and fibrinogen concentration had a negative impact on the

model. Patients treated with olaparib showed a general positive

contribution to the model, whereas other PARPi types exhibited a

negative contribution. In recurrent ovarian cancer patients, higher

values of FBG, CA-199, Ki67, and glycated hemoglobin trended

towards negative contributions to the model overall. Machine

learning models often encounter challenges in feature

interpretation and application. To address this, we have developed

a user-friendly interface tool, as shown in Figure 5. This tool assists

clinicians in inputting the necessary variables for the model and

provides the patient’s risk level, offering guidance for treatment

strategy. The tool can be easily deployed and run locally, greatly

simplifying its use in clinical settings. For detailed code, deployment,

and application instructions, please refer to the GitHub link: https://

github.com/xiongxa/PARP_efficacy_prediction.

It should be noted that we intentionally explored data generated

during standard treatment. Using these data instead of data

specifically collected for computational modeling significantly

reduces the adoption cost of the final model in clinical workflows,

but these data were not collected specifically for modeling purposes.

For most patients, we included BRCA gene mutation status but not

HRD status, as complete HRD gene sequencing data was not

available for all cases. While BRCA mutations are the first and

most widely used genotype prognostic factor for PARPi efficacy in

ovarian cancer, they are not sufficient to predict the efficacy of

PARPi. Current research findings suggest that HRD-positive status
Frontiers in Oncology 13
is an important prognostic factor for PARPi. Based on synthetic

lethality mechanisms, HRD is more widely distributed in ovarian

cancer than BRCA mutations. This is because HRD can be caused

not only by deleterious BRCA mutations but also by genomic

alterations or epigenetic inactivation of BRCA genes and other

defects independent of BRCA (60, 61), and it is associated with the

efficacy of PARPi (62, 63). Therefore, it is hoped that more complete

HRD gene sequencing data can be obtained in the future.

These results may provide research directions for exploring

effective and accurate prognostic factors for PARPi efficacy in

ovarian cancer. Therefore, there is an urgent need for large-scale,

prospective clinical studies to explore effective and accurate

prognostic factors for PARPi efficacy, thereby facilitating

personalized PARPi treatment and expanding the use of PARPi

to a more suitable population of ovarian cancer patients.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Hunan Cancer

Hospital Ethical Review Committee. The studies were conducted in

accordance with the local legislation and institutional requirements.

The participants provided their written informed consent to

participate in this study. Written informed consent was obtained

from the individual(s) for the publication of any potentially

identifiable images or data included in this article.
Author contributions

XX: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Supervision,

Validation, Writing – original draft, Writing – review & editing.

LC: Data curation, Methodology, Writing – original draft. NW:

Conceptualization, Formal analysis, Funding acquisition,

Investigation, Methodology, Project administration, Supervision,

Writing – review & editing. QN: Conceptualization, Formal

analysis, Funding acquisition, Investigation, Methodology, Project

administration, Supervision, Writing – review & editing. ZY: Data

curation, Methodology, Validation, Writing – review & editing. ZC:

Data curation, Methodology, Validation, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by grants from the Hunan Provincial Natural Science Foundation of

China(No.: 2023JJ30373 and 2023JJ30375), the National Key R&D
frontiersin.org

https://github.com/xiongxa/PARP_efficacy_prediction
https://github.com/xiongxa/PARP_efficacy_prediction
https://doi.org/10.3389/fonc.2025.1571193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiong et al. 10.3389/fonc.2025.1571193
Program of China(No.: 2022YFC2404604), the Science and

Technology Innovation Program of Hunan Province (No.:

2023SK4034), the Hunan Cancer Hospital Climb Plan (No.:

2023NSFC-A004 and 2023NSFC-A003).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Frontiers in Oncology 14
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1571193/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The PFS survival curve of primary and recurrent ovarian cancer patients. The
blue and yellow line with the error bar shows the results of primary and

recurrent ovarian cancer respectively.

SUPPLEMENTARY FIGURE 2

The Spearman correlation of primary ovarian cancer patients. (a) Spearman

correlation between patient clinical characteristics; (b) Spearman correlation

between pathological features of patients; (c) Spearman correlation between
patient biochemical omics features; All three figures are symmetric along

the diagonal.

SUPPLEMENTARY FIGURE 3

The Spearman correlation of recurrent ovarian cancer patients. (a) Spearman

correlation between patient clinical characteristics; (b) Spearman correlation
between pathological features of patients; (c) Spearman correlation between

patient biochemical omics features; All three figures are symmetric along

the diagonal.

SUPPLEMENTARY TABLE 1

Characteristic VIF and stability results in groups of primary ovarian

cancer patients.

SUPPLEMENTARY TABLE 2

Characteristic VIF and stability results in groups of recurrent ovarian
cancer patients.
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