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Lung cancer remains the leading cause of cancer-related mortality worldwide.

Tumor-associated macrophages (TAMs) and epithelial-mesenchymal transition

(EMT) are key drivers of lung cancermetastasis and drug resistance. M2-polarized

TAMs dominate the immunosuppressive tumor microenvironment (TME) and

promote EMT through cytokines such as TGF-b, IL-6, and CCL2. Conversely,

EMT-transformed tumor cells reinforce TAM recruitment and M2 polarization

through immunomodulatory factors such as CCL2 and ZEB1, thereby

establishing a bidirectional interplay that fuels tumor progression. Current

evidence on this interaction remains fragmented, and a comprehensive review

of the TAM-EMT regulatory network and its therapeutic implications is lacking.

This review systematically integrates the bidirectional regulatory mechanisms

between TAMs and EMT, highlighting their roles in lung cancer progression. It

also summarizes emerging therapeutic strategies targeting TAM polarization and

the EMT process, emphasizing their potential for clinical translation. This study

fills the gap in systematic reviews on the interaction between TAMs and EMT,

providing a comprehensive theoretical foundation for future research and the

development of novel lung cancer therapies.
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GRAPHICAL ABSTRACT
1 Introduction

Primary bronchogenic carcinoma, commonly referred to as

lung cancer, is the most lethal malignancy worldwide and the

second most common cancer in terms of incidence (1). Lung

cancer can be classified into small cell carcinoma (SCLC) and

nonsmall cell carcinoma (NSCLC) on the basis of the histological

characteristics of the cancer cells. NSCLC is the most common

subtype, accounting for 85–90% of all lung cancer types. NSCLC

comprises several histological subtypes, including lung

adenocarcinoma, squamous cell carcinoma, and large cell

carcinoma (2). Currently, treatment options for lung cancer

include surgical resection, chemotherapy, targeted therapy, and

radiotherapy. Although progress has been made in early diagnosis

and treatment, the overall prognosis for patients with lung cancer

remains poor.

Macrophages that infiltrate or accumulate in the tumor

microenvironment are defined as tumor-associated macrophages

(TAMs) and represent the predominant infiltrating immune cells in

solid tumors. They exhibit high plasticity, are capable of exhibiting

protumor or antitumor functions in response to various signaling

stimuli (3–5), and have multiple supportive and inhibitory effects

on tumor growth, progression, and metastasis (6).

Epithelial–mesenchymal transition (EMT) refers to a highly

programmed process in which epithelial cells lose their original

phenotypic characteristics and acquire mesenchymal cell traits (7).

During EMT, epithelial-derived tumor cells lose their epithelial

characteristics and acquire mesenchymal traits, resulting in reduced

intercellular adhesion, loss of cell polarity, and increased cell

migration, invasion, and antiapoptotic capabilities. EMT plays a

crucial role not only in embryonic development and tissue repair

but also in tumor progression, participating in various tumor

processes, including tumor initiation, stemness, migration,

oncogenic progression, vascular infiltration, malignant metastasis,

and resistance to therapy (8).
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In recent years, TAMs and EMT have become hot topics in

cancer research. Studies have shown that the interaction between

TAMs and EMT is closely related to tumor progression (9–11).

Although the association between TAMs and EMT has been

preliminarily reported, the bidirectional regulatory mechanisms

and clinical translational potential have yet to be systematically

elucidated. This review aims to explore the role of TAMs in lung

cancer EMT and their clinical significance. By systematically

reviewing the relevant literature, this study analyzes the

interaction between TAMs and EMT, reveals their roles in lung

cancer progression, and discusses the clinical potential of targeting

TAMs and the EMT process, aiming to provide a theoretical basis

for future research and therapeutic strategies.
2 Tumor-associated macrophages

2.1 Sources and differentiation of TAMs

Pulmonary macrophages originate from two main lineages:

tissue-resident macrophages (TRMs), which can locally self-renew

independently of hematopoietic stem cell pathways in adults,

and monocyte-derived macrophages (MDMs), which originate

from adult hematopoietic stem cells and have a shorter lifespan

and tend to accumulate at sites of inflammation (12). TAMs are

key immune cells in the tumor microenvironment and are

derived primarily from monocytes in the bloodstream; these cells

migrate to the tumor microenvironment and differentiate, with a

small portion also originating from TRMs (13). The differentiation

and function of TAMs are regulated by various signals in the

tumor microenvironment, including cytokines and chemokines

secreted by tumor cells, stromal cells, and other immune cells.

Existing studies indicate that TAMs can be classified into the

classical activated M1 type and the alternatively activated M2 type

(4, 14–17). M1-type TAMs induced by granulocyte-macrophage
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colony-stimulating factor (GM-CSF), interferon-g (IFN-g),
tumor necrosis factor-a (TNF-a), lipopolysaccharides (LPS), or

other pathogen-associated molecules are generally considered to

exhibit pro-inflammatory and anti-tumor effects, expressing

inflammatory factors such as interleukin (IL)-1b, IL-6, and TNF-

a (14, 18–20); in contrast, M2-type TAMs induced by macrophage

colony-stimulating factor (M-CSF), IL-4, IL-10, IL-13, transforming

growth factor (TGF)-b, glucocorticoids, or immune complexes

exhibit anti-inflammatory effects and promote tumor progression,

expressing anti-inflammatory factors such as IL-10 and TGF-b
(14, 19–21). With the advancement of research, M2-type

TAMs can be further subdivided into M2a, involved in tissue

fibrosis (induced by IL-4 or IL-13), M2b, which promote tumor

progression (induced by immune complexes in conjunction with

IL-1b or LPS), M2c, responsible for tissue remodeling (induced by

IL-10, TGF-b, or glucocorticoids), and M2d, which promote

angiogenesis (induced by IL-6, leukemia inhibitory factor (LIF),

and adenosine) (6, 17, 18, 22) (Table 1).
2.2 TAMs and lung cancer

In the tumor microenvironment, the phenotype, distribution,

and density of TAMs are closely related to patient prognosis (23–

25). In lung cancer tissues, the number of M2-type TAMs is usually

greater than that of M1-type TAMs (26–29). Compared with tumor

nodules, M1 and M2 macrophages primarily infiltrate the tumor

stroma, and a higher density of M1-type macrophages is often

associated with better survival rates for patients (27, 30), whereas

high infiltration of M2-type macrophages generally indicates poorer

prognosis (28). Although M1-type macrophages are typically

associated with tumor suppression, in the initial stages of

tumorigenesis, they support the initiation of tumor development

by producing reactive oxygen and nitrogen intermediates. These

reactive oxygen and nitrogen intermediates induce DNA damage in

proliferating cells and surrounding epithelial cells, thereby

increasing the risk of tumor transformation (31). Therefore,

during the initial stages of tumor development, M1-type TAMs

are the predominant macrophages. However, in early lung cancer,

M1-type and M2-type TAMs are not mutually exclusive; some M2-

type TAMs also exhibit strong M1-type characteristics.
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Additionally, there is a strong correlation between the density of

M1-type TAMs and the density of TRMs in tumors, which is

associated with better survival (26).

During the wound healing process, the activities of M2-type

macrophages can promote the restoration of tissue homeostasis.

However, in the tumor microenvironment, the polarization of M2-

type TAMs plays a crucial role in tumor progression (32). In the

vast majority of solid tumors, including lung cancer, M2-type

TAMs are positively correlated with tumor growth and

metastasis. During the development of lung cancer, M2-type

TAMs drive tumor cell proliferation, survival, epithelial-to-

mesenchymal transition, and immune evasion by secreting a

range of molecules, including growth factors, chemokines,

cytokines, and matrix metalloproteinases (MMPs), thereby

promoting the invasion and metastasis of tumor cells in vivo (33–

35). Among these, the expression of various molecules, such as JNK,

HB-EGF, and Mincle, in M2-type macrophages promotes the

growth of NSCLC cells (36, 37), whereas vascular endothelial

growth factor (VEGF), platelet-derived growth factor (PDGF), IL-

10, and exosomes containing miR-155 and miR-196a-5p are

associated with lung cancer progression and metastasis (38). After

lung cancer formation, TAMs in the tumor microenvironment

induce M2 polarization through a series of complex molecular

mechanisms, including the COX-2/PGE2/EP4 signaling axis, the

AMPKa1/STING positive feedback regulatory pathways, the

regulatory role of Zeb1 transcription factors, the involvement of

CtBP1, the mediation by CCL2, and the secretion of circFARSA or

the release of exosomes carrying PD-L1 (39–45). This leads to the

gradual formation of a tumor microenvironment primarily

characterized by M2 macrophages, which support and promote

angiogenesis, tumor growth and survival, invasion and metastasis,

and immune suppression, further driving the growth and metastasis

of lung cancer.
3 Epithelial–mesenchymal transition

3.1 Overview of EMT

Epithelial–mesenchymal transition (EMT) is a complex and

multifaceted process that plays a crucial role in embryonic
TABLE 1 Types and functions of TAMs.

Types Subtypes Inducing Factors Major Expressed Factors Functions

M1-Type GM-CSF, IFN-g, TNF-a, LPS, etc.
Inflammatory factors such as IL-1b, IL-6,

IL-12, IL-23, TNF-a, etc.
Pro-inflammatory and anti-tumor (6, 17).

M2-Type

M2a IL-4、IL-13
CD206, IL-10, TGF-b, CCL17, CCL18,

CCL22, etc.
Involved in tissue fibrosis and promoting

wound healing (6, 18).

M2b
Immune complexes with Toll-like

receptor (TLR) ligands, IL-1b, LPS, etc.
TNFa, IL-1b, IL-6, and IL-10, etc.

Immune regulation and tumor
progression (6, 18, 22).

M2c IL-10, TGF-b, glucocorticoids, etc. IL-10, TGF-b, CCL16, and CCL18, etc.
Responsible for tissue remodeling and
phagocytosing apoptotic cells (6, 18).

M2d
IL-6, leukemia inhibitory factor (LIF),

adenosine, etc.
VEGF, IL-10, and PD-1, etc.

Immune suppression and promotion of
angiogenesis (6, 18).
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development, tissue repair, and pathological conditions such as

cancer and fibrosis. During the EMT process, epithelial cancer cells

undergo a series of molecular changes, including downregulation of

the epithelial marker E-cadherin and upregulation of the

mesenchymal markers vimentin and N-cadherin, thereby

acquiring the characteristics of mesenchymal cells. During this

transition, epithelial cells lose their polarity and intercellular tight

junctions, acquiring enhanced migratory and invasive properties

that enable them to traverse the stroma and migrate to new

locations. Cancer cells undergoing EMT secrete various cytokines

to remodel the tumor immune microenvironment (46).

EMT results in three main phenotypes in different biological

contexts (47, 48): (1) Embryonic EMT (also known as Type 1 EMT)

primarily occurs during implantation, embryogenesis, and organ

development and is driven by the evolutionary need to remodel and

diversify tissues to achieve proper morphogenesis and produce

functional organisms. This EMT is transient and unrelated to

inflammation, fibrosis, or systemic dissemination. ② Regenerative

EMT (Type 2 EMT) is closely related to wound healing, tissue

regeneration, and organ fibrosis. In the context of injury,

regenerative EMT promotes tissue repair by producing activated

mesenchymal cells, particularly myofibroblasts, which generate

excessive collagen-rich extracellular matrix (ECM). ③ Cancerous

EMT (Type 3 EMT) occurs in the context of tumor growth and

cancer progression, particularly in tumor cells that have previously

undergone genetic and epigenetic changes. During this process,

tumor cells convert to a mesenchymal phenotype, thereby acquiring

invasive and metastatic capabilities, which are critical steps in

cancer progression and metastasis.
3.2 EMT and lung cancer

In lung cancer, EMT is considered a key mechanism by which

tumor cells acquire migratory and invasive abilities; this phenotype

is commonly observed in primary squamous cell carcinoma (SCC)

and lung adenocarcinoma (LUAD) and typically occurs early in the

pathogenesis of lung cancer (49). The occurrence of EMT is closely

associated with metastasis, drug resistance, immune evasion, and

poor prognosis in patients with lung cancer (48). The expression

levels of markers, such as E-cadherin, which maintains adhesive

junctions, and vimentin, which is involved in cytoskeletal

remodeling, are significantly related to the prognosis of non-small

cell lung cancer (NSCLC) (50, 51). As a fundamental event in the

EMT process, the loss of E-cadherin expression is a key step in

tumor cell infiltration and progression (52). Studies have shown

that conditional deletion of E-cadherin or the expression of

dominant-negative E-cadherin leads to weakened intercellular

adhesion among cancer cells and induces vascular invasion and

tumor growth through the upregulation of VEGF-A and VEGF-C

mediated by b-catenin, thereby inducing micrometastasis in lung

adenocarcinoma (53). Furthermore, EMT is also associated with

tumor stem cell properties, endowing tumor cells with enhanced

migratory and invasive capabilities (54, 55).
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On the other hand, several genes in lung cancer, such as Twist,

Snail, and TGF-b1, have been confirmed to be associated with EMT,

promoting the process of EMT in lung cancer by downregulating E-

cadherin and upregulating Vimentin (56–58). Additionally, lung

cancer cells can induce epithelial–mesenchymal transition (EMT)

through various molecules and signaling pathways. In non-small

cell lung cancer, the overexpression of FoxQ1, CTEN, and EDA

fibronectin (EDAFN), as well as the activation of the RAGE

receptor by advanced glycation end products, can induce EMT in

lung cancer cells, promoting tumor progression (59–62). H.R. et al.

(63) found that NSCLC cells can induce EMT and promote

proliferation, migration, and invasion by downregulating SETBP,

which activates the ERK1/2 pathway.
4 Interaction of TAMs with EMTs

4.1 How TAMs influence the EMT process
in lung cancer cells

Tumor-associated macrophages (TAMs) exhibit a multilayered

and profound regulatory effect on the epithelial–mesenchymal

transition (EMT) process in the tumor microenvironment, and

their quantity and activation state significantly correlate with EMT

regulation. In various solid tumors, including non-small cell lung

cancer, the overall quantity of TAMs and the high expression of

specific markers (such as CD68 and CD163) are closely related to

enhanced EMT characteristics in cancer cells (such as

downregulation of E-cadherin and upregulation of vimentin),

indicating that EMT features are more pronounced in tumor

areas rich in TAMs (33, 64–66). Furthermore, during lung cancer

progression, there is a significant increase in the number of TAMs

and tumor-associated fibroblasts, along with a marked increase in

the expression levels of EMT markers in tumor tissues (67).

TAMs secrete various cytokines and growth factors that act on

relevant signaling pathways, directly or indirectly participating in

the initiation, maintenance, and progression of EMT in lung cancer,

significantly promoting the loss of cell polarity and weakening

intercellular adhesion, thereby disrupting the stability of

intercellular connections (Figure 1). This process provides an

important biological basis for the migration and invasion of

tumor cells, serving as a key step in the malignant progression

and metastasis of lung cancer.

TAMs promote the EMT of tumor cells by secreting various

factors, including TGF-b, IL-6, and CCL2. These factors act on

intracellular signaling pathways, including COX-2/PGE2, STAT3-C/

EBPb, ATM/NF-kB, TGF-b-SMAD, SMAD/ZEB, ERK1/2/Fra-1/Slug,

and JAK1-STAT3. These pathways suppress the expression of epithelial

markers while promoting the expression of mesenchymal markers,

thereby inducing EMT in tumor cells. Lung cancer cells undergoing

EMT secrete increased levels of chemokines and transcription factors,

such as the chemokine CCL2 and the transcription factor ZEB1, further

enhancing the recruitment and polarization of TAMs.

(1) IL-6
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Interleukin-6 (IL-6) is a multifunctional cytokine that plays a

significant role in regulating the immune system (68). Research by

Dehai et al. (69) found that THP-1-derived macrophages promote

the invasiveness and EMT process of lung adenocarcinoma cells by

secreting IL-6. In another study, IL-6 was shown to promote the

nuclear translocation of b-catenin via the COX-2/PGE2 pathway,

thereby inducing EMT and enhancing tumor cell invasion (70).

Furthermore, a study by Hu et al. (71) reported that TAMs promote

IL-6 expression and activate the EMT pathway by forming an IL6-

STAT3-C/EBPb-IL6 positive feedback loop. Notably, IL-6 is also

associated with chemotherapy resistance and prognosis in lung

cancer patients; studies have shown that IL-6 can activate and

enhance chemotherapy resistance in lung cancer by activating the

ATM/NF-kB pathway (72). Additionally, high levels of IL-6 in

plasma are regarded as important markers for poor prognosis in

chemotherapy patients (73).

(2) TGF-b and related signaling pathways

Transforming growth factor-beta (TGF-b) is a prototypical

member of a structurally and functionally related family of

proteins that regulate cell proliferation, migration, and the

differentiation of a variety of cell types (74). In the tumor

microenvironment, TGF-b has a dual role in tumor progression.

In the early stages of cancer, it acts as an effective tumor suppressor

by inhibiting the cell cycle and promoting apoptosis, thereby

suppressing tumor initiation and progression. However, in the

middle to late stages of cancer, tumor cells may develop

resistance to TGF-b or be reprogrammed by it (75), transforming

TGF-b into a tumor promoter that induces epithelial–mesenchymal
Frontiers in Oncology 05
transition (EMT) and enhances the invasive and metastatic

capabilities of tumor cells, as well as their resistance to

chemotherapy. Furthermore, it supports cancer growth and

progression by activating tumor angiogenesis and cancer-

associated fibroblasts, as well as enabling tumors to evade

immune responses (74, 76).

TGF-b is a key factor released by TAMs and has been shown to

significantly promote the transition of epithelial cells to

mesenchymal cells by activating various intrinsic pathways, such

as the AKT, SMAD, and b-catenin pathways, thereby increasing cell

migrat ion and invasion (77–81) . In the lung cancer

microenvironment, TAMs can promote EMT in tumor cells by

releasing TGF-b, which acts on signaling pathways such as the

Smad/ZEB and C-jun/SMAD3 pathways, thereby increasing the

metastatic potential and proliferation ability of tumors (82, 83).

Research by J. A et al. (84) further revealed that B7-H4-expressing

macrophages may regulate the EMT process by secreting TGF-b1,
thereby promoting pleural metastasis in lung cancer. Additionally, a

study by Bonde et al. (64) reached similar conclusions, indicating

that TAMs induce EMT in cancer cells within tumors through

TGF-b signaling and the b-catenin pathway.

(3) CCL2

CCL2 is a key chemokine that regulates the migration of

monocytes/macrophages into the TME (85, 86). In lung cancer

tissues, CCL2 secreted by TAMs promotes EMT through a dual

regulatory mechanism: on one hand, it significantly downregulates

the expression of the epithelial marker E-cadherin, while on the

other, it simultaneously upregulates the expression levels of the
FIGURE 1

Schematic representation of the interaction between TAMs and EMT.
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mesenchyma l marke r v imen t in , a s we l l a s ma t r i x

metalloproteinases MMP-2 and MMP-9, thereby enhancing the

invasion and migration capabilities of NSCLC cells (87). Notably,

CCL2 and IL-6 exhibit a significant synergistic effect in EMT

induction. They mutually induce each other to activate STAT3

phosphorylation. In turn, activated STAT3 can regulate the

expression of IL-6 and CCL2, forming a positive feedback loop

that not only amplifies STAT3 signaling but also drives a cascade

reaction in the EMT process. Additionally, CCL2 can significantly

enhance IL-6-induced EMT by upregulating the expression of the

transcription factor Twist (88).

(4) Other Pathways

In addition to the aforementioned classical cytokine pathways,

several studies have revealed non-classical mechanisms by which

TAMs regulate EMT in lung cancer: Li et al. (38) found that

exosomal miR-155/miR-196a-5p can promote EMT in NSCLC

cells through epigenetic modifications. Cao et al. (89) identified

the IL-10/STAT3 phosphorylation cascade as a critical activator of

EMT. Guo et al. (90) revealed that M2 macrophages enhance EMT

by upregulating CRYAB expression and activating the ERK1/2/Fra-

1/Slug signaling axis.
4.2 Feedback regulation of TAM function
via the EMT process in lung cancer

EMT, while promoting tumor invasion and metastasis, is often

accompanied by the attraction and infiltration of TAMs (91, 92).

After undergoing EMT, tumor cells typically release increased levels

of chemokines (such as CCL2), further promoting the recruitment

and polarization of TAMs. This interaction forms a positive

feedback loop that collectively drives tumor progression

(Figure 1). Currently, the regulatory mechanisms by which EMT

influences TAMs primarily involve the following pathways:

(1) TWIST1/CCL2-Mediated Macrophage Recruitment and

M2 Polarization

TWIST1 is a key regulatory factor in the interplay between TAMs

and EMT. On one hand, TWIST1 directly participates in the EMT

process by regulating E-cadherin and other related proteins, thereby

promoting EMT in lung cancer cells. On the other hand, activated

TWIST1 upregulates the expression of CCL2, which acts as a

chemokine to attract macrophages and induce their polarization

toward the M2 phenotype. The polarized M2 macrophages, in turn,

promote EMT in lung cancer cells, forming a positive feedback loop

that continuously drives tumor progression and metastasis (93).

Additionally, Wang et al. (42) found that elevated CtBP1 protein

expression can induce EMT in NSCLC cells and regulate the activation

of the NF-kB signaling pathway, leading to increased CCL2 secretion,

which in turn promotes TAM recruitment and polarization.

(2) ZEB1 Promotes TAM Accumulation and Infiltration in the

Hypoxic TME

Hypoxia is a critical microenvironmental stressor that regulates

various potent immunosuppressive phenomena associated with

tumor progression (94). Hypoxia triggers EMT in various cancers,

including breast, prostate, and oral cancers (95). The accumulation
Frontiers in Oncology 06
of TAMs in the hypoxic TME is closely associated with malignant

tumor progression. Moreover, hypoxic regions exhibit significant

spatial overlap with EMT invasion fronts and TAM distribution

(95, 96). ZEB1 is a key transcription factor in EMT, endowing

cancer cells with an invasive, mesenchymal-like phenotype and

serving as a predictor of poor clinical prognosis in most cancers. In

the hypoxic TME, ZEB1 promotes macrophage infiltration by

activating the transcription of CCL8, which subsequently attracts

macrophages via the CCR2-NF-kB pathway, enhancing TAM

accumulation in the tumor microenvironment (97).

In addition to the aforementioned factors, various

inflammatory cytokines induced during the EMT process, such as

the pro-inflammatory and immunoregulatory TNF-a (98),

neutrophil-recruiting GROs (99), and angiogenesis-promoting IL-

8 (100), also play crucial roles in the interaction between EMT and

TAMs. These factors may collectively contribute to creating a

favorable environment for tumor development.

The interaction between TAMs and EMT is also significant in

other types of cancer. In pancreatic ductal adenocarcinoma, Xiong

et al. (101) demonstrated that TAMs drive EMT by activating the

Snail transcription factor via the TGF-b/Smad2/3/4 signaling axis,

thereby promoting stromal invasion and tumor microenvironment

remodeling. In hepatocellular carcinoma, Zhang et al. (102)

discovered a HIF-1a/IL-1b signaling loop between cancer cells

and TAMs in the hypoxic microenvironment, leading to

epithelial-mesenchymal transition and metastasis. In rectal

cancer, Zheng et al. (103) found that the long non-coding RNA

LINC00543 enhances EMT through the pre-miR-506-3p/FOXQ1

axis, leading to the upregulation of CCL2, which in turn promotes

CCL2-mediated macrophage recruitment and M2-like polarization.

Further research by Wei et al. (104) confirmed that TAMs can

enhance EMT progression via the STAT3/miR-506-3p/FoxQ1

pathway, leading to increased CCL2 production, which facilitates

macrophage recruitment. This establishes an “EMT-CCL2-TAM”

positive feedback loop that drives rectal cancer progression. In

breast cancer, Su et al. (105) found that EMT-processed cancer cells

secrete GM-CSF, which activates macrophages into a TAM-like

phenotype. The activated macrophages, in turn, secrete CCL18,

inducing EMT in cancer cells and establishing a positive feedback

loop. This loop is crucial for promoting breast cancer cell metastasis

and is associated with poor prognosis in breast cancer patients.

In summary, the interaction between TAMs and EMT creates a

positive feedback mechanism that not only enhances the migratory

capacity of tumor cells but also leads to sustained immune

suppression within the tumor microenvironment, facilitating

tumor cell escape from host immune surveillance and clearance.
5 Therapeutic strategies targeting
TAMs and EMT

Therapeutic strategies targeting TAMs and EMT are being

progressively developed, showing promising preclinical prospects.

By inhibiting the recruitment or polarization of TAMs, their

supportive role in tumors can be diminished, thereby enhancing
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the efficacy of conventional treatments such as chemotherapy and

radiotherapy. Additionally, blocking the EMT process to reduce the

migration, invasion, and drug resistance of tumor cells is also

considered a highly promising strategy for lung cancer treatment.

Here, we summarize the current therapeutic strategies targeting

TAMs and EMT as key points (Table 2) and outline the progress of

lung cancer clinical trials related to TAMs and EMT (Table 3).
5.1 Therapeutic strategies targeting TAMs

In the lung cancer microenvironment, TAMs constitute a major

component of immune ce l l s . They not only ac t as

immunosuppressive cells, enabling lung cancer cells to escape

immune surveillance but also directly promote cancer cell

proliferation, survival, invasion, and metastasis (126). Therefore,

the precise regulation and development of therapeutic strategies

targeting TAMs have become important research directions in the

field of lung cancer treatment.

(1) Modulating the number of TAMs

As mentioned earlier, M2-type TAMs dominate the lung cancer

microenvironment, and their high infiltration at tumor sites is a

crucial factor in tumor progression. Therefore, reducing the density

of TAMs, particularly the number of M2-type TAMs, can effectively

inhibit lung cancer progression. Blocking various chemokines

produced by tumor and stromal cells, such as monocyte

chemoattractant protein-1 (MCP-1), prostaglandin E2 (PGE2),

colony-stimulating factor 1, and CCN3, can inhibit the

recruitment of TAMs to tumor sites, thereby suppressing tumor

progression and preventing metastasis (127, 128). Several drugs,

such as ginsenoside (40), imatinib (106), resveratrol (107),

paeoniflorin (108), astragaloside IV (109), puerarin (110),

gefitinib (111), apatinib (112), and anagliptin (113), have been

shown to inhibit M2 polarization of macrophages and reduce TAM

infiltration, thereby suppressing lung cancer progression.

Additionally, two studies indicated that oyster hydrolysate (OEH)

and cannabinoid receptor-2 agonists could reduce the recruitment

of macrophages to tumor sites and inhibit M2-type macrophage-

induced EMT, thereby decreasing the migration and invasion

capabilities of lung cancer cells (114, 115). On the other hand,

increasing the number of M1-type TAMs is also considered an

effective approach to suppress tumors. Liu et al. (129) found that the

overexpression of the transcription factor TCF21 promotes the

polarization of TAMs to M1 macrophages and enhances the

impact of macrophages on T-cell activity, thereby strengthening

the body’s antitumor immune response.

(2) Altering the function of TAMs

Given that TAMs exhibit significant plasticity and can polarize

into different phenotypes in response to various stimuli in the

tumor microenvironment, “reprogramming” TAMs to adopt an

antitumor phenotype represents a promising therapeutic strategy. A

series of drugs, such as 13-methyl-palmatrubine (13MP) derived

from the flower of Crotalaria juncea (116), b-caryophyllene (117),
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hydroxychloroquine (118), and birch bark acid (119), have been

found to regulate the polarization state of TAMs by modulating

signaling pathways such as the AMPKa1/STING, mTOR, PI3K/

AKT, and JAK/STAT3 pathways, facilitating the transition from the

tumor-promoting M2 phenotype to the antitumor M1 phenotype

and thereby inhibiting lung cancer growth and progression.

Additionally, Lee et al. (130) found that inhibiting the Wnt/b-
catenin signaling pathway can also reprogram TAMs into an M1-

like phenotype that suppresses tumors. Lin et al. (131) achieved

combined administration of osimertinib and panobinostat (Pan) via

a liposome codelivery system modified with lactoferrin; this strategy

not only reversed EMT-related resistance by repolarizing TAMs

from the M2 phenotype to the M1 phenotype but also inhibited

tumor metabolism and angiogenesis, providing a new therapeutic

approach to overcoming resistance in NSCLC. Notably, the

application of nanotechnology, such as ultrasound-mediated

PLGA-PEI nanobubbles carry ing STAT6 siRNA and

intraperitoneal injection of HA-PEI nanoparticles, has also

demonstrated the ability to repolarize TAMs from the M2

phenotype to the M1 phenotype, thereby inhibiting the

progression of non-small cell lung cancer (132, 133).

(3) TAMs and immunotherapy in lung cancer

TAMs play a crucial role in immunotherapy for lung cancer.

They inhibit phagocytosis and tumor immunity by expressing PD-

1, and blocking PD-1/PD-L1 in vivo can enhance macrophage

phagocytosis and reduce tumor growth. Monoclonal antibodies

that block PD-1/PD-L1 have demonstrated significant clinical

efficacy in various cancer patients, including those with non-small

cell lung cancer (NSCLC) (134). In NSCLC, MARCO-expressing

TAMs exhibit an M2 phenotype that promotes tumor growth, and

this phenotype is positively correlated with immune response

pathways (135). The polarization state of TAMs can affect the

activity of NF-kB, which participates in immune evasion by

regulating PD-L1 expression in tumor cells. Thus, inhibiting the

NF-kB signaling pathway may help reduce PD-L1 expression and

enhance the efficacy of immunotherapy (136). Furthermore, xCT

derived from TAMs is closely associated with poor prognosis in

lung cancer patients. xCT deficiency downregulates the AKT/

STAT6 signaling pathway, inhibits M2 polarization of

macrophages, increases T-cell infiltration, and activates

inflammatory and immune responses. The xCT inhibitor erastin

enhances sensitivity to PD-L1 and effectively suppresses lung cancer

progression (120). Additionally, several other molecules and

signaling pathways that target TAMs have been identified in lung

cancer, such as TCF21 (129), ADPGK-AS1 (137), TLR4 (138) and

JMJD6/STAT3/IL-10 (139), which are also considered potential

targets for immunotherapy. Notably, the recently introduced

chimeric antigen receptor macrophage (CAR-M) therapy has

opened new possibilities for the immunotherapy of solid tumors

(140). Although CAR-M has not yet been reported for the treatment

of lung cancer, several CAR-M therapies, such as CT-0508

(NCT04660929) and MCY-M11 (NCT03608618), have been

approved by the U.S. Food and Drug Administration (FDA) to
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TABLE 2 Therapeutic approaches targeting TAMs and EMT in lung cancer.

Pharmacological
Agent

In vivo/In vitro Mechanism Approach Reference

Targeting TAMs

Imatinib In vivo and in vitro
Inhibition of STAT6 phosphorylation and

nuclear translocation
Inhibits M2-like polarization of TAMs (106)

Resveratrol In vivo and in vitro Reduced STAT3 activity and p-STAT3 expression Inhibits M2-like polarization of TAMs (107)

Paeoniflorin In vivo and in vitro unknown
Decrease in the number of

M2 macrophages
(108)

Astragaloside IV In vitro Reduces p-AMPK levels Inhibits M2-like polarization of TAMs (109)

Puerarin In vivo and in vitro Inactivate MEK/ERK 1/2 pathway Inhibits M2-like polarization of TAMs (110)

Gefitinib In vivo and in vitro Inhibits STAT6 phosphorylation Inhibits M2-like polarization of TAMs (111)

lapatinib In vivo and in vitro Inhibition of IL-13-triggered STAT6 phosphorylation Inhibits M2-like polarization of TAMs (112)

Anagliptin In vivo and in vitro

Inhibition of M-CSF -induced NOX1 and NOX2
expression suppresses reactive oxygen species production
in bone marrow monocytes, reduces late ERK signaling

pathway activation, and suppresses monocyte-
macrophage differentiation

Inhibits macrophage differentiation
and M2 macrophage polarization

(113)

Oyster enzymatic
hydrolysate (OEH)

In vivo unknown Reducing the number of TAMs (114)

JWH-015 In vivo and in vitro Downregulation of EGFR pathway
Inhibition of TAMs recruitment

and EMT
(115)

Ginsenoside Re In vivo and in vitro
Inhibition of AMPKa1/STING positive feedback

loop formation
Inhibition of M2 type polarization

of TAMs
(40)

13-Methyl-palmatrubine in vitro
Inhibition of PI3K/AKT and JAK2/STAT3 signaling

pathway activation
Shift the polarization of the TAMs

from M2 to M1
(116)

b-elemene In vitro unknown
Regulates macrophage polarization

from M2 to M1
(117)

Hydroxychloroquine In vivo and in vitro unknown
promote the transition of M2-TAMs

into M1-like macrophages
(118)

Betulinic acid In vivo and in vitro Inhibits mTOR signaling pathway
Repolarization of tumor-associated
macrophages increases the ratio of

M1/M2 macrophages in tumor tissue
(119)

Erastin In vivo and in vitro Inhibition of xCT-mediated AKT/STAT6 signaling
Reduced M2-type polarization of
TAMs and boosts responses to
immune checkpoint blockade

(120)

Targeting EMT

Harmine In vivo and in vitro Suppression of the TWIST1 gene
Overcoming EMT-mediated resistance

to EGFR TKIs
(121)

TP-0903 In vivo and in vitro Suppression of AXL Reverses EMT process (122)

BGB324 In vivo and in vitro Suppression of AXL
Blocking the EMT process to

overcome EMT-associated drug
resistancein cancer

(123)

Bufalin In vitro Downregulates TGF-b receptor Suppression of EMT and migration (124)

Methionine
enkephalin (MENK)

In vivo and in vitro Interaction with opioid growth factor receptors Inhibition of the EMT process (125)
F
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enter clinical trials for the treatment of recurrent or metastatic solid

tumors overexpressing HER2 as well as recurrent/refractory ovarian

cancer and peritoneal mesothelioma (141, 142). With continuous

advancements in gene editing technologies, synthetic biology, and

biomaterials science, CAR-M therapy is expected to become a

crucial component of cancer immunotherapy, providing a

powerful tool for overcoming solid tumors, including lung cancer.
5.2 Therapeutic strategies targeting EMT

The EMT process plays a crucial role in the metastasis, immune

evasion, and chemotherapy resistance of lung cancer. Therefore,

therapeutic strategies targeting EMT are particularly important.

(1) EGFR-AKT:

Epidermal growth factor receptor (EGFR)-mutant tumors have

become key targets in the study of lung cancer resistance since their

discovery in 2004. Currently, the third-generation EGFR inhibitor

osimertinib is widely used in first-line treatment (143). However, in

recent years, several previously uncommon acquired resistance

mechanisms have emerged in lung cancer patients treated with

osimertinib, with increasing frequency. These mechanisms include

acquired EGFR mutations (e.g., C797S), amplification of MET and

HER2, and small-cell transformation (144–146). Notably,

epithelial–mesenchymal transition (EMT) transcription factors

such as ZEB1, Slug, and TWIST1 have been identified as drivers

of EGFR TKI resistance mediated by EMT, suggesting that these

transcription factors could be potential targets for treating EMT-

related resistance in lung cancer (121, 147–149).

(2) Regulation of microRNAs and circRNAs:

Research on EMT-related microRNAs and circRNAs has

provided new therapeutic approaches and strategies for lung

cancer patients. Specifically, studies have shown that in cancer

cells undergoing Snail-induced epithelial–mesenchymal transition

(EMT), tumor cells can deliver miR-21 via exosomes to inhibit the

activity of the NLRP3 inflammasome in TAMs, thereby enhancing

the resistance of tumor cells (150). Another study (151) revealed
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that miR-138-5p inhibits the epithelial–mesenchymal transition,

growth, and metastasis of lung adenocarcinoma cells by targeting

ZEB2. These findings suggest that modulating specific microRNAs

could be an effective strategy for targeting EMT. Additionally, Jiang

et al. (152) discussed the roles of EMT-inducing and EMT-

suppressing circRNAs in lung cancer. They reported that EMT-

inducing circRNAs primarily promote EMT-mediated metastasis

by affecting key members of EMT-related signaling pathways in

NSCLC (e.g., Wnt/b-catenin), whereas EMT-suppressing circRNAs

play a significant role in inhibiting EMT-mediated metastasis in

NSCLC by acting as sponges for microRNAs, influencing the

expression of EMT transcription factors (EMT-TFs), EMT-related

signaling, and EMT markers.

(3) Targeting the TAM Family Receptor Tyrosine Kinase AXL:

AXL is a receptor tyrosine kinase of the TAM family that has

become an important factor influencing the resistance of NSCLC and

other cancers to chemotherapy, radiotherapy, and targeted therapy

because of its key role in mediating EMT and immune evasion (153,

154). Studies have indicated that AXL expression is significantly

upregulated in EGFR-mutant non-small cell lung cancer cells that

have developed resistance and that its degradation rate is inhibited.

Therefore, regulating the degradation rate of AXL is expected to be a

new strategy to overcome gefitinib resistance (155). Several studies have

shown that Axl inhibitors can increase the sensitivity of tumors to

chemotherapy and radiotherapy and may also help overcome tumor

immune evasion (122, 123, 156, 157). Furthermore, the combination of

AXL with ATR inhibitors has been shown to be an effective strategy for

treating lung cancer. This approach not only increases the sensitivity of

non-small cell lung cancer (NSCLC) cells to ATR inhibitors but can

also be used to treat SLFN11-low tumors resistant to platinum-based

and PARP inhibitors while inhibiting the progression of small cell lung

cancer (SCLC) by modulating tumor-associated macrophages (TAMs)

and the epithelial–mesenchymal transition (EMT) (158, 159).

In addition to the aforementioned pathways, current strategies

targeting the EMT process for lung cancer treatment involve various

molecules and mechanisms that play significant roles in inhibiting

epithelial–mesenchymal transition (EMT) in lung cancer, opening
TABLE 3 Clinical trials related to TAMs and EMT in lung cancer therapy.

Strategy
Cancer
types

Clinical
phase

Status/
out-comes

Clinical
identifier

Location

68GaNOTA-Anti-MMR-VHH2 NSCLC II Recruiting NCT05933239 Belgium

CT-0508 combined with Pembrolizumab Lung Cancer I
Active,

not recruiting
NCT04660929 Unite States

DRibble vaccine combined with cyclophosphamide, +/-GM-
CSF/imiquimod

NSCLC II Completed NCT01909752 Unite States

GM-CSF Plus Maintenance Pembrolizumab +/- Pemetrexed NSCLC II Recruiting NCT04856176 Unite States

Recombinant Human Vascular Endothelial Inhibitor (Endo) in
Combination With Brag

NSCLC II Recruiting NCT06047860 CHINA

TQB2928 in Combination With a Third-Generation EGFR TKI NSCLC I Not yet recruiting NCT06585059 CHINA

Amivantamab With Tyrosine Kinase Inhibitors (TKI) NSCLC I&II Recruiting NCT05845671 Unite States

Amivantamab, Lazertinib and Pemetrexed NSCLC II Recruiting NCT05299125 Brazil
f

∗)The data source from https://www.clinicaltrials.gov and the latest update is November 4, 2024.
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new perspectives and providing new ideas for its treatment. Among

these factors, TGF-b, a key factor in inducing EMT, is also regarded

as an important target for inhibiting the EMT process in lung cancer.

For example, research has indicated that bufalin can inhibit the EMT

process induced by TGF-b in human lung cancer A549 cells by

downregulating the expression of TGF-b receptors (124).

Additionally, Zhang et al. (125) reported that methionine

enkephalin (MENK) can inhibit the growth, migration, invasion,

and EMT of lung cancer cells by interacting with opioid growth factor

receptors, thereby combating lung cancer. Research by Kim et al.

(160) indicated that apoptotic cancer cells treated with ultraviolet

irradiation can secrete PTEN (phosphatase and tensin homolog) and

PPARg (peroxisome proliferator-activated receptor gamma) ligands,

which inhibit EMT and metastasis in lung cancer cells.
6 Conclusion and outlook

Tumor-associated macrophages (TAMs) play crucial roles in

the process of epithelial–mesenchymal transition (EMT) in lung

cancer. TAMs promote EMT in tumor cells by releasing cytokines

and growth factors, significantly enhancing the migration and

invasion capabilities of tumor cells. Moreover, tumor cells that

have undergone EMT alter the microenvironment, impacting the

function of TAMs and thereby creating a positive feedback loop.

This complex interaction not only deepens our understanding of

the biology of lung cancer but also provides new targets for the

development of therapeutic strategies.

With further research into the mechanisms of TAMs and EMT,

we hope to discover more effective biomarkers and explore

treatment strategies based on these mechanisms. Future research

should focus on elucidating the specific roles of TAMs and EMT in

different tumor microenvironments, as well as how to translate

these findings into clinical applications to increase treatment

efficacy and improve patient outcomes.

In summary, TAMs play an important role in the EMT process

in lung cancer, and a deeper understanding of their interactions will

help us better comprehend the complexities of lung cancer and

provide more effective treatment options for patients.
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