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Background: Retinoblastoma is a rare pediatric eye cancer caused by mutations

in the RB1 gene, which regulates retinal cell growth. Early detection and

treatment are critical for preventing vision loss and improving survival

outcomes. This study aimed to perform an integrated proteotranscriptomic

characterization of human retinoblastoma to provide a deeper understanding

of disease biology and to identify novel therapeutic targets.

Methods: Paired tumor and adjacent retinal tissue samples were dissected from

seven eyes. RNA sequencing and liquid chromatography-mass spectrometry

were performed on the same samples. The spatially resolved cellular landscape

was assessed using Imaging Mass Cytometry (IMC).

Results: The correlation between RNA and protein level was moderate with

variations across different pathways, underscoring the value of an integrated

proteotranscriptomic approach. IMC identified more than 67,000 single cells in

11 distinct clusters, including antigen presenting cells, T cells, stroma cells,

vascular cells and two clusters of proliferating and CD44/c-Myc positive tumor

cells. Antigen presenting cells expressed higher levels of CD68 in retinoblastoma

compared to controls.

Conclusions: CD44+ and high-c-Myc-expressing tumor cells may represent

cancer stem cells with possible involvement in metastasis, warranting further

validation. Our multilayered approach could pave the way for enhanced

molecular assessments and novel targeted therapies for human retinoblastoma.
KEYWORDS

retinoblastoma, transcriptomics, proteomics, IMC, proteotranscriptomics,
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Introduction

Retinoblastoma is the most common intraocular malignancy in

childhood, affecting about 8,000 children globally each year (1, 2).

Despite its low incidence, retinoblastoma has provided crucial

insights into human tumorigenesis, notably the two-hit

mechanism of tumor-suppressor gene inactivation, which involves

a mutation in both alleles of the RB1 gene (3). Early detection of

retinoblastoma leads to favorable treatment outcomes, but advanced

tumors often necessitate eye removal and are associated with a high

risk of recurrence and life-threatening metastasis. Additionally,

chemoresistant tumors and the adverse effects of systemic or local

chemotherapy underscore the urgent need for novel therapeutic

approaches (2). Transcriptional profiling has shed light on disease

mechanisms and led to the identification of promising therapeutic

targets, such as MDM2 antagonists and MYCN inhibitors (2, 4).

However, most studies focus on gene expression profiling without

accounting for proteomic changes. Since proteins are the main

effectors of disease and targets for most drugs, integrating

proteomics and transcriptomics may provide additional

information for a deeper understanding of retinoblastoma biology,

as previously demonstrated for other cancer types (5–7).

In this study, we conducted a proteotranscriptomic analysis of

human retinoblastoma by collecting paired tumor and adjacent

retinal tissue samples serving as controls. The global transcriptome

and proteome were characterized using RNA sequencing and liquid

chromatography-mass spectrometry (LC-MS/MS). Additionally,

we performed Imaging Mass Cytometry (IMC) on the same tissue

to spatially resolve their cellular landscape. Our findings

demonstrate that integrating multiple omics technologies offers

deeper insights into retinoblastoma biology, surpassing the

limitations of single-omics approaches.
Methods

Patients and collected samples

This study retrospectively analyzed seven eyeballs from seven

children with retinoblastoma, who underwent enucleation at the

Eye Center of the University of Freiburg between 1991 and 2000

(Supplementary Table S1). Two of the seven patients had bilateral

retinoblastoma (Supplementary Table S1) and in these cases, the

enucleated eye was analyzed in our study. In six of the seven

patients, the tumor was initially unilateral and intraconal without

evidence of extraocular invasion or metastasis, whereas no staging

information was available for the seventh patient (patient 1,

Supplementary Table S1). Patients 6 and 7 developed a tumor on

the fellow eye 11 and 6 months after enucleation, which were

treated externally. For all cases, no information regarding

chemotherapy or radiotherapy was available. Parents of all seven

children were suggested to attend genetic consultation and testing,

which was performed externally. We only had access to the results

of the genetic testing for patient 2 (Supplementary Table S1).

Parents of patient 7 denied genetic testing. All procedures were
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conducted in accordance with relevant guidelines and regulations

and ethics approval was granted by the Institutional Review Board

(IRB) of the Albert-Ludwigs-University Freiburg (approval number

21-1246). Informed consent was obtained from the subjects. In

some cases, patients could no longer be reached because the surgery

had been performed several years ago. In those cases, the need for

informed consent was waived by the IRB of the Albert-Ludwigs-

University Freiburg.
Formalin fixation and paraffin embedding

Formalin fixation and paraffin embedding (FFPE) of tissue

samples was performed immediately after surgery according to

routine protocols, as previously described (8, 9). Briefly, samples

were fixed immediately after surgery in 4% formalin for 48 hours,

dehydrated in alcohol and processed for paraffin embedding.
Tissue dissection

Paired retinoblastoma and adjacent retinal tissue samples

were collected from seven enucleated retinoblastoma eyes.

Histopathological evaluation by at least two experienced

ophthalmic pathologists confirmed the presence of retinoblastoma

in all seven cases and adjacent retinal tissue in five cases. In the

remaining two eyes, normal retinal tissue could not be isolated. For

RNA sequencing and liquid chromatography-mass spectrometry

(LC-MS/MS), tumor and control tissues were carefully isolated

before analysis using a macrodissection protocol (10) to remove

unwanted tissue prior to analysis. Briefly, 10 µm tissue sections were

obtained from FFPE tissue blocks and the first and last sections were

processed for hematoxylin and eosin (H&E) staining. Sections were

reviewed by an experienced ophthalmic pathologist to mark the

regions of tumor and microscopically unaffected adjacent retinal

tissue. The first and last sections were imaged using a Hamamatsu

NanoZoomer S60 (Hamamatsu Photonics, Herrsching, Germany)

and the area of tumor and retinal tissue were determined in mm2

using the company’s NPD.viewer software. Based on the size of the

region of interest (ROI) in mm2, the minimum number of 10µm

sections were calculated to reach a tissue volume of at least 0.7 mm3

for downstream analysis. The last tissue section (H&E) was used to

confirm that tumor and retinal tissue were still present and to

confirm similar ROI size. If the ROI size was smaller in the last

tissue section compared to the first section, the smallest value was

used to calculate the minimum number of tissue sections. The

marked H&E sections were used to guide resection of tumor and

control tissue from the calculated number of serial unstained

sections from the same tissue block. For transcriptomics and

proteomics downstream analyses, we each obtained a mean

number of 2.6 tissue sections (range: 1 – 6) for tumor tissue and

28.8 sections (range: 10 – 70) for adjacent retinal control tissue. For

Imaging Mass Cytometry (IMC), tissue sections were obtained from

the same FFPE blocks as described below and ROIs were selected

directly at the IMC instrument before capturing the data.
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Transcriptomics using RNA sequencing

RNA isolation
FFPE samples were shipped in tubes at room temperature to the

sequencing provider (GenXPro, Frankfurt, Germany) and total

RNA was isolated using the Quick-RNA FFPE Kit (Zymo

Research, Irvine, CA, USA), as previously described (11).

Following a DNAse I digestion using the Baseline-ZERO kit

(Epicentre, Il lumina, San Diego, CA, USA), the RNA

concentration was measured with the Qubit RNA HS Assay Kit

on a Qubit Fluorometer (Life Technologies, Carlsbad, CA, USA).

The RNA quality was determined with the RNA Pico Sensitivity

Assay on a LabChip GXII Touch (PerkinElmer, Waltham,

MA, USA).

RNA sequencing
RNA sequencing was performed using massive analysis of

cDNA ends (MACE), a 3’ RNA sequencing method, as previously

described (11). We recently demonstrated that MACE allows

sequencing of FFPE samples with high accuracy, even after more

than 10 years of storage (12). Barcoded libraries comprising unique

molecule identifiers were sequenced on the NextSeq 500 (Illumina,

San Diego, CA, USA) with 1 × 75 bp. PCR bias was removed using

unique molecular identifiers.

Data analysis
Sequencing data (fastq files) were uploaded to and analyzed on

the Galaxy web platform (usegalaxy.eu) (13), as previously

described (14). Quality control was performed with FastQC

Galaxy Version 0.73 (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/ last access on 11/05/2022). Reads were mapped to

the human reference genome (Gencode, release 42, hg38) with RNA

STAR Galaxy Version 2.7.8a (15) with default parameters using the

Gencode annotation file (Gencode, release 42, https://

www.gencodegenes.org/human/releases.html). Reads mapped to

the human reference genome were counted using featureCounts

Galaxy Version 2.0.1 (16) with default parameters using the

aforementioned annotation file. The output of featureCounts was

imported to RStudio (version 2024.04.2 + 764, R version 4.4.1).

Gene symbols and gene types were determined based on ENSEMBL

release 108 (Human genes, GRCh38.p12, download on 11/05/2022)

(17). Principal Component Analysis (PCA) was applied to assess

unsupervised clustering and to check for potential batch effects (18).

Differential gene expression was analyzed using the R package

DESeq2 Version 1.44.0 (18) with default parameters (Benjamini-

Hochberg adjusted p-values). Transcripts with log2 fold change

(log2 FC) > 1 or < -1 and adjusted p-value < 0.05 were considered as

differentially expressed genes (DEG). Heatmaps were created with

the R package ComplexHeatmap 2.20.0 (19). Other data

visualization was performed using the ggplot2 package (20). Gene

enrichment analysis and its visualization were conducted using the

R package clusterProfiler 4.12.0 (21). Cell type enrichment analysis

was performed using xCell (22). The tool uses sequencing-derived

transcriptomic signatures of 64 distinct immune and stroma cell

types to estimate the relative contributions of these cells to a bulk
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input for the analysis based on the output of featureCounts

(assigned reads and feature length), as previously described (23).

xCell enrichment scores were compared between different groups

using the Mann–Whitney U test.
Proteomics using liquid chromatography-
mass spectrometry

Sample preparation
Prior to macrodissection, all sections were deparaffinized in

xylene and rehydrated passing a series of alcohol solutions in

descending concentration. Sections were stained with haemalaun

for 10 seconds and macrodissection was performed as described

above. The isolated tissue was stored in tubes at -80°C until

downstream analysis. 100 µl of an aqueous buffer containing 4%

SDS in 0.1M HEPES were added into each tube. Proteins were

extracted by sonication using a Bioruptor device (Diagenode, Liège,

Belgium) and incubating the samples in a thermoshaker at 95°C for

2h, and a second sonication step using the Bioruptor. Samples were

centrifuged at 13000g for 8 min and the supernatants used in the

following steps. Proteins were reduced using 5 mM tris (2-

carboxyethyl) phosphine hydrochloride (TCEP) (Sigma; 75259)

for 10 min at 95°C and alkylated using 10 mM 2-iodoacetamide

(Sigma; I1149) for 20 min at room temperature in the dark. The

following steps were performed using S-Trap micro filters (Protifi,

Huntington, NY) following the manufacturer’s procedure. Briefly,

first a final concentration of 1.2% phosphoric acid and then six

volumes of binding buffer (90% methanol; 100 mM TEAB; pH 7.1)

were added. After gentle mixing, the protein solution was loaded to

a S-Trap filter and spun at 2000 rpm for 0.5–1 min. The filter was

washed three times using 150 mL of binding buffer. Sequencing-

grade trypsin (Promega, 1:25 enzyme:protein ratio) diluted in 20µl

digestion buffer (50 mM TEAB) were added into the filter and

digested at 47°C for 1 h. To elute peptides, three buffers were

applied stepwise: a) 40 mL 50 mM TEAB, b) 40µl 0.2% formic acid

in H2O, and c) 50% acetonitrile and 0.2% formic acid in H2O. The

peptide solutions were combined and dried in a SpeedVac.

The peptide concentration was determined using BCA and 25

µg of each sample was transferred to a fresh microreaction tube.

0.15MHEPES pH 8.0 was added. Samples were labeled using TMT-

16-plex (Thermo Scientific) (24). Afterwards, samples were

combined and ~100 µg of protein were fractionated by high pH

reversed phase chromatography [XBridge C18 column, 150 mm × 1

mm column containing 3.5 µm particles (Waters)]. An increasing

linear gradient of acetonitrile from 10 to 45% over 45 min at a

flowrate of 42 µl/min was applied using an Agilent 1100 HPLC

system. 36 fractions were collected and concatenated into 10

fractions, which were vacuum-concentrated until dryness and

stored at − 80°C until LC–MS/MS analysis.
Data acquisition
For LC-MS/MS measurements, 800 ng of peptides were

analyzed on a Q-Exactive Plus mass spectrometer (Thermo
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Scientific, San Jose, CA) coupled to an EASY-nLCTM 1000 UHPLC

system (Thermo Scientific). The column setup consisted of an

Acclaim™ PepMap™ 100 C18 column (Thermo Fisher Scientific,

Cat. No. 164946) and a 200 cm µPac GEN1 analytical column

(PharmaFluidics, 55250315018210) coupled to a Nanospray

FlexTM ion source (Thermo Scientific, ES071) and a fused silica

emitter (MS Wil, TIP1002005-5). For peptide separation, a linear

gradient of increasing buffer B (0.1% formic acid in 80%

acetonitrile, Fluka) was applied, ranging from 5 to 50% buffer B

over the first 80 min and from 50 to 100% buffer B in the subsequent

40 min (120 min separating gradient length). Peptides were

analyzed in data dependent acquisition mode (DDA). Survey

scans were performed at 70,000 resolution, an AGC target of 3e6

and a maximum injection time of 50 ms followed by targeting the

top 10 precursor ions for fragmentation scans at 17,500 resolution

with 1.6 m/z isolation windows, an NCE of 30 and a dynamic

exclusion time of 35 s. For all MS2 scans the intensity threshold was

set to 1e5, the AGC to 1e4 and the maximum injection time to

80 ms.
Data analysis
Raw data were analyzed with MaxQuant (v 1.6.14.0) with the

built-in Andromeda peptide search engine (25). The false discovery

rate (FDR) at both the protein and peptide level was set to 1%. Two

missed cleavage sites were allowed, no variable modifications,

carbamidomethylation of cysteines as fixed modification, and 16

plex TMT as isobaric label. The Human-EBI-reference database was

downloaded from https://www.ebi.ac.uk/ on Jan 9th 2020. Only

unique peptides were used for quantification.

Statistical analysis was performed using the MSstatsTMT

package (v. 1.8.2) in R (v. 4.0.3). Subsequently, protein intensities

were log2 transformed. To identify differentially expressed

proteins, we used the limma package (v. 3.46.0) in R using the

“robust” method. P-values were adjusted using the Benjamini-

Hochberg procedure.
Integration of transcriptomics and
proteomics data

Processed transcriptomics and proteomics data (see above)

were integrated in R. Before joining, Gene symbols were filtered

for approved symbols using the HGNC (Human Genome

Organization Gene Nomenclature Committee) database (26). For

each symbol where both protein and mRNA data were available, the

log2FC between retinoblastoma and controls were plotted between

transcriptomics and proteomics using ggplot2. Gene enrichment

analysis and its visualization were done using the R package

clusterProfiler 4.12.0 (21). Briefly, differentially expressed genes

and proteins were determined using the following criteria: log2FC

> 0.58 or < -0.58 and adjusted p-value < 0.05. A functionally

grouped network of enriched Gene Ontology (GO) biological

processes was generated using the emapplot function of the

clusterProfiler R package.
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Imaging mass cytometry

Tissue preparation
For Imaging Mass Cytometry (IMC), 6 µm tissue sections were

obtained from the same seven FFPE blocks (Supplementary Table

S1), mounted on slides (SuperFrost Plus, Thermo Scientific, USA)

and dried at 60°C in an oven for 90 minutes, as previously described

(27). To prevent oxidative degradation, the sections were processed

immediately for staining. Sections were deparaffinized in xylene and

rehydrated passing through a series of alcohol solutions in

descending concentration. Heat-induced antigen retrieval was

performed using DAKO EnvisionFlex target retrieval solution

(high pH, Agilent Technologies) at 95°C for 30 min in a pressure

cooker. Subsequently, slides were blocked in 3% BSA in tris-

buffered saline (TBS) for 60 minutes at room temperature and a

specifically compiled panel of antibodies (Fluidigm) was used to

stain the sections. A complete list of antibodies, conjugated metals,

and applied concentrations used in this study is shown in

Supplementary Table S2. Antibodies were mixed and the cocktail

was applied to the sections and incubated overnight at 4°C in a

hydration chamber. After washing with TBS, an iridium-

intercalator solution was applied to the slides and incubated for 5

minutes at room temperature. Slides were then dried at room

temperature for 30 minutes and stored in a box until data

acquisition, which was performed in the following days.

Image acquisition
Images were acquired using the Hyperion Imaging System

(Fluidigm), with instrument tuning performed according to

manufacturer’s instructions. Regions of interest were identified by

dark-field microscopy before acquisition. Tissue sections were laser-

ablated spot-by-spot at 200 Hz at laser power 2 resulting in a pixel

size/resolution of 1 mm2. Several 1500 mm2 images per sample were

produced. Raw data were processed using the CyTOF software v7.0

(Fluidigm). Images were reviewed using the MCD Viewer

v1.0.560.6 (Fluidigm).

Cell segmentation
Imaging Mass Cytometry (IMC) data was processed as

previously described (27). Briefly, mcd files were converted into

TIFF image stacks following a Python script adapted from the

ImcSegmentationPipeline of the Bodenmiller group (28).

Segmentation probabilities were generated using ilastik (version

1.3.2) to designate nuclei, cytoplasm and background fractions and

the probability maps were imported into CellProfiler (Version

3.1.8) (29) to extract single-cell information. Data were further

processed using histoCat (Version 1.76) (30) to calculate the mean

marker intensity of pixels.

Data analysis
IMC data were imported in R studio (version 2024.04.2 + 764, R

version 4.4.1) and analyzed according to the ImcDataAnalysis

Pipeline of the Bodenmiller group (last access 04/2022) (28).

Briefly, single-cell data, including cell identifiers, image identifiers,
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sample metadata, spatial information, neighbors and mean pixel

intensities per cell and channel were combined into a

SpatialExperiment object. Two samples had to be removed from

downstream analysis (Retinoblastoma_S1 and Control_S2,

Supplementary Table S1), because almost all markers showed no

or unspecific staining in these samples. In addition, the markers

FoxP3 and Arginase-1 were excluded from further downstream

analysis due to unspecific staining. All other markers demonstrated

satisfactory staining and were retained for further analysis. Uniform

Manifold Approximation and Projection (UMAP) was performed

for dimension reduction. The fastMNN function of the batchelor

package was applied to correct batch effects and integrate cells

between patients (31). The shared nearest neighbor clustering

approach was used to identify clusters of cells (k = 45). Cell

clusters were annotated based on known cell type markers.
Results

Samples for multi-omics analyses

We collected paired retinoblastoma and adjacent retinal tissue

samples from seven patients with retinoblastoma who underwent

enucleation at our institution (Supplementary Table S1).

Histopathology confirmed retinoblastoma in all seven cases and

adjacent retinal tissue in five cases (Supplementary Figure S1). The

patients had a mean age of 2.0 years (range 0.1 – 5.1) and three

patients were female (42.9%). For each of the 12 samples, we

determined the global transcriptome, proteome, and the spatially

resolved cellular landscape, resulting in a total of 34 high-resolution

molecular datasets (Supplementary Table S1).
Transcriptional profile of human
retinoblastoma

First, we looked into the transcriptome of human retinoblastoma.

Unsupervised cluster analysis using Principal Component Analysis

(PCA) revealed clear distinctions between the transcriptional profiles of

retinoblastoma and adjacent retinal control tissue (Figure 1A).

Differential gene expression analysis identified 122 up- and 244

downregulated genes in retinoblastoma compared to controls

(Figures 1B, C). Among the most upregulated genes were KRT5,

KRT19, LCN2, SLP1 and S100A9, while GNAT1, PDE6G, WIF1,

FRZB, and RHO were among the top downregulated genes in

retinoblastoma (Figure 1B). Gene ontology (GO) analysis revealed

that the upregulated genes contributed most significantly to biological

processes such as DNA repair (e.g. DDB2 and RECQL4), chromatin

remodeling (e.g. CENPI and KMT2B), intermediate filament

organization (e.g. KRT5 and KRT19), response to ultraviolet light

(e.g. DDB2 and BAX), and regulation of apoptosis (e.g. PMAIP1 and

BAX) (Figures 1D, F). The downregulated genes were most

significantly linked to processes including visual perception (e.g.

GNAT1 and RHO), generation of precursor metabolites and energy

(e.g. HKDC1 and SORBS1), regulation of growth (e.g. FRZB and
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PROX1), glia cell differentiation (e.g. VIM and PTN) and response to

hypoxia (e.g. EPAS1 and EGR1) (Figures 1E, G). Gene Set Enrichment

Analysis (GSEA) revealed similar processes being activated and

suppressed in retinoblastoma (Supplementary Figure S2). These

results underscore the distinct transcriptional landscapes of

retinoblastoma and control tissue, highlighting key biological

processes involved in human retinoblastoma.
Proteotranscriptomic analysis of human
retinoblastoma

To investigate how gene expression changes translate into

proteomic changes in retinoblastoma, we conducted RNA

sequencing and LC–MS/MS on both tumor and adjacent retinal

tissue (Figure 2A). RNA sequencing revealed 15,716 expressed

protein-coding genes. The peptides identified by LC-MS/MS were

mapped to 4,535 proteins. Both protein and mRNA data were

available for 4,173 protein-coding genes. Proteomics-only analysis

demonstrated clear distinctions between retinoblastoma and

control tissue (Supplementary Figure S3). Comparing the changes

in retinoblastoma with control tissue revealed a moderate

correlation between RNA and protein levels (Pearson’s R = 0.339,

p < 10-16) (Figure 2B). The highest agreement between RNA and

protein level was observed for DDB2, CHAF1B, and POLD1, which

were upregulated in retinoblastoma, and RHO, PDE6A, and

CRABP1, which were downregulated (Figure 2B). Network

analysis of functionally grouped enriched GO biological processes

highlighted that the differentially expressed factors were involved in

five main clusters: regulation of cell cycle, glycolysis, neuronal cell

projection, visual perception, and intermediate filament

organization (Figure 2C). While clusters related to neuronal cell

projection (e.g. GFAP and SLC1A3) and visual perception (e.g.

RHO and PDE6A) showed comparable regulation at both RNA and

protein levels, the clusters of cell cycle processes (e.g. MCM4 and

PRC1) and glycolysis (e.g. GPD2 and ENO3) as well as intermediate

filament organization (e.g. KRT5 and KRT19) were predominantly

regulated at either the protein or RNA level, respectively

(Figures 2C, D). Notably, the RNA protein correlation was

significantly (p < 10-16) higher in retinoblastoma (median

Spearman’s R = 0.204) compared to control tissue (median

Spearman’s R = 0.0) (Figure 2E). These results indicate that key

biological processes in retinoblastoma are mainly regulated at either

the RNA or protein level, underscoring the importance of an

integrated proteotranscriptomic approach.
Highly multiplexed spatially resolved
single-cell proteomics of human
retinoblastoma

To elucidate the cellular landscape of human retinoblastoma,

we first performed transcriptome-based cell type deconvolution

analysis using xCell (22), revealing high abundance of various

immune cell types in retinoblastoma, most prominently CD4+ T
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helper cells, as well as pericytes and fibroblasts (Supplementary

Figure S4). We next conducted highly multiplexed spatially resolved

single-cell proteomics of tumor and adjacent retinal tissue using
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Imaging Mass Cytometry (IMC) (Figure 3A). We identified a total

of 67,058 single cells in seven retinoblastoma (58,299 cells) and five

control samples (8,759 cells). Unsupervised clustering analysis
FIGURE 1

Transcriptional profile of human retinoblastoma. (A): Unsupervised clustering using Principal Component Analysis (PCA). Each dot represents one
sample. (B): Volcano plot visualizing differentially expressed genes (DEG) between retinoblastoma and retinal control tissue. Each dot represents one
gene. The top ten DEG of both groups are labeled. (C): Heatmap visualizing DEG between retinoblastoma and retinal control tissue (Definition of
DEG: log2FC > 1 or < -1 and adjusted p-value < 0.05). Basic demographic data is shown at the top. Each column represents one sample and each
row one DEG. The number of DEG is given within the heatmap. The z-score represents a gene’s expression in relation to its mean expression by
standard deviation units (red: upregulation, blue: downregulation). (D, E): Gene ontology (GO) analysis of up- (D) and downregulated (E) genes in
retinoblastoma. The top ten enriched biological processes are shown in the dot plots. The size of the dots corresponds to the number of associated
genes (count). The adjusted p-value of each GO term is indicated by color. The gene ratio describes the ratio of the count to the number of all DEG.
(F, G) The bar plots visualize gene expression of the top 5 DEG involved in 6 of the most significantly (F) up- or (G) downregulated biological
processes. The height of the bar represents mean expression and the error bar corresponds to standard deviation. Each dot represents one sample.
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identified distinct cell clusters, including various immune cell types,

such as antigen presenting cells (CD45+, HLA-DR+), monocytes

(CD11b+), CD4+ T cells (CD4+) and B cells (CD20+), stroma cells

(collagen+), vascular cells (CD31+), and tumor cells, including

proliferating tumor cells (Ki67+) and CD44+ tumor cells

(CD44+) (Figure 3B). Comparative analysis of antigen presenting

cells between tumors and controls showed significantly higher

CD68 protein expression compared to controls (Figure 3C).

Although CD68 is traditionally associated with phagocytosis,

recent studies linked its increased expression to poor prognosis in

several cancers, including hepatocellular, lung and other cancers
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(32). Finally, we compared the two main clusters of tumor cells:

proliferating and CD44+ tumor cells, and found that c-Myc was one

of the most significantly increased proteins in CD44+ tumor cells

(Figure 3D). CD44 is a known marker of cancer stem cells (33),

which are implicated in the initiation of metastatic disease, a process

which has been associated with high c-Myc expression in other

cancer types (34). These results indicate that CD44 and c-Myc

expressing retinoblastoma cells may represent cancer stem cells.

Future studies will be needed to investigate the functional

and prognostic role of the identified cell population in

human retinoblastoma.
FIGURE 2

Proteotranscriptomic analysis of human retinoblastoma. (A) Experimental design. RNA-sequencing and liquid chromatography-mass spectrometry
(LC–MS/MS) were applied to analyze the transcriptomic and proteomic profile of human retinoblastoma and retinal tissue specimens. (B)
Comparison of the log2 fold change (FC) between retinoblastoma and retinal tissue on the transcriptomic (x-axis) and proteomic (y-axis) level. Each
dot represents one gene/protein. Molecules with a significant difference between retinoblastoma and controls are shown in blue (proteomics or
transcriptomics) or red (proteomics and transcriptomics). (C) Functionally grouped network analysis of enriched Gene ontology biological processes
in which the up- or downregulated molecules were involved in. Enriched terms are visualized as nodes being linked based on the similarity of the
factors associated with them. The node size represents the number of associated molecules. The pie charts visualize the percentage of molecules
which were regulated on the transcriptomic (grey) or proteomic (orange) level. Each cluster is labeled with a representative term. (D) The top ten
differentially expressed factors are shown for the three most affected groups of biological processes from (C) on the gene (grey) and protein
(orange) level. Molecules with a significant change (adjusted p-value < 0.05) between retinoblastoma and controls are labeled with a red asterisk. (E)
Density plots of Spearman’s correlation coefficients of RNA and protein levels of individual molecules between samples for retinoblastoma (yellow)
and control retinal (blue) tissue. Dashed lines represent median Spearman correlation in each group.
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Discussion

Changes in gene expression do not always translate into

proteomic changes (5–7, 35). To address this, we combined high-

resolution proteomics and transcriptomics from the exact same

samples to provide a comprehensive proteotranscriptomic analysis
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of human retinoblastoma. Our results revealed only a moderate

correlation (Pearson’s R = 0.339, p < 10-16) between RNA and

protein expression levels. While key biological processes, such as

visual perception, were similarly regulated at both RNA and protein

levels, others, including cell cycle processes and glycolysis, were

predominantly regulated at the protein level. These findings
FIGURE 3

Highly multiplexed spatially resolved single-cell proteomics of human retinoblastoma. (A) Experimental workflow. Post-enucleation tissue slices from
whole eyes of 7 patients with retinoblastoma were analyzed using Imaging Mass Cytometry (IMC). Microscopically unaffected retinal tissue from the
same eye was used as control tissue. ROI: Region of interest. (B) Uniform Manifold Approximation and Projection (UMAP) visualization showing
Phenograph clustering of 67,058 single cells in 7 human retinoblastoma (58,299 cells) and 5 human control retinal tissue samples (8,759 cells). Cell
type annotation is shown by color (see legend). UMAPs showing diagnosis or relevant marker proteins. The heatmap on the right demonstrates
average marker expression in each cell cluster. (C) Violin plots visualizing protein expression of CD68 in antigen presenting cells (APC) in
retinoblastoma (yellow) and controls (blue). ***: p<0.001. Representative images are shown on the right. Magnifications of the dashed white boxes in
the image on the left are shown on the right (marked with a or b). Each scale bar corresponds to 100 µm. (D) c-Myc protein expression between the
two tumor cell clusters from (B): proliferating tumor cells (pink) and CD44+ tumor cells (orange). ***: p<0.001. Representative images are shown on
the right. Each scale bar corresponds to 100 µm.
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highlight the value of integrating transcriptomics and proteomics

for a more comprehensive understanding of the biological

regulation, which is consistent with previous studies showing

variable mRNA-protein correlations across different cancer types,

pathways, and drug targets (35). A recent study across eight major

cancer types reported a mean correlation between RNA and protein

levels ranging between 0.4 and 0.6 depending on cancer type, with

lung cancer having the highest and ovarian cancer having the lowest

correlation (35). The discrepancies between transcriptomics and

proteomics may also be explained by factors including protein and

mRNA turnover/degradation, protein abundance and post-

translational modifications. Technologies such as ribosome

profiling or enrichment and quantification of newly synthesized

proteins could help to explore this question in more detail.

Our analysis highlights that both transcriptomics and

proteomics technology provide unique information and offer

complementary insights. While proteomics allows direct analysis

of the functional molecules in a biological system, RNA sequencing

has the advantage of a higher molecular resolution with the ability

to amplify transcripts with low abundance, detect transcripts from

all protein coding genes as well as transcripts with regulatory

functions (lncRNA, miRNA). The Human Protein Project has

achieved remarkable progress, with protein expression data now

available for 93% of the 19,778 predicted human proteins (36).

However, 1,381 proteins still remain undetected, potentially due to

their low abundance or challenges and limitations in mass

spectrometric detection (36).

The tumor microenvironment (TME) is well known to

modulate tumor progression, therapeutic response and clinical

outcome of various malignancies (37). Here, we utilized

transcriptome-based cell type deconvolution analysis and highly

multiplexed spatially resolved single-cell proteomics using Imaging

Mass Cytometry (IMC) to analyze retinoblastoma and adjacent

retinal tissue. Our analysis revealed that the TME in retinoblastoma

predominantly consists of multiple immune cell types, including

CD4+ T cells and antigen presenting cells. The increased protein

expression of CD68 in tumor-associated antigen presenting cells

could indicate enhanced phagocytic activity. However, elevated

CD68 expression is also linked to more aggressive tumors and a

poor prognosis in various tumor types, including glioblastoma,

kidney, hepatocellular, lung and other cancers (32). Finally, we

identified two distinct subclusters of tumor cells: proliferating cells

and CD44-positive tumor cells. The expression of CD44 may

identify a population of cancer stem cells with potential

involvement in metastatic spread, which is further supported by

high protein levels of c-Myc in this cell population (33, 34). CD44 is

also implicated in epithelial-to-mesenchymal transition and serves

as a biomarker of poor prognosis in various cancer entities (33).

Further research is needed to explore the prognostic significance

and functional role of the identified cell populations in

human retinoblastoma.

In search for new therapeutic strategies for children with

retinoblastoma, the results of this study may help to inspire novel

targeted therapies, including antibody-based interventions or

immunotherapies targeting tumor cell specific epitopes (2).
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Furthermore, these results may enhance the molecular assessment

of retinoblastoma in living patients. Since direct tumor biopsies are

contraindicated in retinoblastoma patients due to risk of seeding,

liquid biopsies from the aqueous humor in the anterior chamber of

the eye emerge as a promising alternative approach for molecular

analysis in living patients (2, 38–40). With our detailed

understanding of transcriptomic and proteomic changes within the

tumor, we can now explore the development of a proteomics-based

liquid biopsy approach, focusing on proteins that exhibit alterations

within the tumor and the adjacent fluid (38). As recently suggested,

liquid biopsy-based monitoring may be part of future retinoblastoma

treatment regimens (2), with potential clinical applications in

diagnostics, prognostics, early detection of bilateral, trilateral or

recurrent retinoblastoma, and monitoring of therapeutic response.

We acknowledge that this study is limited by its relatively small

sample size, a consequence of the low incidence of retinoblastoma

and the availability of effective eye globe-saving therapeutic

modalities. Additionally, the long storage time may influence

sequencing results. To account for this, we employed a specialized

sequencing method that maintains high sequencing accuracy even

after long term fixation (12). Future studies may utilize a similar

multi-omics approach to a larger sample cohort with the goal to

identify molecular tumor subclusters and to investigate prognostic

associations. In our study, we dissected control tissue from the same

tumor eyes, which has the strong advantage of having retinal tissue

from the same children of the same age, otherwise not possible to

obtain. However, we cannot fully exclude an influence of the tumor

on control tissue, albeit microscopically not affected.
Conclusions

In conclusion, this study integrated high-resolution proteomics,

transcriptomics, and spatially resolved single-cell proteomics from

the same samples to deliver a comprehensive proteotranscriptomic

characterization of human retinoblastoma. The integration of these

multiple omics technologies provides deeper insights into

retinoblastoma biology that extend beyond the findings of single

omics studies, potentially paving the way for novel targeted

therapies for human retinoblastoma.
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SUPPLEMENTARY FIGURE S1

Histology sections of all seven retinoblastoma eyes analyzed in this study.

Hematoxylin and eosin stainings are shown. Abbreviations: C: cornea, L: lens,
O: optic nerve, R: retina, S: sclera, T: tumor. The areas of interest (including

their size) are highlighted in each section. Tumor and retinal control tissue
could be isolated from patients 1-5, whereas only tumor tissue could be

obtained from patients 6 and 7.

SUPPLEMENTARY FIGURE S2

Gene Set Enrichment Analysis (GSEA) in retinoblastoma. The top ten activated
and suppressed biological processes selected by normalized enrichment

score (NES) are shown in the dot plots. The NES is shown on the x-axis.
The adjusted p-value of each term is indicated by color.

SUPPLEMENTARY FIGURE S3

Proteomic profile of human retinoblastoma. (A): Unsupervised clustering using

Principal Component Analysis (PCA) based on all 4,535 proteins detected using
liquid chromatography-mass spectrometry. Each dot represents one sample.

(B): Heatmap visualizing differentially expressed proteins (DEP) between
retinoblastoma and retinal control tissue (Definition of DEP: log2FC > 0.58 or

< -0.58 and adjusted p-value < 0.05). Basic demographic data is shown at the

top. Each column represents one sample and each row one DEP. The number
of DEP is given within the heatmap. Time in formalin and age are given in years.

The z-score represents a protein’s abundance in relation to itsmean abundance
by standard deviation units (red: upregulation, blue: downregulation). (C, D):
Gene ontology (GO) analysis of up- (C) and downregulated (D) proteins in
retinoblastoma. The top ten enriched biological processes are shown in the dot

plots. The size of the dots corresponds to the number of associated proteins

(count). The adjusted p-value of each GO term is indicated by color. The gene
ratio describes the ratio of the count to the number of all DEP.

SUPPLEMENTARY FIGURE S4

Transcriptome-based cell type deconvolution analysis in human retinoblastoma.
The tool xCell uses gene expression profiles of 64 immune and stromal cell types

to calculate cell type enrichment scores. The heatmap visualizes xCell enrichment

scores of cell types which differed significantly between retinoblastoma and
control tissue (p < 0.05, Mann–Whitney U test, and log2FC >1 or < -1). Each

row represents one cell type, each column represents one sample. Rows are
ordered according to the fold change of mean enrichment scores. Basic

demographic data are shown above. Time in formalin and age are given in years.
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