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Lnc-CNNM3-DT as a protective
factor in cervical cancer:
regulation of LIAS expression
and intracellular copper levels
Ying Yang1,2†, Xuehong Zhu3†, Dan Sun1* and Jiangtao Fan1*

1Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangxi Medical University,
Nanning, Guangxi, China, 2Department of Gynecology, Yulin First People’s Hospital (The Sixth
Affiliated Hospital of Guangxi Medical University), Yulin, Guangxi, China, 3Department of Reproductive
Medicine, Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
Background: Cervical cancer (CC) is the fourth leading cause of cancer-related

death in women globally.While early screening has reduced mortality, tumor

metastasis remains a significant concern, particularly in developing countries.

Recent studies have identified cuproptosis, a copper-dependent cell death

mechanism, as a potential factor in tumor progression. Long non-coding RNAs

(lncRNAs) are key regulators of tumor progression. This study investigates the

role of cuproptosis-related lncRNA (CRL) CNNM3-DT in CC, focusing on its

impact on LIAS expression, intracellular copper levels, and tumor progression.

Methods: We analyzed the expression of lnc-CNNM3-DT and LIAS in clinical

samples and CC cell lines using Real-time Polymerase Chain Reaction (RT-

qPCR), Western blot, and immunohistochemistry (IHC). Functional assays,

including CCK-8, wound healing, transwell invasion, and flow cytometry, were

used to evaluate the effects of lnc-CNNM3-DT overexpression on cell

proliferation, migration, invasion, and apoptosis. Intracellular copper ion levels

were measured, and correlations between lnc-CNNM3-DT, LIAS, and

clinicopathological features were analyzed.

Results: Lnc-CNNM3-DT expression was significantly higher in paracancerous

tissues and normal cervical epithelial cells compared to tumor tissues and CC cell

lines. Overexpression of lnc-CNNM3-DT suppressed proliferation, migration, and

invasion of HeLa and SiHa cells while enhancing apoptosis. Additionally, lnc-CNNM3-

DT overexpression downregulated LIAS expression and decreased intracellular

copper ion levels. Correlation analysis indicated that lnc-CNNM3-DT expression

was negatively associated with tumor diameter and depth of invasion, while LIAS

expression showed no significant correlation with clinicopathological features.

Conclusion: Our findings suggest that lnc-CNNM3-DT functions as a protective

factor in CC by inhibiting tumor progression through downregulation of LIAS

expression and reduction of intracellular copper levels. These results highlight

lnc-CNNM3-DT as a potential biomarker and therapeutic target in CC.
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1 Introduction

CC has been the fourth leading reason for cancer-related

mortality in women globally. Though current early screening has

reduced mortality in patients with CC, tumor metastasis continues

to occur and its incidence remains high in many developing

countries (1). Almost all CC are attributable to infection with

high-risk HPV (2); however, the presence of the virus alone is not

sufficient to promote tumor progression. 85-90% of high-risk HPV

infections spontaneously clear, and only 10-15% persist, promoting

the progression of cervical intraepithelial neoplasia to invasive CC,

suggesting that other co-factors are also required for CC

progression (3). Cu is an essential mineral and co-factor for

eukaryotes (4, 5), and Cu imbalance (excess or deficiency) is

associated with many diseases, including tumorigenesis and

increased aggressiveness of cancer (4). Cu can enhance cell

proliferation by activating the RAS/RAF/MEK/ERK signaling

pathway and to stimulating angiogenic factors, thereby facilitating

tumor progression and metastasis (6, 7).

Tsvetkov et al. (8) recently identified cupropsis as a new Cu-

dependent regulatory mechanism potentially related to

tumorigenesis. Cupropsis relies on mitochondrial respiration,

where Cu directly interacts with the lipid component of the

tricarboxylic acid cycle, due to the aggregation of lipoacylated

proteins and loss of iron-sulfur cluster proteins, resulting in

proteotoxic stress and cell death. Studies showed that the

metabolism of tumor cells, is significantly correlated with

oxidative phosphorylation in mitochondrial respiration, as shown

by the reversal of the Warburg effect (9, 10). Abnormally elevated

ROS levels in tumor cells down-regulate cellular antioxidant

enzyme systems and promote tumor proliferation, growth, and

distant metastasis (11–13). Most ROS originate from intracellular

REDOX reactions, in which mitochondria play a major role (14). It

is also consistent with the correlation between cupropsis and

mitochondrial metabolism.

Tsvetkov et al. also found seven genes related to cupropsis

including LIAS, an upstream regulator of cupropsis, and knockout

of LIAS resulted in cupropsis resistance in cells (15). LIAS is a

family member of biotin-lipoic acid synthetases and catalyzes the

last step of lipoic acid synthesis (16). GO and KEGG enrichment

analysis showed that LIAS-related genes were mainly aggregated in

some cancer-related pathways, especially mitochondrial matrix and

nucleotide excision repair (17). LIAS can regulate mitochondrial

energy metabolism and oxidative stress, and affect the proliferation,

migration, angiogenesis, and immune block of cancer cells (16).

Some studies showed that LIAS expression is upregulated in lung

adenocarcinoma, hepatocellular carcinoma, cholangiocarcinoma,

and other tumors. It was down-regulated in endometrial

carcinoma, thyroid carcinoma, breast cancer, renal papillary cell

carcinoma, prostate adenocarcinoma, rectal adenocarcinoma, and
Abbreviations: CC, cervical cancer; Long non-coding RNAs, lncRNAs;

cupropsis-related lncRNA, CRL; Real-time Polymerase Chain Reaction, RT-

qPCR; immunohistochemistry, IHC; cell counting kit-8, CCK-8; lipoic acid

synthase, LIAS; FBS, fetal bovine serum.
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so on. There was no significant change in LIAS expression in other

cancers such as cervical squamous cell carcinoma, endocervical

adenocarcinoma, uterine carcinosarcoma, and so on (17). LIAS may

have a potentially critical role in regulating biological functions

in cancer.

LncRNA is a transcript exceeding 200 nucleotides that do not

code for proteins and are linked to various human cancers, including

CC (18). IncRNA can regulate chromatin remodeling, histone

modification, or DNA methylation to activate or silence genes

through various mechanisms, such as epigenetics, transcriptional

regulation (such as transcriptional interference and transcriptional

activation), and post-transcriptional regulation (19). They are crucial

in regulating the cell cycle, differentiation, and tumor development

(20). Some lncRNA molecules have been novel prognostic indicators

to evaluate the survival of cancer patients (21, 22). However, the role

of CRLs in the pathogenesis of CC remains uncertain. This study

investigates the role of CRL CNNM3-DT in CC mechanisms,

enhancing the understanding of prognostic biomarkers and

treatment strategies for CC patients.

Liu et al. (23) utilized the TCGA database and Genotype-Tissue

Expression Engineering (https://gtexportal.org/home/) to identify

seven factors significantly associated with the prognosis of CC,

constructing a prognostic model. The prognostic significance of

this signature was confirmed by CC tissues. The CRL CNNM3-DT

served as a protective factor. Combined with the consequences of the

previous bioinformatics analysis of our research group and Liu’s

research, lnc-CNNM3-DT was selected for subsequent experiments.
2 Materials and methods

2.1 Clinical samples

Twenty-four cases of CC tumor and paracancerous tissues were

collected from the Guangxi Medical University First Affiliated

Hospital, and the clinicopathological information of the patients

was recorded. Inclusion criteria: patients diagnosed with primary

CC who are undergoing surgical treatment for the first time, have

not received any radiotherapy or chemotherapy, and have no other

internal or external complications. The collection sites include CC

tumor tissue and paracancerous tissue located more than 3 cm away

from the tumor tissue. Exclusion criteria: patients with other

malignant tumors in addition to the confirmed diagnosis of

primary CC; non-first-line treatment, meaning those who have

received chemotherapy, radiotherapy, or other therapies before

surgical intervention; patients with other severe systemic diseases.

All the subjects signed the informed consent, and the ethics

committee (Ethics Review Approval number: 2022-K11-01)

reviewed and approved the implementation.
2.2 Cell Culture

HeLa, SiHa (presented by the Jiangtao Fan research group on

October 10, 2022), and HUCEC cells (purchased from Nanjing
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https://gtexportal.org/home/
https://doi.org/10.3389/fonc.2025.1571788
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1571788
Wanmuchun Biotechnology Co., LTD., Nanjing, China, catalog no.

C1481, product format: a T25 flask). Three types of cells were

identified by Short Tandem Repeat and were free of mycoplasma

infection. They were cultured in an environment of 37°C, 5%

carbon dioxide, and 99% humidity. The culture medium

consisted of Gibco DMEM high glucose medium, containing 10%

fetal bovine serum (FBS) and 1% penicillin-streptomycin solution.

The medium was refreshed every 24 to 48 hours. Subsequent

experiments were carried out when the cells were in a good

growth state.
2.3 RT-qPCR

Obtaining total RNA from tissues and cells using the NcmSpin

Cell/Tissue Total RNA Kit (New Saimei Biotechnology Co., LTD.,

Suzhou, China).RNA was reverse transcribed using a Thermo

Scientific Hyclone reverse transcription kit (Utah, USA).RT-qPCR

proceeded with SYBR Green PCR Master Mix (Applied Biosystems,

USA), using CNNM3-DT as the primer and GAPDH as the internal

control. Normalization was performed by the 2−DDCT method.The

primer sequences in RT-qPCR were as follows:
Fron
CNNM3-DT: F 5’-CCTCAGCACACTCAATCG-3’,R 5’-

CCTTTTCGTCCACACCTA-3’;

GAPDH: F 5’-AATCAAGTGGGGCGATGCTG-3’,R 5’-

GCAAATGAGCCCCAGCCTTC-3’.
2.4 The western blot assay

Protein extraction from tissues and cells was performed with a

total protein extraction kit (Beijing Adlai Biotechnology Co., LTD.,

Beijing, China). SDS-PAGE protein loading buffer was added and

boiled for 10 minutes. Electrophoresis was carried out at 160V for

50min, followed by membrane transfer at 300 mA for 35min.

Membranes were blocked for 2 hours using 5% skim milk

powder, stepped by an overnight incubation with primary

antibodies at 4°C. The concentration of the primary antibody was

LIAS (1:2000, 11577-1-AP, proteintech).a-Tubulin (1:5000, 11224-

1-AP, proteintech).Then, incubating with fluorescent secondary

antibodies at room temperature in the dark for 1h was conducted.

The PVDF membrane was scanned with an Odyssey infrared

fluorescence imaging scanner and the images were saved. Image J

software was used to analyze the gray value of the bands. Relative

expression of LIAS = IOD of LIAS/IOD value of a-Tubulin band.
2.5 IHC

Clinical tissue samples, comprising both tumor and

paracancerous tissues, were fixed in 4% paraformaldehyde and
tiers in Oncology 03
then embedded in paraffin. IHC staining of LIAS (1:100, 11577-1-

AP, proteintech) and a-Tubulin (1:100, 11224-1-AP, proteintech)

was performed on sections. DAB was added dripping,

counterstained with Mayor’s hematoxylin, and sealed with neutral

gum. Images were taken under a light microscope with a

magnification of 10× and 40×. LIAS were stained as brown areas.
2.6 Correlation analysis

SPSS 22.0 was employed for correlation analysis. For

quantitative variables, Pearson correlation analysis was utilized,

while Spearman correlation analysis was applied to ordinal

variables. The aim was to analyze the correlations among lnc-

CNNM3-DT, LIAS, and the clinicopathological features of CC. A

sample correlation coefficient of r>0 revealed a positive correlation,

and r < 0 revealed a negative one. Specifically, 0≤/r/<0.3 meant no

correlation; 0.3≤/r/<0.5 signified a slight correlation; 0.5≤/r/<0.8

represented a moderate correlation; and 0.8≤/r/<1 indicated a

significant correlation. P< 0.05 represents an overall correlation

between the two variables.
2.7 Cell transfection

The stable cell lines of HeLa and SiHa overexpressing lnc-

CNNM3-DT were established by transfection of the constructed

overexpression lentivirus (bought from Suzhou Jima Gene Co.,

LTD., Suzhou, China). The gene name of the overexpressed

lentivirus was CNNM3-DT homo, the vector type was LV5(EF-1a/

GFP&Puro), the sequence was NR_149141.1, and the titer was 1x10 8.

The control virus LV5-NCwas empty, with no inserted sequence, and

the titer was 1x10 8. The cells in the logarithmic growth phase were

seeded at 1×105 cells/well in a 24-well plate and incubated for 24

hours in a cell incubator at 37°C. The corresponding volume of the

virus was added according to the virus volume =(MOI× number of

cells)/virus titer, and the Polybrene concentration was adjusted to

5ug/ml. After 24 hours of infection, the culture was replaced with a

complete medium and continued. The efficiency of infection was

observed by fluorescence microscopy at 72 hours after infection, and

the cells were replaced with a complete medium containing 2mg/mL

puromycin for further screening and expansion, while the cells were

collected for subsequent RT-qPCR identification. The blank (HeLa or

SiHa) and empty vector group (lnc-NC group) were set as controls.
2.8 Determination of intracellular copper
levels

According to the manufacturer’s instructions (Product item

number: E-BC-K775-M), the concentration of copper level in cells

was determined using a cell copper colorimetric test kit (Elabscience,

Wuhan, China). Collect the cells and add 0.2 mL of lysis buffer for
frontiersin.org
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approximately every 2×106 cells, mix well, and place on ice to lyse for

10 minutes. Then centrifuge at 4°C, 12000×g for 10 minutes, and

collect the supernatant for measurement, reserving a portion of the

supernatant for protein concentration determination using the BCA

method (measure the OD value of each well at 562 nm). Take 100 µL

of eight different concentrations of standards and 100 µL of the

samples to be tested, and add 50 µL of the color reagent working

solution to each well. Cover with a membrane and incubate at 37°C

for 5 minutes, then measure the OD value of each well at 580 nm

using a microplate reader. Calculation of results: Standard curve

fitting: y=ax+b, the formula for calculating the concentration of

copper ions in cells: Copper level (mmol/gprot) = (dA580-b) ÷ a ×

f ÷ Cpr. y: OD value of the standard well - OD value when the

standard concentration is 0; x: concentration of the standard; a: slope

of the standard curve; b: intercept of the standard curve; dA580: OD
value of the sample measurement - OD value when the standard

concentration is 0; f: dilution factor of the sample before adding to the

detection system; Cpr: protein concentration of the sample before

adding to the detection system (gprot/L).
2.9 The CCK-8 assay

Three groups: blank (HeLa or SiHa), lnc-NC, and lnc-CNNM3-

DT overexpression group, with a cell density of 4×104 cells/ml, were

inoculated in 96-well plates according to 100uL per well. Add PBS

around each 96-well plate to prevent the evaporation of liquid in the

experimental wells from affecting the experimental results.

Additionally, set up three control wells for each 96-well plate (100

µl complete culture medium). Each group is vaccinated with three

wells and each set of experiments is repeated three times on the same

culture plate. At 8, 24, 48, and 72 hours of culture, 10 µL of CCK-8

solution was added, followed by a 2-hour incubation at 37°C. The OD

value of each well was assessed at a wavelength of 450 nm by a

microplate reader. Summarize the OD values of each group, subtract

the OD values of the control wells, calculate their average to obtain

the final result, and then plot the cell proliferation curve.
2.10 The flow cytometry assay

Take 1 million cells into 1 mL of PBS, mix well, centrifuge at

1200 rpm for 5 minutes, and discard the supernatant. Add 100 µL of

1× Binding Buffer to each tube, resuspend, and add 5 µL of Annexin

V-PE and 5 µL of 7-AAD, obtained from BD Biosciences (San Jose,

CA, USA). Gently shake the solution and incubate in the dark at

room temperature (25°C) for 15 minutes. Then, add 300 µL of 1×

Binding Buffer and use a Beckman Coulter cytology S flow

cytometer to detect cell apoptosis within 1 hour.
2.11 The wound healing assay

Cells were taken and inoculated at a density of 5×105 cells/well

in a 6-well plate. After continuing the culture for 24 hours, the cells
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covered the bottom of the wells. A sterile pipette tip was used to

scrape the cell layer in a straight line against a ruler. The cells were

washed three times with a basic culture medium without FBS to

remove detached cells and debris. The remaining cells were cultured

in DMEM high glucose medium containing only 2% FBS, placed in

a 37°C, 5% CO2 incubator for further culture. The edges of the

spontaneously migrating cells were observed, and photographs were

taken at 0, 24, and 48 hours using an optical microscope (Olympus,

Japan). The area of the scratch is calculated using Image J. The

percentage of wound healing (%) = (initial scratch area - scratch

area at a certain time point)/initial scratch area × 100%.
2.12 The cell invasion assay

Before inoculation, the upper chamber was coated with Matrigel

at a dilution ratio of 1:8 with a serum-free DMEM medium. Cells

were resuspended in a medium with 2% FBS and placed in the

upper chamber, while the lower chamber received a medium with

20% FBS. Cells were cultured for 48 hours, fixed with methanol for

20 minutes, stained with crystal violet for 15 minutes, then

photographed and counted using Image J.
2.13 The analysis of statistics

Experiments were repeated at least three times and data were

expressed as mean ± SEM. SPSS 22.0 and GraphPad Prism version

10.0 were performed for statistical analysis. The Student’s t-test was

employed for comparing two experimental groups, while one-way

ANOVA was utilized for comparing multiple groups. P > 0.05

indicates no statistical significance (ns), while statistical significance

is denoted by *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
3 Results

3.1 Lnc-CNNM3-DT was highly expressed
in paracancerous tissues and HUCEC

The expression level of lnc-CNNM3-DT in 24 pairs of clinical

tissue samples was examined by RT-qPCR. Paracancerous tissues

showed a higher expression than tumor tissues, p<0.01 (Figure 1A).

Analysis of lnc-CNNM3-DT expression showed elevated levels in

the normal cervical epithelial cell line HUCEC compared to the CC

cell lines HeLa (p<0.05) and SiHa (p<0.01, Figure 1B).
3.2 LIAS expression was elevated in tumor
tissues, including HeLa and SiHa

Western blot analysis indicated elevated LIAS expression in

tumor tissues, p<0.01 (Figure 2), and the same as the IHC

(Figure 3). The results of WB experiments showed that LIAS was

highly expressed in HeLa (p<0.05) and SiHa (p<0.01, Figure 4).
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FIGURE 1

RT-qPCR was used to analyze the expression of lnc-CNNM3-DT in tumor tissues, paracancerous tissues, and three cell lines. RT-qPCR analysis
showed that lnc-CNNM3-DT was highly expressed in paracancerous tissues (A) and HUCEC (B) (*p<0.05,** p<0.01).
FIGURE 2

WB results of LIAS in 24 pairs of clinical tissue samples. WB experiments indicated LIAS was highly expressed in CC (**p < 0.01).
FIGURE 3

The expression of LIAS in cancer tissues and paracancerous tissues was demonstrated by IHC. IHC experiments showed that LIAS was highly
expressed in tumor tissues. LIAS are strained as brown areas.
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3.3 The expression of lnc-CNNM3-DT is
negatively correlated with the tumor
diameter and invasion depth of CC patients

Next, We analyzed the correlation between CC with LIAS and

lnc-CNNM3-DT. Table 1 presents the clinicopathological data of 24

patients diagnosed with CC. Correlation analyses using Pearson and

Spearman methods indicated a negative association between lnc-

CNNM3-DT expression and both tumor diameter and invasion

depth (Table 2), while LIAS expression showed no correlation with

the clinicopathological features of CC (Table 3).
3.4 Overexpression of lnc-CNNM3-DT
suppressed HeLa and SiHa cell proliferation,
migration, and invasion while enhancing
apoptosis

By lentiviral transfection, we constructed HeLa and SiHa cell

lines overexpressing lnc-CNNM3-DT, and the overexpression level

was verified by RT-qPCR. There were three groups, blank group, lnc-

NC group, and lnc-CNNM3-DT overexpression group. CCK-8

(Figure 5), wound healing (Figure 6), transwell invasion assays

(Figure 7A), and flow cytometry (Figure 7B) indicated that there

was no significant difference in cell proliferation, migration, invasion,

and apoptosis between the blank group and lnc-NC group (ns, p >

0.05). Lnc-CNNM3-DT overexpression suppresses HeLa cells

proliferation (Blank vs lnc-CNNM3-DT, p<0.0001; lnc-NC vs lnc-

CNNM3-DT, p<0.001), migration (Blank vs lnc-CNNM3-DT, p<0.01;

lnc-NC vs lnc-CNNM3-DT, p<0.001), and invasion (Blank vs lnc-

CNNM3-DT, p<0.001; lnc-NC vs lnc-CNNM3-DT, p<0.0001), while

enhancing apoptosis (Blank vs lnc-CNNM3-DT, p<0.05; lnc-NC vs

lnc-CNNM3-DT, p<0.01). Lnc-CNNM3-DT overexpression

suppresses SiHa cells proliferation (Blank and lnc-NC vs lnc-

CNNM3-DT, p<0.0001), migration (Blank vs lnc-CNNM3-DT,

p<0.001; lnc-NC vs lnc-CNNM3-DT, p<0.01), and invasion (Blank

and lnc-NC vs lnc-CNNM3-DT, p<0.001), while enhancing apoptosis
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(Blank vs lnc-CNNM3-DT, p<0.01; lnc-NC vs lnc-CNNM3-

DT, p<0.05).
3.5 CC cells overexpressing lnc-CNNM3-
DT showed decreased intracellular copper
levels and LIAS expression

As shown in Figure 8, HeLa and SiHa overexpressing lnc-

CNNM3-DT showed decreased intracellular copper levels and

decreased LIAS expression.Lnc-CNNM3-DT overexpression

decreased intracellular copper levels in HeLa cells (Blank and lnc-

NC vs lnc-CNNM3-DT, p<0.05). Lnc-CNNM3-DT overexpression

decreased intracellular copper levels in SiHa cells (Blank and lnc-

NC vs lnc-CNNM3-DT, p<0.05). The findings indicate that lnc-

CNNM3-DT potentially suppresses cell proliferation, migration,

and invasion while enhancing apoptosis by down-regulating LIAS

expression and decreasing intracellular copper levels.
4 Discussion

Our research group previously downloaded RNA sequencing,

clinical, and somatic mutation data of CC samples from TCGA

database. CC patients were randomly assigned to training and

testing groups. Prognostic models were determined in the

training cohort using least absolute shrinkage and selection

operator regression analysis and Cox regression models, and were

validated in the testing cohort. Our study constructed a nomogram.

Differences in biological functions were investigated through

functional enrichment and immune function analysis. Tumor

mutation burden (TMB) and tumor immune dysfunction and

exclusion (TIDE) scores were used to predict responses to

immunotherapy. Seven CRLs associated with CC prognosis were

identified. Among them, five lncRNAs (AL360178.1, CDKN2B-

AS1, ZNF667-AS1, AJ003147.1, and CNNM3-DT) were protective
frontiersin.or
FIGURE 4

WB results of LIAS in three cell lines. WP experiments indicated LIAS was highly expressed in HeLa and SiHa (*p < 0.05, **p < 0.01).
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factors for CC patients, while two lncRNAs (ATP2C2-AS1 and

BAIAP2-DT) were risk factors. Liu et al. (23) identified seven

lncRNAs closely related to the prognosis of CC patients based on

the TCGA database and Genotype-Tissue Expression Portal,

constructing prognostic labels. The prognostic value of this label

was validated using CC tissues. The seven CRLs: AL441992.1,

LINC01305, AL354833.2, CNNM3-DT, and SCAT2 were

protective factors, while AL354733.3 and AC009902.2 were risk

factors. In conjunction with Liu’s findings, lnc-CNNM3-DT was

selected for subsequent experiments.

These results suggest that lnc-CNNM3-DT acts as a protective

factor for CC. This aligns with both our group’s prior

bioinformatics analysis and the findings of Liu et al. (15).

LncRNA is important in the normal development of organisms

and tumorigenesis. During tumor development, lncRNA can act as

tumor suppressor genes or oncogenes, leading to up-regulation or
TABLE 1 Clinicopathological characteristics of 24 patients.

No Age
(year)

FIGO
Stage

Diameter
of tumor

(cm)

Depth of
infiltration

(cm)

Lymph
node

metastasis
(number)

Vascular
Metastasis

CA125
(U/ml)

SCC
(ng/mL)

Relative
expression
of Lnc-
CNNM3-

DT

Relative
expression
of LIAS

1 50 IB2 2.5 1 0 none 11.3 0.9 2.0813819 0.9399773

2 59 IB1 1.2 0.4 0 yes 6.2 0.5 1.6179963 1.3859374

3 46 IB2 3.2 1.7 0 yes 31.4 1.4 0.1720470 0.9934378

4 55 IIA 3.1 1.5 0 yes 12.8 3.1 0.9698779 1.0440663

5 46 IB1 1 0.6 0 none 22.9 0.4 2.2230520 0.9531000

6 41 IB3 10 2.5 1 yes 21.2 18.4 0.0261788 0.8395574

7 58 IIB 3.6 1.7 0 none 16.4 5.7 0.3255328 1.0579088

8 58 IB2 3.8 1.7 0 yes 15.3 6.9 0.1072123 0.8952801

9 36 IB1 1 0 0 none 7.7 0.6 0.0095312 0.8502677

10 42 IB2 3.3 0.9 0 none 12.8 1.7 0.2176188 0.8839174

11 55 IB1 2 0.6 0 none 5.8 1 0.1009380 0.7149256

12 58 IB2 3.8 1.7 0 yes 15.3 6.9 0.0230707 0.8437257

13 64 IVA 3.5 1.6 0 none 14.8 2 0.0396796 0.9913209

14 55 IB2 2.5 0.8 0 none 10.1 1.8 0.0378615 0.9551436

15 57 IIA1 4 0.6 0 none 21.5 32.5 1.1555195 0.6465927

16 39 IIIC1p 5 0.8 1 yes 31.5 4.9 0.1028924 1.0849199

17 41 IB3 5.5 1.5 0 none 13.6 0.9 0.1141926 0.6832302

18 37 IIIC1p 7 2.2 4 yes 43.2 30.3 0.1761498 0.8714962

19 55 IB3 7.4 0.7 0 none 8.8 8 0.0341779 1.2550856

20 57 IIA1 3.3 0.7 0 none 7.1 0.6 2.0532012 0.8719353

21 59 IB2 1.7 1.2 0 none 16.3 0.6 0.2461384 1.0333384

22 71 IIIC1p 4.3 1.5 1 yes 31.5 17.4 0.5790962 0.9479778

23 49 IIA1 3.7 1.3 0 none 59.8 7.3 2.1109245 0.8825425

24 70 IIIC 4.5 2.3 1 yes 105 3.2 0.0853701 0.8094360
TABLE 2 Relationship between the expression level of lnc-CNNM3-DT
with the clinicopathological features of CC patients.

Variaty
Pearson/
Spearman

Sig.

Age (year) 0.053 0.806

FIGO stage 0.161 0.452

Diameter of tumor (cm) -0.368 0.077

Depth of infiltration (cm) -0.346 0.098

Lymph node
metastasis (number)

-0.212 0.320

Vascular Metastasis -0.171 0.425

CA125 (U/ml) -0.015 0.945

SCC (ng/mL) -0.084 0.696
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down-regulation of specific lncRNA relative to normal tissues (24).

Some short open reading frames of lncRNA can encode

neuropeptides that modify N6-methyladenosine, tumor

angiogenesis, tumor metabolism, and signaling, with potential

clinical value (25). In addition, lncRNA interacts with

microRNAs (miRNA/miRs), mRNAs, proteins, and genomic

DNA to produce physiological or pathological effects (24, 26).

These regulatory RNAs are potential targets for cancer therapy

because of their tissue and tumor specificity. Dysregulation of

multiple lncRNAs has been associated with different types of

cancer, including CC, breast, ovarian, and prostate cancers.

Aberrant expression of multiple lncRNA has been found in CC,

such as HOTAIR (27), H19 (28), GAS5 (29), CCAT2 (30), ANRIL

(31), lncRNA LET (32), and lncRNA-CCHEL (33). Some lncRNAs

(such as PTENP1, MEG3, and ZNF667-AS1) were downregulated

in cancer samples. LncRNAs are also the regulatory molecules in
TABLE 3 Relationship between the expression level of LIAS with the
clinicopathological features of CC patients.

Variaty
Pearson/
Spearman

Sig.

Age (year) 0.156 0.466

FIGO stage 0.031 0.884

Diameter of tumor (cm) -0.119 0.579

Depth of infiltration (cm) -0.194 0.365

Lymph node
metastasis (number)

-0.095 0.660

Vascular Metastasis 0.098 0.650

CA125 (U/ml) -0.201 0.346

SCC (ng/mL) -0.298 0.157
FIGURE 5

CCK8 assay showed the proliferation of HeLa and SiHa cell after overexpression of lnc-CNNM3-DT. The CCK-8 assay demonstrated that lnc-
CNNM3-DT overexpression suppressed the proliferation of HeLa (A) and SiHa (B) (ns, p> 0.05, ***p< 0.001, ****p< 0.0001).
FIGURE 6

The wound healing assay demonstrated the migration of HeLa and SiHa cells after overexpression of lnc-CNNM3-DT. The wound healing assay
revealed that overexpression of lnc-CNNM3-DT inhibited the migration of HeLa and SiHa (ns, p> 0.05, **p< 0.01, ***p <0.001).
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cancer-related pathways such as Hedgehog, Wnt, Notch, PI3K/

AKT/mTOR. It can regulate the plasticity of cancer stem cells as

well (24). This suggests that lncRNA can be used as biomarkers to

detect tumors, monitor prognosis and therapeutic targets for cancer

management. Like Liu et al., Yu et al. (34)showed that lnc-CNNM3-

DT was highly expressed in normal bladder epithelial cells

compared with bladder cancer cell lines through bioinformatics

analysis and RT-qPCR experiments. These results suggest that lnc-

CNNM3-DT acts as a protective factor in tumors. FDX1 and LIAS

are both key proteins in the regulation of cupropsis. Quan et al. (35)

found that FDX1 expression was down-regulated in liver cancer

tissues, LINC02362 combined with miR-18a-5p and directly

regulated its expression, and FDX1 was the target of miR-18a-5p.

We speculated that lnc-CNNM3-DT also regulates the CC process

through a similar pathway. At present, lnc-CNNM3-DT could not

query more information, so the potential miRNA could not be

found for further research.
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Research on bioinformatics databases indicates a correlation

between LIAS expression and immune cell infiltration. In mice with

pulmonary fibrosis overexpressing LIAS, inhibition of NF-kB

attenuated chronic inflammatory responses, as indicated by

increased Treg cell numbers and decreased T-cell infiltration (36).

Similarly, increased Treg numbers and decreased T-cell infiltration

were found in a mouse model of atherosclerosis overexpressing

LIAS (37). In the tumor microenvironment, elevated Treg cells

suppress effector T cell activation and function, facilitating tumor

cell immune escape (17, 38).LIAS significantly influences tumor

growth, blood vessel formation, and immune evasion (15).The

overexpression of Lnc-CNNM3-DT significantly reduces the

expression of LIAS. In lung adenocarcinoma, comprehensive

analysis revealed that other copper death-related genes, including

LIAS, are associated with immune infiltration and prognosis; their

expression can affect the tumor microenvironment, influence

immune cell infiltration, and potentially impact the response to
FIGURE 7

Matrigel Transwell invasion assay and Flow cytometry analysis demonstradted the invatsion and apoptosis of HeLa and SiHa overexpression of lnc-
CNNM3-DT. Matrigel Transwell invasion assay revealed that overexpression lnc-CNNM3-DT inhibited the invasion of HeLa and SiHa (A). Flow
cytometry analysis demonstrated that Overexpression of lnc-CNNM3-DT. Matrigel transwell invation assay revlead that overexpression lnc-CNNM3-
DT promoted the apoptosis of HeLa and SiHa (B) (ns, p > 0.05, *p <0.05, **p <0.01, ***p < 0.001, ****p < 0.0001).
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immunotherapy (17). Furthermore, pan-cancer analysis of copper

death-related genes indicated that LIAS mutations are associated

with poorer survival outcomes in certain cancers, such as breast

cancer (39). Therefore, lnc-CNNM3-DT may further inhibit the

metabolic activity and antioxidant capacity of CC cells by

downregulating LIAS expression, thereby enhancing its anti-

cancer effects.

Many studies have found that various malignant tumors have

abnormal accumulation of Cu, and the serum copper levelsof

patients with drug-resistant tumors is 130% to 160% higher than

that of patients with sensitive tumors (40). Cu significantly

contributes to tumor cell proliferation, metastasis, and

angiogenesis (41, 42). In addition, many studies have shown that

CC tumor tissue has a higher copper levelsthan normal tissue

(43).In our study, it was found that after overexpression of lnc-

CNNM3-DT, intracellular copper levels, and LIAS expression

were decreased, cell proliferation, migration, and migration

ability were inhibited, and apoptosis was increased. The lnc-

CNNM3-DT associated with cupropsis may decrease cellular

copper levels and inhibit tumor cell growth by down-regulating

LIAS expression.
5 Conclusion

We found and verified that the CRL CNNM3-DT may be

negatively correlated with the progression of CC. It may inhibit

the progression of CC by down-regulating the expression of LIAS

and reducing the intracellular copper levels. Lnc-CNNM3-DT is a

protective factor for CC and may influence the immune
Frontiers in Oncology 10
microenvironment in CC, potentially serving as a therapeutic

target and a reliable biomarker for predicting the efficacy of

immunotherapy in CC patients. The limitation of this study is

that there are no reply experiments and animal experiments to

prove the completeness and reliability of this hypothesis. Only 24

clinical samples were collected, which is not large enough to

represent the real situation of most patients. The potential

pathway study could not be performed because no lnc-CNNM3-

DT interacting miRNA could be found by consulting existing

databases. Future research will include recycling and animal

experiments for further validation.
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