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Introduction: Metabolic reprogramming is a hallmark of cancer, yet its role in

glioma remains poorly understood. Gliomas are characterized by a highly

immunosuppressive tumor microenvironment (TME) and poor prognosis. This

study systematically explores the relationship between glioma metabolomics,

tumor phenotype, and the immune microenvironment.

Methods: Bulk RNA sequencing data were retrieved from the Chinese Glioma

Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA). Single-cell gene set

enrichment analysis (ssGSEA) was employed to quantify seven nutrient metabolic

pathways and immune infiltration. Consensus clustering was applied to group

gliomas based on metabolic gene expression, and survival analysis was performed

to evaluate survival differences across these clusters. A predictive model was

constructed and validated using our cohort. Finally, we knocked out G0S2 in

glioma cells and performed RNA sequencing to investigate differentially activated

pathways. Additionally, in vivo experimentswere conducted to explore the antitumor

effects of G0S2 knockout in combination with PD-1 monoclonal antibody.

Results: Significant metabolic differences were identified between low-grade

gliomas (LGG) and glioblastomas (GBM), with consistent findings across both

databases. We found that LGGs and GBMs exhibit distinct metabolic patterns.

Consensus clustering revealed three metabolic subgroups, with the C3 subgroup

demonstrating poor survival and enhanced infiltration of immunosuppressive

cells. The predictive model showed robust performance in forecasting the

survival of glioma patients. Functional analysis identified G0S2 as a key

metabolic regulator highly expressed in gliomas. G0S2 knockout activated the

type I interferon signaling pathway, enhanced CD8+ T cell functionality, and

synergized with anti-PD-1 therapy, resulting in suppressed tumor growth and

prolonged survival in vivo.

Conclusion: These findings provide a comprehensive analysis of glioma

metabolic patterns and identify G0S2 as a promising therapeutic target.
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1 Introduction

Gliomas are the most common and difficult-to-treat tumors of

the central nervous system. According to the World Health

Organization (WHO) classification, gliomas are classified as

WHO grade I gliomas, grades II and III diffuse gliomas based on

molecular dysfunction and histopathology, or grade IV

glioblastomas with many genomic alterations (1–3). Glioblastoma

(GBM), the most aggressive primary brain tumor, demonstrated

rapid progression and inevitable recurrence within 8–9 months

post-diagnosis despite multimodal therapies encompassing surgical

resection, radiotherapy, and alkylating chemotherapy (e.g.,

temozolomide). The average survival time is only 18 months (4–

7). Moreover, treatment options for recurrent glioblastoma

are scarce, with second-line chemotherapy showing only

modest activity against the tumor. Patients with recurrence

usually survive for less than 10 months (8). Clinical trials on

immunotherapy for glioma are underway and may benefit

patients (9–11). Therapies against molecular targets that drive

primary tumor growth have also been unsuccessful in clinical

trials; therefore, new approaches are required (12).

Metabolic reprogramming is recognized as a hallmark of cancer

and a key event in tumor progression and recurrence (13). Aerobic

glycolysis (Warburg effect) is a metabolic feature of many solid

tumors, including gliomas, and a flexible switch from aerobic

glycolysis to mitochondrial metabolism enables tumor cell

survival under stress (14). Glioma cells increase intracellular lipid,

amino acid, and nucleotide stores through metabolic

reprogramming (15). Mutations affecting isocitrate dehydrogenase

(IDH) enzymes, which are components of the tricarboxylic acid

(TCA) cycle, are prevalent in gliomas (16–18). Many studies have

delineated the molecular circuitry linking specific genetic alterations

to distinct metabolic phenotypes (19). Studies have discovered that

IDH1 mutant glioma cells respond to medications that target

enzymes in the de novo pyrimidine nucleotide synthesis pathway,

providing new therapeutic options for patients with IDHmutations,

which are common in gliomas (18). Researchers have observed high

levels of amino acids, especially glycine and 2-aminoadipic acid, in

grade IV gliomas, and N-acetyl aspartic acid in low-grade gliomas

(2). Gliomas have also been shown to utilize enzymatic activity

acquired through the common mutation in IDH to eliminate the

migration of CD8+ T cells to tumors (20). Although cell metabolism

is now recognized as a characteristic of gliomas, the relationship

between systemic metabolomics, glioblastoma phenotype, and the

immunological microenvironment has not yet been explored.

In this study, we compared the differences in seven major

metabolic pathways between low-grade gliomas (LGG) and

glioblastomas (GBM) as well as between primary and recurrent

tumors. Additionally, we performed a subtype classification of

gliomas based on their metabolic patterns. A survival prediction

model was constructed using metabolism-related genes.

Furthermore, we identified the metabolic gene G0S2 as a potential

therapeutic target.
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2 Materials and methods

2.1 Data acquisition and procession

Level 2 RNA-sequencing (RNA-seq) data and corresponding

clinical information of patients with LGG and GBM from TCGA

and CGGA were downloaded from their respective websites

(TCGA: http://xena.ucsc.edu/; CGGA: http://www.cgga.org.cn/).

Gene Expression Omnibus(GEO)data were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/) with the

accession number GSE43378. The metabolic genes were

downloaded from a previous study (Supplementary Table 1) (12).
2.2 Estimation of score of metabolic
process and immune cells in LGG and GBM

The R package “ssGSEA” was used to estimate the seven

metabolic process using identified genes in glioma and GBM. The

R packages “ssGSEA” and “MCP” were used to estimate the score of

immune cells. “ssGSEA” could estimate 28 cell type of immune

cells, and “MCP” could estimate 10 cell type of immune cells.

The major parameters for ssGSEA were min.SZ=1,tau=1,

ssgsea.norm=true. The R package “corrplot” were used to analyze

and visualize correlation of metabolic process and immune

infiltration using method of Spearman.
2.3 Consensus clustering and
characterization of LGG and GBM

The R package “ConsensusClusterPlus” was used to cluster

glioma and GBM using metabolic genes. The major parameters

were reps=100, pItem=0.8, cluster method:hc, distance: euclidean.

The expression of seven metabolic processes and differences in the

clinical parameters in each cluster were visualized using the R

package “pheatmap.” The R package “survival” was used to analyze

the differences in overall survival (OS) among the three clusters.

The R package “ggplot2” were used to reveal the difference in

immune cells among three clusters using ANOVA test.
2.4 Construction and validation of
prediction model

First, RNA-seq data of glioma (including LGG and GBM) from

TCGA were randomly divided into training and test datasets at 1:1

ratio based on survival status. Subsequently, univariate analysis was

performed to identify the metabolic genes that correlated with OS in

the training datasets with threshold p<0.001. Next, the least absolute

shrinkage and selection operator (LASSO) algorithm was used to

select gene signatures that could predict OS in the training datasets.

The maximum number of iterations was set to 1000 (maxit=1000)
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using 10-fold cross-validation. A multivariate Cox regression

analysis was used to calculate the formula for the prediction

model. The R packages “survival” and “survminer” were used to

analyze the differences in OS between high- and low-risk groups in

the test datasets, our clinical cohort, and GEO datasets.

Furthermore, “survival ROC” was used to analyze receiver

operating characteristic (ROC) curve between high- and low-risk

groups in these datasets.
2.5 Reverse transcription PCR analysis

After cell collection, TRIzol reagent was added to extract total

RNA, and the RNA concentration was measured using a Nanodrop

spectrophotometer. A total of 1 μg of RNA was used for reverse

transcription according to the manufacturer’s instructions (Vazyme

Biotech Co., Ltd, #R333-01). The primer sequences were as follows:

DPEP1, Forward: 5’-CAAGTGGCCGACCATCTGG-3’, Reverse:

5 ’-GGGACCCTTGGAACACCATC; G0S2: Forward: 5 ’-

GGAAGGCTGGAACTCTACGA-3’, Reverse: 5’-TTCTTTGGA

GCAGTCGGTGT-3’; and PLA2G2A: Forward: 5’-GAAAGGAA

GCCGCACTCAGTT-3’, Reverse: 5’-CAGACGTTTGTAGCAAC

AGTCA-3’. Relative gene expression levels were normalized to

those of GAPDH.
2.6 Identification of differently expressed
metabolic genes between LGG and GBM

The R package “Limma” was used to identify DEMGs between

gliomas and GBM. DEMGs were selected with threshold of adjust p

value< 0.05 and log 2 fold change (Log FC)≥0.05. DEMGs were

visualized using a volcano plot. Venn plots were used to show the

intersecting genes that were upregulated and downregulated in

GBM in TCGA and CGGA datasets.
2.7 Generation of G0S2 knock-out cell
lines

Mouse glioma cell line GL261 was donated from Henan Key

Laboratory of Brain Targeted Bio-nanomedicine, School of Life

Sciences & School of Henan University, Kaifeng, China. Mouse

G0S2-KO tumor cells (GL261) were generated using a lentiviral

system. A small guide RNA (sgRNA) targeting G0S2 was designed

using an online tool (https://sg.idtdna.com/site/order/designtool/

index/CRISPR_CUSTOM), and its sequence used was 5’-

GGCTGCACACCGTCTCAACT-3’. To package the lentivirus,

HEK293T cells were co-transfected with relinked lentiCRISPR v2

(Addgene, catalog no. 52961), psPAX2 (Addgene, catalog no.

12260), and pMD2.G (Addgene, catalog no. 12259). The cells

were incubated with filtered viral medium containing 6 mg/mL

polyglutamine (Biosharp, catalog number: BL628A). Subsequently,

puromycin selection was performed to obtain desired cells (0.5

mg/mL).
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2.8 RNA sequencing analysis

After the tumor cells were collected, total RNAwas extracted, and

sequencing was performed using the MGISEQ-T7 platform

according to the manufacturer’s instructions. Fragments Per

Kilobase Million(FPKM)data were used for differential expression

analysis, with the criteria set as log FC > 1 and p < 0.05. The

clusterProfiler package was employed for KEGG and GO enrichment

analyses, with significance thresholds of p < 0.05 and q < 0.05.
2.9 In vivo experiments

C57BL/6J mice aged 4–6 weeks were purchased from Charles

River. GL261 and GL261-shG0S2 tumor cells were collected and

counted. Subsequently, 1 × 10^6 tumor cells were subcutaneously

implanted into the left inferior belly of mice. When the tumor

volume reached approximately 50 mm³, mice were randomly

allocated into groups and subsequently treated with either an

interferon receptor inhibitor (MCE, #MAR15A3, 50 μg/mouse) or

an anti-PD-1 monoclonal antibody (Selleck, BMS202, 200 μg/

mouse) by tail vein or inhibitor of G0S2 (MCE, NS-3-008, 5mg/

kg/mouse, ingest by mouth)(Every group N=5). The treatments

were administered every two days for a total of three doses. The

tumor volume was measured every two days, and the mice were

monitored for vital signs. Mice were euthanized at the experimental

endpoint or when subsequent measurements predict tumor volume

exceeding 2000 mm³.
2.10 Flow cytometry analysis

After enzymatic digestion, the tumor tissues were processed

into a single-cell suspension. The cells were then washed three times

with Phosphate Buffered Saline (PBS) and stained with antibodies

for flow cytometry, including FITC anti-mouse CD45 (BioLegend,

#157213), PE anti-mouse CD8 (BioLegend, #140408), APC anti-

mouse IFN-g (BioLegend, #505810), and APC/Cyanine7 anti-

mouse TNF-a (BioLegend, #506343). Staining was performed in

the dark at 4°C for 15 minutes. Subsequently, the samples were

analyzed using a BD flow cytometer.
2.11 Statistical analysis

Statistical analyses were performed using R software (version

3.6.3) and GraphPad Prism (version8.3.0). The Wilcoxon test was

used to compare differences in metabolic processes and immune cell

scores between the two groups. Analysis of variance was used to

compare differences in immune scores among the three clusters. The

log-rank test was used to compare the differences in OS among the

three clusters or high- and low-risk groups. Two-tailed t-tests were

used to compare differences between the two groups in the in vitro

and in vivo experiments. Statistical significance was set at p < 0.05.
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3 Results

3.1 Characterization of metabolic
processes between LGG and GBM

Given the different molecular patterns and clinical outcomes

between LGG and GBM, we first explored alterations in the

metabolic processes between LGG and GBM in both primary and

recurrent tumor groups. In primary tumors, TCGA and CGGA

analyses revealed an increased expression of carbohydrate, lipid,

amino acid metabolism, TCA cycle, nucleotide, and vitamin

cofactor metabolism in GBM, whereas amino acid metabolism

and the TCA cycle were found to be more active in LGG,

according to the CGGA database. (Figures 1A, B). In recurrent

tumor tissues, we also observed that carbohydrate, lipid, nucleotide,

and vitamin cofactor metabolism were more active in GBM. In

contrast, TCGA and CGGA analysis revealed that TCA cycle were

more active in LGG (Figures 1C, D). These findings reveal distinct

metabolic patterns between LGG and GBM.
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3.2 Dissecting the metabolic differences
between primary and recurrent gliomas

Next, we compared the metabolic processes between primary and

recurrent tumors of LGG and GBM. TCGA data analysis revealed that

in LGG, energy metabolism decreased, whereas nucleotide

metabolism increased in recurrent tumors. Additionally, CGGA

analysis indicated that amino acid metabolism and the TCA cycle

were downregulated in recurrent tumors (Figures 2A, B). In GBM,

both TCGA and CGGA analyses revealed that amino acid metabolism

and the TCA cycle were upregulated in recurrent tumors, showing an

opposite trend to that of LGG (Figures 2C, D).
3.3 Metabolic processes were correlated
with immune infiltration

The immune status in tumor tissues is associated with the

natural progression of tumors and the outcomes of clinical
FIGURE 1

A comparison of seven major metabolic pathways between LGG and GBM. (A, B) Box plot showing the differences in seven major metabolic
pathways between LGG and GBM in primary tumor tissue in TCGA and CGGA databases. (C, D) Box plot showing the differences in seven major
metabolic pathways between LGG and GBM in recurrent tumor tissue in TCGA and CGGA databases. Wilcox.test ns, not significant, *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001.
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treatment. Therefore, we evaluated the correlation between

metabolic processes and immune cell infiltration. To this end, we

first used “ssGSEA” and “MCP” methods to calculate the score of

each cell type. We found that most immune cells had a strong

correlation with each other in both TCGA and CGGA datasets,

indicating a synergistic effect of these immune cells. Most metabolic

processes positively correlated with immune infiltration, with

energy and vitamin cofactors showing the strongest correlation.

Notably, the energy process negatively correlated with other

processes. In addition, we found that energy had a reverse

correlation between immune cells in both TCGA and CGGA

datasets (Figures 3A, B). Consistent with these results, both

TCGA and CGGA analyses revealed that energy was negatively

correlated with immune and stromal score (Figures 3C, D). These

results suggest that alterations in metabolic processes shape

immune infiltration in tumor tissues.
Frontiers in Oncology 05
3.4 Classification of glioma based on
metabolic processes

Metabolic reprogramming reflects tumor heterogeneity and is

related to patient survival. Therefore, we performed a consensus

clustering of gliomas based on these metabolic genes. Analysis of

TCGA and CGGA datasets indicated that gliomas could be

unsupervisedly clustered into three distinct subtypes. (Figures 4A,

B). Although the number of samples in each cluster differed, the

metabolic patterns were similar. In C1 cluster, energy was activated.

C3 cluster was enriched in amino acids, carbohydrates, the TCA

cycle, nucleotides, carbohydrates, and vitamin cofactor process. C2

cluster showed low expression of these metabolic process

(Figures 4C, D). Survival analysis showed that patients in the C3

cluster had worse survival rates than those in the C1 or C2 clusters.

In addition, C1 had the longest survival time among the three
FIGURE 2

A comparison of seven major metabolic pathways between primary and recurrent tumor tissue. (A, B) Box plot showing the differences in seven
major metabolic pathways between primary and recurrent tumor tissue in LGG in TCGA and CGGA database. (C, D) Box plot showing the
differences in seven major metabolic pathways between primary and recurrent tumor tissue in GBM in TCGA and CGGA database. Wilcox.test, ns,
not significant, * p<0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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clusters, whereas the survival time of C2 was between those of C1

and C3 (Figures 4E, F). Further analysis revealed that C3 was

enriched in most immune cells. Although some effector immune

cells were abundant in C3, some immunosuppressive cells were also

infiltrated in the C3 cluster, including myeloid-derived suppressor

cells and regulatory T cells (Figures 4G, H). These results revealed

that the metabolic classification of gliomas reflects the heterogeneity

of the tumor.
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3.5 Construction of a prediction model
based on metabolic genes

Next, we explored the functions of these metabolic genes, which

influence the OS of patients with glioma. We first identified survival-

related genes and used LASSO to optimize gene signatures

(Supplementary Figures 1A, B). A seven-gene signature was selected

and risk scores were calculated based on multivariate analysis
frontiersin.or
FIGURE 3

Correlation between seven major metabolic pathways and immune infiltration. (A, B) Heatmap showing the correlation between seven major
metabolic pathways and immune cells in TCGA and CGGA database estimated by Microenvironment Cell Populations (MCP) and single-sample gene
set enrichment analysis (ssGSEA). (C, D) Circle plot showing the correlation between seven major metabolic pathways and immune and stromal
scores in TCGA and CGGA database.
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(Supplementary Figure 1C). The predictionmodel performed well and

could be clearly divided based on risk score (Supplementary

Figures 2A, B). Five genes (TX1, MBOAT1, AOX1, HEXB, and

GNG12) were upregulated in the high-risk group, and two genes

(RPL3 and PIK3R1) were upregulated in the low-risk group in both

TCGA and CGGA datasets (Supplementary Figures 2C, D). Next, we

calculated the risk score for each patient in the training and test

datasets. We found that patients with high risk scores had worse
Frontiers in Oncology 07
survival in both datasets (Figures 5A, C). ROC analysis revealed that

the predictionmodel performed well on both datasets, with a high area

under the curve (AUC) (Figures 5B, D). To further validate the

prediction model, we used the CGGA, our cohort, and GEO to test

its performance. The results indicate that the model accurately

predicted patient survival within these datasets, demonstrating high

sensitivity and specificity (Figures 5E–H; Supplementary

Figures 3A–D).
FIGURE 4

Classification of glioma based on metabolic processes. (A, B) Heatmap showing the clustering of glioma in TCGA and CGGA database. (C, D) Heatmap
showing the expression of seven major metabolic pathways among three clusters in TCGA and CGGA database. (E, F) K-M curve showing the overall
survival of three clusters in TCGA and CGGA database. (G, H) Box plot showing the level of immune cells in three clusters in TCGA and CGGA database.
ANNOVA test, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.6 Identification of G0S2 as a metabolic
target to promote tumor progression

To identify the potential metabolic target of glioma, we first

analyzed the differentially expressed genes between tumor tissues and

normal tissues in GBM and LGG, separately in primary and recurrent

tumor types. The volcano plot showed dysregulated genes in these

groups in both TCGA and CGGA datasets (Supplementary

Figures 4A–D). By intersecting these genes, we identified three genes

(PLA2G2A, DPEP1, and G0S2) that were upregulated in primary and

recurrent tumor tissue (Supplementary Figures 5A–D). Further

analysis using the online platform GEPIA revealed that these genes

were associated with poor prognosis in patients with LGG

(Supplementary Figures 6A–C). This finding was further validated by

our own analysis of patient specimens, which confirmed elevated G0S2

expression in tumor tissues (Supplementary Figure 6D). Through

comprehensive analysis of TCGA and CGGA datasets, we revealed

that BCL2 as a G0S2-suppressed target gene that demonstrates low

expression in glioblastoma (GBM) (Supplementary Figures 7A, B).

Conversely, G0S2-activated target genes including CEBPA and PPARG

were significantly upregulated in GBM. Notably, these differential

expression patterns were not observed to be statistically significant in

recurrent tumors, further supporting the above findings

(Supplementary Figures 7C–F). To further validate the role of G0S2,

we knocked out G0S2 in tumor cells (Supplementary Figure 7G).

Enrichment analysis of differentially expressed genes between the

knockout and control groups revealed that G0S2 knockout enhanced

the response to type I interferons, while reducing oxidative
Frontiers in Oncology 08
phosphorylation (Supplementary Figures 7H, I). In the in vivo

experiments, we treated two groups of mice with an IFNAR1

inhibitor and an anti-PD-1 monoclonal antibody. We observed that

G0S2 knockout alone was sufficient to suppress tumor growth in mice,

whereas administration of the IFNAR1 inhibitor in the control group

promoted tumor growth. Notably, the combination of G0S2 knockout

and anti-PD-1 antibody treatment significantly suppressed tumor

volume and prolonged mouse survival (Figures 6A, B). Further

analysis revealed that in the group with G0S2 knockout combined

with anti-PD-1 antibody treatment, the proportion of CD45+ immune

cells was significantly higher. Among these, the proportion of CD8+ T

cells secreting IFN-g and granzyme B was notably increased

(Figures 6C–E). Further, the combination of G0S2 inhibitor (NS-3-

008) and anti-PD-1 antibody treatment significantly suppressed tumor

volume(Figure 6F) and promoting CD8+ T cells function (Figures 6G,

H).These findings suggest that G0S2 may serve as a metabolic target

that influences immune responses.
4 Discussion

Harnessing the clinical benefits of cancer metabolism requires

defining the pathways that constrain cancer progression and

understanding the background specificity of metabolic preferences

and susceptibility in malignant tumor cells. Abnormalities in

multiple metabolic pathways, such as glycolysis, amino acid

metabolism, and lipid metabolism in glioma cells, meet the

staggering energy demands in a hypoxic environment (21–23).
FIGURE 5

Construction and validation of the prediction model. (A) K-M curve showing the overall survival between the high- and low-risk groups in TCGA
training set. (B) ROC curve showing the AUC in TCGA training set. (C) K-M curve showing the overall survival between the high- and low-risk groups
in TCGA validation set. (D) ROC curve showing the AUC in TCGA validation set. (E) K-M curve showing the overall survival between the high- and
low-risk groups in the CGGA validation set. (F) ROC curve showing the AUC in the CGGA validation set. (G) K-M curve showing the overall survival
between the high- and low-risk groups in our cohort validation set. (H) ROC curve showing the AUC in our cohort validation set.
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FIGURE 6

G0S2 knockout and G0S2 inhibitor inhibited tumor growth and promoted immune infiltration. (A) Tumor growth curve showing the tumor volume
across these groups(Every group N=5). (B) K-M curve showing the survival across these groups(Every group N=5). (C-E) Bar plot showing the ratios
of CD45+ cells, IFNg+CD8+ T cells, and granzyme B+CD8+ T cells across these groups(Every group N=5). (F) Tumor growth curve showing the tumor
volume in control, aPD-1,NS-3-008, and aPD-1combined NS-3–008 groups (Every group N=5) (G, H) Bar plot showing the ratios of IFNg+CD8+ T
cells and granzyme B+CD8+ T cells across these groups (Every group N=5). t test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Therefore, there is an urgent need to establish metabolic typing of

gliomas and screen for therapeutic targets.

In this study, we conducted a comprehensive analysis of the

differences in seven major metabolic pathways between LGG and

GBM. Results demonstrated that carbohydrate, lipid, nucleotide, and

vitamin cofactor metabolism were activated in GBM. Carbohydrate

metabolism functions as a central axis, primarily ensuring a

continuous energy supply, while serving as the origin for other

metabolic and biosynthetic pathways, including amino acid and

lipid metabolism (24). Abnormal tumor metabolism is often

associated with tumor progression and drug resistance, and

metabolic reprogramming of tumors is highly correlated with the

heterogeneity of the tumor microenvironment (25). Hypoxia in the

tumor microenvironment is a key driver of carbohydrate metabolism,

primarily promoting glycolysis and lactate metabolism, which

ultimately contributes to tumor progression (26–28). Carbohydrate

metabolism serves as a central metabolic pathway that not only

provides ATP for tumor cells but also influences nucleotide, amino

acid, and lipid syntheses, ultimately shaping the overall metabolic

profile of the tumor (29). Therefore, higher carbohydrate metabolism

observed in GBM indicates a greater demand for energy, which is

associated with a poorer prognosis. Consistent with these results,

carbohydrate metabolism has been linked to poor survival in patients

with glioma (30). Amino acid metabolism provides intermediate

metabolites for the TCA cycle, thereby supporting energy

production in tumor cells (31). Similarly, lipid metabolism plays a

critical role in tumor cell division by contributing to the formation of

cell membranes and the transmission of signaling pathways (32).

However, why GBM, compared to LGG, activates these metabolic

pathways remains a topic worthy of further investigation.

In the present study, we found that highly activated energy

metabolism in tumor tissues was negatively correlated with immune

cell infiltration. Energy metabolism primarily includes glycolysis

and oxidative phosphorylation, among which glycolysis is more

characteristic of the tumor microenvironment (33). In the tumor

microenvironment, tumor cells primarily acquire energy through

aerobic glycolysis, and the metabolic byproduct lactate significantly

influences the immune composition and function of the

microenvironment (34). Studies have reported that high

concentrations of lactate can inhibit T cell proliferation and

impair the maturation of dendritic cells (35, 36). Additionally,

macrophages can take up lactate, which promotes their

polarization into tumor-associated macrophages, leading to high

expression of ARG1, which subsequently suppresses T-cell function

(37). Interestingly, a positive correlation was observed between

highly activated energy metabolism and patient survival.

In the present study, we identified G0S2 as a potential metabolic

target. Numerous studies have reported that G0S2 is associated with

tumor cell proliferation. G0S2 has been shown to promote anti-

estrogenic and pro-migratory responses in breast cancer cells (38).

Furthermore, G0S2 has been reported to be associated with lipid

metabolism. It regulates the homeostatic proliferation of naive CD8+

T cells and inhibits oxidative phosphorylation in the mitochondria
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(39). KEGG enrichment analysis revealed that G0S2 knockout

promoted activation of the type I interferon response. The type I

interferon signaling pathway is a critical innate immune signaling

pathway that regulates adaptive immunity. Recent studies have

reported that this pathway is associated with anti-PD-1 monoclonal

antibody therapy (40). In the in vivo experiments, we found that the

combination of anti-PD-1 monoclonal antibody therapy and G0S2

knockout significantly inhibited tumor growth and extended the

mouse survival of mice. We also found the combination of anti-PD-

1 monoclonal antibody therapy and NS-3-008(G0S2 inhibitor)

significantly inhibited tumor growth of mice and promoted the

function of CD8+ T cells. These results suggest that G0S2 is not only

associated with metabolism but may also play a critical role in

regulating immune responses within the tumor microenvironment.

While G0S2 inhibitors are currently being explored in chronic kidney

disease (41), their potential applications in oncology remain unclear.

Our study elucidates the therapeutic value of targeting G0S2 in

tumor contexts.
5 Conclusion

In summary, this study comprehensively analyzed the expression

patterns of seven major metabolic pathways in gliomas. Based on the

distinct metabolic patterns, we identified three glioma subgroups with

different survival outcomes and immune states. Furthermore, we

developed a predictive model for the survival of patients with glioma

using metabolic genes. Additionally, we found that G0S2 influenced the

type I interferon signaling response in tumor cells and exhibited strong

antitumor effects when combined with anti-PD-1 therapy. Our findings

provide deeper insight into metabolic reprogramming in gliomas and

suggest that G0S2 may serve as a potential therapeutic target.
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SUPPLEMENTARY FIGURE 1

Gene identification for prediction model. (A, B) LASSO regression used for
optimizing the gene signature. (C) Forest plot analysis showing the

multivariate analysis of the gene.

SUPPLEMENTARY FIGURE 2

Construction of the prediction model. (A, B) Dot plot showing the survival
status of patients with glioma in the high- and low-risk groups in TCGA

training and validation set. (C, D) Heatmap showing the gene expression in
the high- and low-risk groups in TCGA training and validation set.

SUPPLEMENTARY FIGURE 3

Validation of the prediction model. (A, B) K-M curve showing the overall

survival between the high- and low-risk groups in TCGA glioma and
GSE43378 sets. (C, D) ROC analysis showing the AUC in TCGA glioma and

GSE43378 sets.

SUPPLEMENTARY FIGURE 4

Identification of differently expressed genes (DEGs). (A, B) Volcano plot
showing the DEGs between tumor and normal tissue in primary tumor in

TCGA and CGGA data sets. (C, D) Volcano plot showing the DEGs between
tumor and normal tissue in recurrent tumor in TCGA and CGGA data sets.

SUPPLEMENTARY FIGURE 5

Identification of overlapping genes. (A, B) Intersection of genes upregulated

in primary and recurrent tumor tissue in TCGA and CGGA database. (C, D)
Intersection of genes downregulated in primary and recurrent tumor tissue in

TCGA and CGGA database.

SUPPLEMENTARY FIGURE 6

Analysis expression of overlapping genes. (A–C) K-M curve showing the

overall survival of patients with LGG and GBM grouped by DPEP1, G0S2,

and PLA2G2A expression. (D) Dot plot showing the expression of
DPEP1, G0S2, and PLA2G2A in tumor and adjacent tumor tissues. t

test,*p < 0.05.

SUPPLEMENTARY FIGURE 7

Identification of target genes and enrichment analysis of DEGs. (A-F) Box plot
showing the expression of BCL2, CEBPA, PPARG between LGG and GBM in

primary and recurrent tumor tissue in TCGA and CGGA databases
(Wilcox.test). (G) Bar plot showing the gene expression of G0S2 between

control and knockout group (t test). (H, I) Dot plot showing the upregulated
and downregulated differently expressed genes between G0S2 knockout and

control groups based on KEGG enrichment analysis. ns, not significant,*p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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