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Impact of thymoquinone on the
Nrf2/HO-1 and MAPK/NF-kB axis
in mitigating 5-fluorouracil-
induced acute kidney
injury in vivo
Summya Rashid*

College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
Background: Chemotherapy-induced organ toxicity is one of the most common

toxic effects of 5-fluorouracil (5-FU) in cancer patients. Therefore, new strategies

are needed to prevent chemotherapy-induced kidney toxicity. Thymoquinone

(TQ), a constituent of the plant Nigella sativa from the family Renunculaceae, has

been found to be antiapoptotic, antioxidant, antimicrobial, anti-inflammatory,

and protective against renal damage. This study aims to evaluate the effect of TQ

in preventing nephrotoxicity induced by 5-FU treatment.

Method: Male albino Wistar rats were divided into four groups and administered

saline (group I), 5-FU (150 mg/kg; group II), 5-FU+TQ (50 mg/kg; group III), and

5-FU+TQ (100 mg/kg; group IV). On the 21st day, rats were killed, and

biochemical, histological, serological, and molecular analyses were conducted

using kidney tissues and blood samples.

Results: 5-FU induced kidney injury, as evidenced by alterations in kidney

function markers (BUN, Cr, LDH, KIM-1), lipid peroxidation (LPO), ROS

generation, histological changes, and a reduction in antioxidant defense

mechanism (GSH, GR, GPx, and CAT). Additionally, 5-FU triggered crosstalk

between Nrf2 and NF-kB/p38MAPK axis by significantly upregulating p-p38, p-

JNK, p-ERK1/2, p-NF-kB, TNF-a, IL-1b, TGF-b, and IL-6, while downregulating

Nrf2 and HO-1, resulting in kidney damage. Pre-, post-, and cotreatment with TQ

alleviated kidney injury by replenishing antioxidant reserves, reducing serum

toxicity, decreasing ROS generation and lipid peroxidation, downregulating p38

MAPK/NF-kB axis/pathway proteins, and upregulating Nrf2 and HO-1, thereby

enhancing antioxidant axis and restoring kidney architecture.

Conclusion: Based on the results obtained in the present study, TQ appears to be

a beneficial agent that could be used as an adjuvant therapy for the prevention of

5-FU-induced nephrotoxicity.
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1 Introduction

5-Fluorouracil (5-FU) is an antimetabolite and antineoplastic

agent with notable efficacy against various malignancies, including

cancers of the head and neck, breast, skin, stomach, and colorectum

(1). It is a pyrimidine analog that, upon metabolism, is converted to

5-fluoro-2-deoxyuridine monophosphate, which inhibits

thymidylate synthase. This ultimately suppresses thymine

nucleotide production, resulting in the inhibition of cell

proliferation, DNA damage, and apoptosis in both cancerous and

normally replicating cells, leading to widespread adverse effects (2).

Consequently, 5-FU is associated with leucopenia, mucositis, and

toxicities affecting the heart, liver, and kidneys, which limit its

clinical utility. Furthermore, 5-FU undergoes metabolic cleavage

into a-fluoro-b-alanine, ammonia, and urea, which contributes to

renal damage—one of the major limitations of its clinical use (3).

Reports suggest that reactive oxygen species (ROS) promote the

oxidation of lipid membranes, proteins, and cells, leading to

oxidative stress and inducing toxic effects such as necrosis and

apoptosis. These processes play a critical role in mediating 5-FU-

induced kidney damage (4). Various studies indicate that ROS and

inflammatory mediators also activate the mitogen-activated protein

kinases (MAPK) pathway, which includes p38 MAPK, Jun N-

terminal kinase (JNK), and extracellular signal-regulated kinase

(ERK). This pathway regulates multiple cellular processes, including

stress adaptation, proliferation, differentiation, and apoptosis (5).

Moreover, stimulation of the ERK pathway activates transcription

factors such as nuclear factor kappa B (NF-kB), which regulates

downstream inflammatory mediators/cytokines and protein

expressions (6). The MAPK pathway interacts with NF-kB and

modulates inflammatory processes in various pathological

conditions, making the MAPK/NF-kB signaling pathway a key

coordinator of inflammation, as previously reported in 5-FU

studies (7). In addition to oxidative stress, 5-FU-induced ROS

generation can activate various stress signaling pathways, such as

NF-kB, which promotes the expression of inflammatory cytokines

and molecules including tumor necrosis factor-a (TNF-a),
transforming growth factor-b (TGF-b), interleukin (IL)-1b, and
IL-6. These factors play a central role in the pathological features of

5-FU-induced kidney inflammation. NF-kB activation involves the

phosphorylation and degradation of IkB by IkK. Under conditions
of ROS and inflammation, IkK and IkB activation promote NF-kB
phosphorylation, resulting in an irreversible inflammatory

response. These proinflammatory mediators initiate a positive

feedback loop, amplifying NF-kB activation and worsening

proinflammatory signaling, thereby exacerbating kidney damage

(8, 9).

Previous studies have shown that oxidant–antioxidant

imbalance caused by free radicals and ROS leads to the activation

of redox-sensitive signaling pathways such as the nuclear-factor-

erythroid-2-related factor 2 (Nrf2)–Kelch ECH-associated protein 1

(Keap1) pathway. These signaling pathways play a critical role in

mitigating kidney pathophysiology, as the Nrf2–Keap1 axis is one of

the most important cytoprotective mechanisms against oxidative

stress. It plays a key role in protecting the kidneys from various
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pathological conditions (10). Nrf2 is a leucine zipper protein that

regulates the expression of downstream protective and antioxidant

genes, including NAD (P)H quinone dehydrogenase 1 (NQO-1)

and heme oxygenase 1 (HO-1). Under untressed conditions, Nrf2 is

rapidly degraded in the cytoplasm by a complex of proteins. Keap1

facilitates Nrf2 ubiquitination by interacting with specific cysteine

residues. Under abnormal conditions, such as increased ROS

generation, Nrf2 ubiquitination is reduced, allowing it to

translocate to the nucleus, where it activates the transcription of

downstream genes that protect against oxidative damage and

inflammation. Therefore, the Nrf2 signaling pathway is associated

with the attenuation of drug-induced ROS production and related

organ toxicity/injury (11, 12).

Hence, natural agents or compounds with antioxidant/anti-

inflammatory properties, or those that help mitigate redox

signaling and associated inflammation, may be suitable candidates

to restrain 5-FU-enhanced kidney damage via the Nrf2/Keap1 and

p38-MAPK/NF-kB pathways, thus providing striking therapeutic

signaling targets for drug discovery. There has been a revival of

interest in natural agents of medical importance for the management

or treatment of various disease conditions as therapeutic agents, due

to their minimal toxicity and cost-effectiveness for the public. Reports

show that organ toxicities induced by chemotherapeutic drugs have

been managed by agents with antioxidative, anti-inflammatory, and

antiapoptotic effects (13, 14). Henceforth, antioxidant and anti-

inflammatory agents with minimal adverse effects may be used in

adjuvant therapy for the intervention against 5-FU-associated renal

injury (15). Thymoquinone (TQ), one of the constituents of the plant

Nigella sativa from the family Renunculaceae, commonly known as

black cumin, is chemically 2-methyl-5-isopropyl-1,4-benzoquinone.

It holds medicinal importance in the Indian subcontinent and the

Arab world, where it has been traditionally used in Ayurvedic and

Unani medicinal systems for the management of various conditions,

including hypertension, gastrointestinal problems, respiratory

disorders, skin disorders, and obesity (16). Oral Nigella sativa

extracts, known for their anti-inflammation and antioxidation

efficacy, have been used in recent clinical studies to intervene in

oxidation and inflammation-driven, unregulated cellular signaling

pathways. TQ offers a comprehensive range of valuable biological and

pharmacological effects, including antitumor, antioxidant, anti-

inflammatory, and protective actions for the kidneys, brain, liver,

and heart, as well as immune-modulatory effects (17–19).

Consequently, TQ shows regulatory potential in various

pathological conditions, including heart disease, arthritis, diabetes

mellitus, asthma, atherosclerosis, neurodegenerative disorders, and

cancer, which can be attributed to the lipophilic quinine component

in its structure. This lipophilic component efficiently and readily

enters cellular and subcellular structures, as well as associated

transcription factors and kinases, which may be involved in the

deregulation of numerous signaling pathways (20–22). Thus, whether

TQ can protect against 5-FU-induced kidney injury remains to be

explored. Accordingly, the current study aims to provide insight into

the molecular mechanisms underlying 5-FU-induced kidney injury,

with a specific focus on the role of TQ in regulating redox signaling,

MAPKs, NF-kB, and Keap1/Nrf2 pathways.
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2 Materials and methods

2.1 Chemicals

All chemicals, including 5-FU and TQ, were of high grade.

Chemicals were purchased from Sigma-Aldrich (USA) and Thermo

Fisher Scientific (USA). The following chemicals and reagents were

used: catalase (CAT), malondialdehyde (MDA), glutathione

peroxidase (GPx), reduced glutathione (GSH), glutathione

reductase (GR), ascorbic acid, ferric chloride, trichloroacetic acid

(TCA), thiobarbituric acid (TBA), 2′7′-dichlorodihydrofluorescein
diacetate, hydrogen peroxide (H2O2), phenol red, sodium

hydroxide (NaOH), sulfosalicylic acid, 5,5′-dithiobis-(2-
nitrobenzoic acid) (DTNB), ethylenediaminetetraacetic acid

(EDTA), magnesium chloride (MgCl), potassium chloride (KCl),

nicotinamide adenine dinucleotide phosphate (NADPH), sodium

azide, sodium tungstate, kidney injury marker (KIM-1), sodium

pyruvate, NF-kB-p65 rabbit polyclonal antibody, p-p38 MAPK

rabbit antibody, biotinylated Goat Anti-Polyvalent Plus,

streptavidin peroxidase plus, 3,3′-diaminobenzidine, hematoxylin,

DPX, Trizol reagent, and commercial kit (eBioscience, USA).
2.2 Male albino Wistar rats and
experimental protocol

Animal experiments & handling were directed as guidelines

given by animal ethics and permitted by Ethics Committee of Prince

Sattam Bin Abdulaziz University, Al Kharj having ethical clearance

no. SCBR-492/2025. Wistar rats (170–200 g), male, albino, four- to

six week-old. housed in a meticulous environment having standard

living conditions like temperature and humidity with discontinuous

12 h light and dark cycle. Rats had food and water access freely. Rats

(n = 24) were arbitrarily separated as six rats each in one group and

total groups were four. Animals adapted themselves for 1 week in

animal facility preceding to the start of experimentation.

Rats in group I were treated with water orally for 20 days. TQ was

administered at two doses, 50 and 100mg/kg b.w., to groups III and IV.

On the 20th day, 5-FU (150 mg/kg body weight) was administered

intraperitoneally to groups II, III, and IV. Male albino Wistar rats were

killed by cervical dislocation under mild anesthesia using a xylazine/
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ketamine combination, 24 h after 5-FU administration. The treatment

regimen given is detailed in Table 1. Blood was collected to obtain

serum for marker enzyme estimations. Kidneys were excised, cleaned,

and stored for further analysis, including biochemical estimations,

immunohistochemistry, reverse transcriptase–polymerase chain

reaction, ELISA, and histology (15, 22–24).
2.3 Preparation of kidney homogenates

The kidneys were excised, and excess tissue was removed. The

kidneys were rinsed with chilled normal saline. A 10% (w/v) tissue

homogenate was prepared in 0.1 M Tris hydrochloride using a

homogenizer set at 2,500 rpm. The homogenate was centrifuged at

5,000 rpm for 20 min at 4°C using a cooling centrifuge. After

centrifugation, the upper clear layer/supernatant was used to

analyze several biochemical markers, including CAT, MDA, GPx,

reduced GSH, and GR. Optical density (OD)/wavelength was

quantified using a UV-1601 spectrometer (Shimadzu, Japan), and

an ELISA plate reader was used to estimate antioxidant status,

protein expressions, and inflammation (25).
2.4 Assessment of lipid peroxidase

Lipid peroxidation (LPO) was determined at pH 7.4 using the

following reaction mixture: 0.2 mL of supernatant, 0.2 mL of 100 mM

ascorbic acid, 0.58 mL of 0.1 M phosphate buffer (PB), and 0.02 mL of

100 mM ferric chloride. The mixture was incubated at 37°C for 60 min

in a shaking water bath. Afterward, 1,000 µL of 10% trichloroacetic acid

and 10 mL of 0.67% thiobarbituric acid were added. The reaction tubes

were then transferred to an ice bath. After centrifugation for 10 min at

2,500×g, the OD was measured at 532 nm (26).
2.5 Assessment of ROS

ROS levels were assessed. Upon oxidat ion, 2 ′7 ′-
dichlorodihydrofluorescein diacetate is converted to 2′7′-
dichlorofluorescein, which is used to measure reactive oxygen

species, with OD measured at 430 nm (27).
TABLE 1 Schematic treatment regimen.

Groups (n = 6) Treatment from the first to the 20th day Treatment on the 19th day

Group I (control) Water Normal saline only (i.p.)

Group II (5-FU) Water 5-FU (150 mg/kg b.w. i.p.; 19th day)

Group III (5-FU+TQ1) (50 mg/kg b.w.) TQ1 (50 mg/kg b.w.) 5-FU (150 mg/kg b.w. i.p.; 19th day)

Group IV (5-FU + TQ2) (100 mg/kg b.w.) TQ2 (100 mg/kg b.w.) 5-FU (150 mg/kg b.w. i.p.; 19th day)
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2.6 Assessment of hydrogen peroxide

H2O2 levels were evaluated. Microsomes were prepared

according to the method described by Goldstone et al. Normal rat

kidney microsomes were isolated from kidney homogenates in

isotonic sucrose containing 0.05 M Tris-HCl (pH 7.5), 0.005 M

MgCl, and 0.025 M KCl (6). The crude homogenate was centrifuged

at 10,000×g for 10 min, and the postmitochondrial supernatant was

carefully decanted. Microsomes were obtained by centrifugation at

105,000×g for 1 h. A 2,000-µL volume of the microsomes was

obtained with phenol red in a 1,000-µL reaction mixture and

incubated at 37°C for –1 h. To stop the reaction, 10 µL of 10 N

NaOH was added, and the mixture was centrifuged at 800×g for 5

min (28).
2.7 Assessment of CAT activity

CAT was de te rmined by mix ing 50 mL of 10%

postmitochondrial supernatant, 1,950 mL of 0.1 M phosphate

buffer, and 1,000 mL of 0.10 mM H2O2 at physiological pH. The

absorbance was measured at 405 nm (29).
2.8 Estimation of antioxidant enzyme
armory

2.8.1 Estimation of GSH
GSH was assessed as previously described. The reaction mixture

was prepared by mixing postmitochondrial supernatant (PMS) with

4% sulfosalicylic acid in a 1:1 (v/v) ratio, followed by incubation for

60 min and centrifugation at 1,200×g for 15 min at 4°C. Next, 400

mL of the filtered aliquots was mixed with 400 mL of 10 mMDTNB

and 2,200 mL of 0.1 M PB (pH 7.4). The OD was measured at 415

nm (30).

2.8.2 Assessment of GR
The experiment was initiated in a final volume of 1 mL by

combining 825 µL of 0.1 M phosphate buffer (pH 7.4), 50 mL of 0.5

mM EDTA, 50 mL of 0.1 mM NADPH, 25 mL of 1.0 mM oxidized

form of glutathione, and 50 mL of 10% PMS (31). OD was measured

at 340 nm.

2.8.3 Estimation of GPx
GPx was determined by combining 100 µL of 1 mM EDTA, 1.44

mL of 0.1 M PB, and 0.1 mL of 1 mM sodium azide at physiological

pH. OD was measured at 340 nm (32).
2.9 Serum diagnostic renal toxicity marker
estimation

At the time of killing, animals were anesthetized, and blood was

collected. The blood was centrifuged at 10,000×g for 10 min to
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obtain serum, which was then used to evaluate kidney

injury markers.

2.9.1 Assessment of blood urea nitrogen
Blood urea nitrogen (BUN) was assessed following the method

by Kanter (1975). An equal volume of 10% TCA was mixed with

serum and centrifuged at 2,000 rpm to obtain a protein-free

supernatant. To 0.5 mL of this supernatant, 3.5 mL of distilled

H2O, 0.8 mL of 2% diacetylmonoxime, and 3.2 mL of H2SO4–

H3PO4 reagents were added, and the mixture was incubated in a

boiling water bath for half an hour. After cooling, absorbance was

measured at 450 nm (33).

2.9.2 Assessment of creatinine
Creatinine (Cr) was measured by combining 1.0 mL of 5%

sodium tungstate, 0.6 M H2SO4, and distilled H2O water with 1.0

mL of serum, followed by centrifugation at 800×g for 5 min. The

resulting supernatant was then mixed with 1 mL of 1.05% picric

acid and 0.75 M NaOH. After 20 min, absorbance was measured at

520 nm (34).

2.9.3 Measurement of kidney injury marker
KIM-1 was measured using a kit from Adipo Bioscience® Inc.

(USA), following the manufacturer’s protocol.

2.9.4 Estimate lactate dehydrogenase activity
LDH assessment was performed in serum using a reaction

mixture containing 100 µL of NADH (0.02 M), 0.2 mL of serum,

0.1 mL of sodium pyruvate (0.01 M), and 1.1 mL of phosphate

buffer (0.1 M) at physiological pH. Absorbance was then measured

using a spectrophotometer at 340 nm (35).
2.10 Assessment of inflammatory markers
and p-p38 MAPK pathway proteins

TNF-a, IL-6, IL-1b, TGF-b, p-p38MAPK, p-ERK1/2, and p-

JNK were measured using a commercial kit (eBioscience, USA). The

complete procedures were carried out according to the

manufacturer’s protocol through ELISA.
2.11 Immunohistochemistry of NF-kB and
p-p38 MAPK

Immunohistochemistry (IHC) was performed to recognize NF-

kB and p-p38 MAPK protein expressions in kidney tissue. The IHC

staining procedure was completely followed as explained by Rashid

et al. (25). NF-kB-p65 rabbit polyclonal antibody (1:150), and p-p38

MAPK rabbit antibody (1:150) (Thermo Fisher Scientific, USA)

were used and incubated overnight at 4°C. The following day, slides

were washed three times in Tris buffer (pH 6.0) and incubated with

biotinylated Goat Anti-Polyvalent Plus (Thermo Fisher Scientific,

USA) at room temperature for 30 min. Washing with Tris buffer
frontiersin.org
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was further done, and slides were incubated with streptavidin

peroxidase plus (Thermo Fisher Scientific, USA) at room

temperature. After additional washing with Tris buffer, 3,3′-
diaminobenzidine was used to develop the immunostaining

reaction product. Following this, slides were washed with distilled

water, and counterstaining was performed using hematoxylin

before leaving the slides to dry. DPX was used to mount the

sections, which were then protected with coverslips. The slides

were prepared for viewing.
2.12 Gene expression studies via RT-PCR

RNA isolation was performed from frozen kidney samples of all

groups using Trizol reagent. RNA concentration was measured

using Nanodrop, with samples having an A260/A280 nm ratio >

1.7, and then reverse transcribed into cDNA. SYBR Green master

mix was used to amplify cDNA along with primers. Data were

analyzed using the 2−DDCt method (36) and normalized to

GAPDH as the internal control. Amplification was performed for

Nrf2 [5′-TTGTAGATGACCATGAGTCGC C-3′ (sense), 5′
TGTCCTGCTGTATGCTGCTT-3′ (antisense)], HO-1 [5′
GTAAATGCAGTGTTGGCCCC-3′ sense), 5′-ATGTGCCAG
GCATCTCCTTC-3 ′ (antisense)], and IL-1ß [5 ′-AATA

CCACTTGTTGGCTTA - 3 ′ ( s e n s e ) , 5 ′TGTGATGT

TCCCATTAGAC-3′ (antisense)] (24).
2.13 Calculation of the protein

Protein concentration was measured using the Lowry method,

with the OD assessed at 280 nm (37).
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2.14 Histology

The kidneys were excised, cleaned in PB, and fixed in 10%

neutral buffered formalin. The tissues were processed automatically,

and kidney specimens were embedded in paraffin. Sections of 4-µm

thickness were cut using a microtome and stained with hematoxylin

and eosin on glass slides.
2.15 Statistical analysis

Data are presented as mean ± standard error of the mean (SEM)

for each group. Variances between sets/groups were determined

using analysis of variance (ANOVA), followed by the Tukey–

Kramer multiple comparisons test. Statistical significance is

indicated by p < 0.05 unless otherwise noted.
3 Results

3.1 TQ diminishes ROS and H2O2 levels

5-FU treatment elevated ROS and H2O2 levels in group II (p <

0.001) compared to group I, indicating increased oxidative stress in

the kidneys. However, high-dose TQ alleviated ROS and H2O2

levels in groups III and IV (p < 0.05, p < 0.01) (Figures 1, 2).
3.2 TQ diminishes MDA levels

There was an increase in MDA levels in group II after 5-FU

administration compared to group I (p < 0.001).TQ treatment at
FIGURE 1

Effect of low and high prophylactic doses of thymoquinone (TQ) on ROS levels in 5-fluorouracil (5-FU)-induced kidney damage. A comparison is
shown between the 5-FU-treated group and the control group, with statistical significance indicated as ***p < 0.001, **p < 0.01, and *p < 0.05.
Treatment groups were compared with the 5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-
treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.)
+ TQ (100 mg/kg b.w.).
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both doses led to significant renewal (p < 0.01, p < 0.001) of

membrane structure and integrity in renal tissue compared to the

5-FU group (Table 2).
3.3 TQ restores antioxidant machinery

Administration of 5-FU evidently exhausted kidney GSH reserves

and repressed the activities of GPx, GR, and CAT compared to group

1 (p < 0.001, p < 0.01) (Tables 2, 3). Nonetheless, TQ administration

at both doses led to a dose-dependent (TQ-nonsignificant, p < 0.05, p

< 0.01, p < 0.001) restoration of GSH reserves and the

abovementioned antioxidant enzymes, showing significant

improvement compared to the 5-FU group (Tables 2, 3).
3.4 TQ protects kidney function markers

Administration of 5-FU demonstrated an elevation in kidney

damage/diagnostic biomarkers (BUN, Cr, LDH, and KIM-1) in 5-
Frontiers in Oncology 06
FU-administered rats in contrast with group I (Figures 1, 2). Group

II exhibited raised BUN, Cr, LDH, and KIM-1 (p < 0.001) in

contrast with group 1 significantly. A noticeable inhibition was

observed in BUN, Cr, LDH, and KIM-1 at both doses, respectively,

with TQ treatment (p < 0.05, p <0.01, p <0.001) (Figures 3–5).
3.5 TQ treatment regulates inflammatory
mediators and p-p38 MAPK kinase
pathway proteins

Cytokines and p-p38 MAPK kinase pathway proteins, which

include TNF-a, TGF-b, IL-6, p-ERK1/2, and p-JNK, respectively,

are critical in the development of 5-FU-induced kidney toxicity. 5-

FU administration caused a significant upsurge in TNF-a, TGF-b,
IL-6, pERK1/2, and pJNK in the 5-FU-administered group in

contrast to the control group (Figures 6, 7). Treatment with TQ

at both doses markedly downregulated TNF-a, TGF-b, IL-6, p-
ERK1/2, and p-JNK, respectively, in contrast to the 5-FU group (p <

0.05, p < 0.01, p < 0.001) (Figures 3–7), regulating signaling.
TABLE 2 Effect of low and high prophylactic doses of thymoquinone (TQ) on antioxidant and oxidative stress marker in fluorouracil (5-FU)-induced
kidney damage.

Groups MDA (nmol MDA formed/g tissue) CAT (nmol H2O2 consumed/min/mg protein)

Control 13.2 ± 0.6 48.10 ± 3.1

5-FU 39.8 ± 3.0*** 24.21 ± 3.5***

5-FU+TQ1 23.2 ± 2.3## 36.76 ± 1.5#

5-FU+TQ2 17.7 ± 0.4### 42.31 ± 1.1###
A comparison is shown between the 5-FU-treated group and the control group, with statistical significance indicated as ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared
with the 5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose)
(50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
FIGURE 2

Effect of low and high prophylactic doses of thymoquinone (TQ) on H2O2 levels in 5-fluorouracil (5-FU)-induced kidney damage. A comparison is
shown between the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared with the
5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-
treated (150 mg/kg b.w) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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3.6 TQ promotes Nrf2 signaling

mRNA expression was assessed to discover the primary

mechanism behind the antioxidant efficacy of TQ. Nrf2, HO-1,

and IL-1b were checked. 5-FU administration downregulated renal

Nrf2 and HO-1 significantly and upregulated IL-1b, indicating
inflammation (Figures 8–10). Also, 5-FU administration

upregulated IL-1b, and TQ treatment reversed the effect of these

proteins. These data demonstrate the TQ-induced Nrf2 signaling by

upregulation of Nrf2 and HO-1 and downregulation of IL-1b,
diminishing inflammation and oxidative environment.
3.7 TQ affects immunohistochemical
expression of p-p38 MAPK and NF-kB

Figures 11, 12 show p-p38 MAPK and NF-kB expression in

different groups. P38 MAPK and the NF-kB pathway play an

imperative part in the progress of 5-FU-initiated kidney toxicity.

Intense staining of brown color indicates increased p-p38 MAPK
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expression in group II than in group I. TQ alleviated brown

staining, which indicates less expression of p-p38 MAPK at both,

respectively (Figure 12). Similarly, there is decreased NF-kB in the

control compared to group II, as demonstrated by lesser staining.

For immunostaining, NF-kB is indicated by a brown color and

hematoxylin stain in a light blue color. TQ treatment decreases the

expression of NF-kB in both the groups at both doses, respectively,

resulting in attenuation of renal damage (Figure 11).
3.8 Effect of 5-FU and TQ on histology of
kidneys

Light microscopic examination revealed a standard histological

assembly of the renal tissue of the negative control group

(Figure 13A). However, 5-FU-treated renal tissue showed severe

histopathological modifications. Renal corpuscles reveal expanded

Bowman’s capsules, congested glomerular capillaries, hemorrhage

in interstitial tissue, and infiltration of inflammatory cells in

addition to enlarged and congested blood vessels (Figure 13D).
FIGURE 3

Effect of low and high prophylactic doses of thymoquinone (TQ) on diagnostic serum toxicity markers—BUN (blue) and Cr (orange)—in 5-
fluorouracil (5-FU)-induced kidney damage. A comparison is shown between the 5-FU-treated group and the control group ***p < 0.001, **p <
0.01, and *p < 0.05. Treatment groups were compared with the 5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal
control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-
treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
TABLE 3 Effect of low and high prophylactic doses of thymoquinone (TQ) on antioxidant reservoirs in fluorouracil (5-FU)-induced kidney damage.

Groups GSH (nmol GSH/
g tissue)

GPx (nmol NADPH oxidized/
mg protein)

GR (nmol NADPH oxidized/
mg protein)

Control 0.95 ± 0.03 245.1 ± 21.6 211.11 ± 15.5

5-FU 0.37 ± 0.02*** 110.8 ± 16.8** 106.21 ± 12.2**

5-FU+TQ1 0.52 ± 0.03# 178.55 ± 16.2# 162.10 ± 17.1ns

5-FU+TQ2 0.81 ± 0.04### 196.7 ± 15.2# 180.11 ± 17.6#
A comparison is shown between the 5-FU-treated group and the control group, with statistical significance indicated as ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared
with the 5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose)
(50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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This demonstrates that pre-, co-, and posttreatment of TQ for 21

days through 5-FU administration intensely reversed the

pathological deviation induced by 5-FU in the tissue of the

treated rats, evident from vibrant symbols of retrieval as their

Bowman’s capsules and glomeruli appeared nearly usual and

standard in groups II and IV (C, D).
4 Discussion

Kidney injury poses health issues globally, leading to increased

morbidity, mortality, and healthcare costs. Moreover,

nephrotoxicity caused by chemotherapeutic drugs is a major
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concern affecting multiple organs like kidneys, followed by acute

and chronic kidney injury and renal dysfunction. This kidney

dysfunction ascends due to the failure of the kidneys to detoxify

and excrete wastes properly. Nearly 20% of kidney injury cases are

caused by drugs, which is further increased in the elderly to 66%. 5-

FU is a pyrimidine antimetabolite that has serious adverse reactions

in the form of kidney damage (15, 23). The existing results

interestingly determine the beneficial effects of TQ markedly that

were mediated via ROS scavenging, clampdown of MAPKs, and

NF-kB in congruence with augmenting Nrf2/HO-1 pathways for

the first time.

Free radicals and ROS overproduction are possible mechanisms

of pathology by 5-FU-linked renal injury. 5-FU administration
FIGURE 5

Effect of low and high prophylactic doses of thymoquinone (TQ) on LDH in 5-fluorouracil (5-FU)-induced kidney damage. A comparison between
the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared with the 5-FU-treated
group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/
kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
FIGURE 4

Effect of low and high prophylactic doses of thymoquinone (TQ) on KIM-1 in 5-fluorouracil (5-FU)-induced kidney damage. A comparison is shown
between the 5-FU-treated group: ***p < 0.001, *p < 0.01, and *p < 0.05. Treatment groups were compared with the 5-FU-treated group: #p < 0.05,
##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ
(lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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contributes to oxidative stress, leading to peroxidation, oxidation,

and cross-linking of membrane lipids, proteins, and cellular thiols,

leading to the formation of malondialdehyde, ROS, hydroxyl

radicals, superoxide anions, and so forth. Furthermore, 5-FU

damage elevated renal malondialdehyde, ROS, and H2O2, as well

as alleviated renal antioxidant armory in the present study (38, 39).

TQ treatment in groups III and IV reduced MDA, H2O2, and ROS

levels compared to group II, which received only 5-FU. This

highlights the antioxidant-boosting potential of TQ and its

capacity to diminish oxidative stress (40). Moreover, the GSH

cycle is an essential intracellular antioxidant system that sustains

cellular structure, function, and survival, and regulates other

signaling pathways. ROS and other free radicals generated by 5-
Frontiers in Oncology 09
FU administration led to a reduction in GSH and an increase in

ROS levels (15). Our results show a significant decrease in GSH

levels in the 5-FU group. Conversely, TQ treatment markedly

restored kidney GSH levels in groups III and IV. Additionally,

CAT, GR, GPx, and H2O2 are key components of the enzymatic

antioxidant defense system that protect tissues from oxidative stress

and damage. 5-FU weakened the activities of antioxidant defense

enzymes due to excessive production of ROS and other free radical

formation, as reported (23). The diminished antioxidants and GSH

lead to necrosis and further weaken the role/function of kidneys (1,

3). The present results support earlier findings that deciphered that

5-FU administration exhibited a striking decline in the above-said

enzymes (15, 40–42). By contrast, concomitant administration of
FIGURE 7

Effect of low and high prophylactic doses of thymoquinone (TQ) on p-p38MAPK protein and pERK1/2 in 5-fluorouracil (5-FU)-induced kidney
damage. A comparison between the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were
compared with the 5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.),
group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
FIGURE 6

Effect of low and high prophylactic doses of thymoquinone (TQ) on inflammatory mediators in 5-fluorouracil (5-FU)-induced kidney damage. A
comparison between the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared
with the 5-FU-treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-
FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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TQ in groups III and IV in our present study increased the activities

of CAT, GR, and GPx in comparison to rats that were administered

only 5-FU. Consequently, inhibiting/conquering ROS production

and augmentation of cellular antioxidant machinery alleviated 5-

FU-associated kidney damage (42, 43). This antioxidant machinery

shield against the toxic effects of ROS is in agreement with the

reports of the improvement of kidney antioxidants in diclofenac,

doxorubicin, and acrylamide-associated kidney toxicity studies (36,

44–46). This result supports the suggestion that an upsurge of

antioxidants endogenously by TQ to ameliorate oxidative stress in

kidneys might be a good approach. Hence, we assume that the renal
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protective effectiveness of TQ could be ascribed to its

antioxidant activity.

Kidney diagnostic serum biomarkers such as Cr, BUN, LDH,

and KIM-1 were measured. The kidneys excrete BUN and Cr as

waste products of protein metabolism, and an upsurge in these

metabolites indicates kidney dysfunction due to impaired function

of the glomeruli and tubules, leading to renal necrosis and

inflammation. In this context, our results demonstrate that 5-FU

induced a substantial rise in the serum biomarkers of renal injury,

including BUN, Cr, LDH, and KIM-1, consistent with the findings

of Gelen et al. (4, 40). Treatment with TQ in groups III and IV
FIGURE 9

Effect of low and high prophylactic doses of thymoquinone (TQ) on p38 HO-1 in 5-fluorouracil (5-FU)-induced kidney damage. A comparison
between the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared with the 5-FU-
treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated
(150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
FIGURE 8

Effect of low and high prophylactic doses of thymoquinone (TQ) on p38 Nrf2 in 5-fluorouracil (5-FU)-induced kidney damage. A comparison
between the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared with the 5-FU-
treated group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated
(150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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significantly reduced serum levels of BUN, Cr, LDH, and KIM-1

levels, which can likely be attributed to the protective effect of TQ.

These findings suggest a revival of glomerular and tubular function,

resulting in attenuation of nephrotoxicity. Thus, the current

findings clearly demonstrate that TQ exerted renoprotective

efficacy, as revealed by the normalization of injury biomarkers.

This is in agreement with previous reports indicating attenuation of

cisplatin-, lead-, cadmium-, and sodium nitrite-induced renal

toxicity through TQ administration (22, 36, 47, 48). Our results

showed that TQ reduced ROS generation and lipid peroxidation,
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enhanced antioxidant levels, and restored serum diagnostic markers

in 5-FU-administered rats. Therefore, TQ barred 5-FU-induced

kidney damage by inhibiting oxidative injury and reinstating

antioxidant defenses and physiological function.

The boosted efficiency of the antioxidant armory could be directly

coupled with positive regulation of the Nrf2/HO-1 signaling pathway

by TQ treatment. The present results showed the downregulation of

Nrf2 and HO-1 abundantly by 5-FU administration, whereas repeated

prophylactic TQ treatment potentially caused the reverse effect on the

above-mentioned proteins in the present study. Studies provide
FIGURE 11

Effect of low and high prophylactic doses of thymoquinone (TQ) on NF-kB in 5-fluorouracil (5-FU)-induced kidney damage. Group I: normal control,
group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated
(150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
FIGURE 10

Effect of low and high prophylactic doses of thymoquinone (TQ) on IL-1b in 5-fluorouracil (5-FU)-induced kidney damage. A comparison between
the 5-FU-treated group and the control group: ***p < 0.001, **p < 0.01, and *p < 0.05. Treatment groups were compared with the 5-FU-treated
group: #p < 0.05, ##p < 0.01, and ###p < 0.001. Group I: normal control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/
kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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FIGURE 12

Effect of low and high prophylactic doses of thymoquinone (TQ) on p-p38MAPK in 5-fluorouracil (5-FU)-induced kidney damage. Group I: normal
control, group II: 5-FU-treated (150 mg/kg b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-
treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
FIGURE 13

Effect of low and high prophylactic doses of TQ on histology in 5-FU induced kidney damage. Group I: normal control, group II: 5-FU-treated (150 mg/kg
b.w.), group III: 5-FU-treated (150 mg/kg b.w.) + TQ (lower dose) (50 mg/kg b.w.), and group IV: 5-FU-treated (150 mg/kg b.w.) + TQ (100 mg/kg b.w.).
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evidence that Nrf2 controls basal and inducible expressions of

numerous cytoprotective and antioxidant genes, reversing oxidative

bursts. Although restrained oxidative stress exposure facilitates Nrf2

activation, extreme and continued oxidative stress can weaken Nrf2

signaling in rat kidneys administered with 5-FU (48, 49). Accordingly,

weakened Nrf2/HO-1 signaling is directly proportional to sustained

ROS generation instigated by 5-FU administration. Renal Nrf2 was

upregulated in the TQ-treated groups, leading to the activation of HO-

1, GSH, GR, GPx, and CAT in 5-FU-administered rats. Thus, TQ

treatment enhanced the antioxidant defense system and reduced ROS

production and oxidative damage via the upregulation of Nrf2

signaling. Therefore, Nrf2-boosting drugs/compounds could be

beneficial in strengthening antioxidant defenses in kidney injury-

related diseases.

Furthermore, activated Nrf2 cross-talks with NF-kB/p38 MAPK

signaling and mediates inflammation. NF-kB and its downstream

inflammatory cascade inhibition like TNF-a, TGF-b, and IL-1b,
have been found to be controlled by Nrf2 and HO-1, thereby

regulating the inflammatory process as well. Hence, the antioxidant

enzyme induction and inhibition of the NF-kB/p38 MAPK axis by TQ

could be elucidated partially by the efficient stimulation of the Nrf2/

HO-1 signaling pathway in 5-FU-induced rat kidneys. The charisma of

Nrf2 in mediating the inflammation cascade in 5-FU- and TQ-

cotreated rats is supported by previous studies demonstrating

amplified Nrf2 expression and repressed inflammation in certain

preclinical disease models (50, 51). Although little is known

regarding NF-kB, TGF-b, and Nrf2 and their contributions to 5-FU-

induced nephrotoxicity, they are leading molecules of redox biology

and inflammation. Reports show a link between renal pathologies

through a considerable rise in NF-kB and TGF-b with subsequent

activation of proinflammatory cytokines aggravating tissue

inflammation and initiating injury (52, 53).

NF-kB activation and MAPK family proteins are crucial in the

regulation of cell differentiation, proliferation, cell death, and

inflammatory process mediation. Upon inflammatory stimulation,

MAPK P38 kinases crucially promote inflammation in 5-FU-

administered rats. Interestingly, rats treated with TQ had a

reduction in proinflammatory mediators along with NF-kB/
MAPK signaling cascades, thereby unraveling very high-level

resistance in 5-FU-induced renal damage and deciphering

effective anti-inflammation response. MAPK provokes NF-kB,
facilitating activation of downstream genes, which further

regulates the proinflammatory retorts that could control the

pathological state. Finally, excessive ROS production, lipid

peroxidation, and protein adducts upregulated cytokine

formation, and the MAPK signaling cascade stimulated NF-kB
and its downstream molecules, followed by inflammation and

apoptosis leading to renal injury (54, 55). The MAPK superfamily

comprises p38 MAP kinases, ERK, and JNK and is an upstream

element in the inflammatory pathway. TNF-a-, IL-6-, IL-1b-, and
TGF-b-like inflammatory mediators, along with redox imbalance,

instigate p38 MAPK and ERK, JNK. MAPK activation has been

actively involved in facilitating the stressful measures of 5-FU

chemotherapy in animal kidneys, with further JNK and p38
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MAPK activation resulting in proinflammatory cytokine

formation and, finally, kidney cell death. It could be postulated as

a possible mechanism in human kidney dysfunction. Additionally,

ERK stimulus activates downstream transcription factors like NF-

kB and TNF-a, as reported previously, and similar findings are

reported here as well (55, 56). We show that cotreatment with 5-FU

and TQ significantly reduced the levels of p-p38MAPK, p-ERK1/2,

p-JNK, NF-kB, TNF-a, IL-6, IL-1b, and TGF-b in the treatment

groups, indicating that TQ downregulates the p-p-38MAPK/NF-kB
signaling pathway involved in 5-FU-induced nephrotoxicity.

Histological variations provide supplementary validation of the

kidney injury caused by 5-FU. Our histology data revealed

glomerular atrophy, tubular crowding and distention, interstitial

hemorrhage, vascular congestion, the presence of proteinaceous

material in renal tubules, inflammatory cell infiltration, and other

pathological changes in the 5-FU-treated group compared to group

1. These findings align with previous reports. Notably, treatment

with TQ prevented 5-FU-induced renal damage, as evidenced by

the restoration of structural integrity toward normal healthy kidney

architecture in groups III and IV. This histological improvement

was consistent with reduced serum levels of Cr, BUN, and KIM-1,

indicating a reversal of kidney dysfunction. Similar renoprotective

effects of TQ have been reported in cisplatin-, gentamicin-, LPS-,

and glycerol-induced nephrotoxicity models in rats (56–59).
5 Conclusions

Our results demonstrate that TQ protects against 5-FU-

associated renal injury by inhibiting ROS generation and

oxidative stress. In addition, TQ mitigated inflammation and

restored physiological, structural, and biochemical functions.

Activation of the Nrf2/HO-1 signaling pathway, enhancement of

antioxidant defenses, regulation of serum markers, and suppression

of the NF-kB/p38MAPK pathway—and the resulting reduction in

inflammation—appear to be the primary mechanisms underlying

TQ’s renal protective effects. Therefore, our findings provide new

insights into the protective potential of TQ against 5-FU-induced

kidney injury, supporting its possible role as an adjuvant therapy,

pending further preclinical and clinical investigations, to improve

the quality of life in chemotherapy patients.
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