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of biomarkers for patient
selection and developments to
improve treatment efficacy
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1Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom, 2Nuclear Futures
Institute, School of Computer Science and Engineering, Bangor University, Bangor, United Kingdom
Radiopharmaceuticals for targeted radionuclide therapy (TRT) of tumours consist

of a radionuclide conjugated to a component that can target the cancer. Several

TRT radiopharmaceuticals have been licensed for the treatment of lymphoma,

neuroendocrine and prostate cancers. The outcomes from two TRT trials,

NETTER for neuroendocrine and VISION for prostate cancer, demonstrated

beneficial outcomes. These findings have increased interest in the application

of TRT in the treatment of prostate cancer and expansion to other cancer types.

Patient selection for TRT is based on a measure of the overexpression of a target

receptor on the cancer. To facilitate this, imaging is carried out using a similar

targeting moiety to that used for treatment but labelled with an imaging

radionuclide. Theragnostic pairs are selected to enable imaging and treatment

with the same construct providing accurate predictions of the pharmacokinetics

of the therapeutic in patients. This review covers the imaging biomarkers that act

as companion diagnostics for TRT pharmaceuticals and the development of

radiopharmaceuticals targeting other cancer types enabling expansion of TRT to

these cancers. These include strategies to target cancer cells specifically and a

pan-cancer approach by targeting fibroblast-activated protein (FAP) upregulated

on cancer-associated fibroblasts (CAF). FAP-targeted radiopharmaceuticals are

useful for diagnosis and staging but have drawbacks for TRT. Approaches to

improve the efficacy of TRT including the use of high linear energy transfer (LET)

alpha-emitters and pre-targeting and combination treatments are also covered.

As described in this review, not all patients benefit from TRT making the case for

predictive biomarkers. This is particularly important for the more damaging

alpha emitters.
KEYWORDS

targeted radionucl ide therapy, radionucl ide, antibody, cancer, PSMA,
biomarker, radiosensitiser
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1572118/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1572118/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1572118/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1572118/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1572118/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1572118/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1572118&domain=pdf&date_stamp=2025-09-19
mailto:tim.smith@manchester.ac.uk
mailto:tim.smith@bangor.ac.uk
https://doi.org/10.3389/fonc.2025.1572118
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1572118
https://www.frontiersin.org/journals/oncology


Smith 10.3389/fonc.2025.1572118
Introduction

Treating cancers using radionuclides began in the 1940s with

the use of radioiodine to treat hyperthyroidism and thyroid cancer,

exploiting the affinity of thyroid tissue for iodine, a property

maintained by some thyroid cancers (1). The b-emitter

phosphorus-32 (32P) has been used in the form of [32P]H3PO4 for

several decades to treat some blood disorders, including

polycythaemia vera and bone pain from metastatic cancer (2).

More recently, in 2013, [223Ra]RaCl2, commercially known as

Xofigo®, was approved by the Food and Drug Administration

(FDA) to treat bony metastasis in patients with advanced prostate

cancer (3). Each of these applications uses the diseased tissue’s

elemental affinity to concentrate radioactive versions of the element

or their mimetics.

Many radiopharmaceuticals consist of complex constructs

composed of a targeting moiety attached to a radionuclide via a

carrier (see Figure 1). The structure of the carrier depends on the

radionuclide. Medical radionuclides are often a metal and require

chelation. Commonly used chelators include diethylenetriamine

pentaacetic acid (DTPA) for technetium-99m (99mTc) and

bismuth-213 (213Bi) (4); deferoxamine (DFO) for zirconium-89

(89Zr); macrocyclic chelators including DOTA for the trivalent

radiometals such as gallium-68 (68Ga), scandium-44 (44Sc),

yttrium-90 (90Y), lutetium-177 (177Lu), and other radio-

lanthanides including actinium-225 (225Ac); and 1,4,7-

triazacyclononane-1,4,7-triacetic acid (NOTA) for Ga and copper

(Cu) radionuclides (5).

The targeting moiety can be a peptide, an antibody (Ab), or

smaller-sized engineered antibody mimetics. These small constructs

include fragment antibody (scFv) and minibodies (Mb) (two scFv to
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increase avidity), and affibodies—small robust protein binders and

nucleic acid-based structures called aptamers (6–8). Affibodies are

approximately 7 kDa in size and have picomole (pM) target affinity

(9). However, they can demonstrate high kidney uptake due to

reabsorption by the renal tubules (9). Modifications to the amino

acid sequence, hydrophilicity, surface charge, chelate, and

radionuclide can improve tumour/non-tumour uptake ratios (9).

For this review, papers from the past 5 years (mostly) were

selected from a “Web-of-Science” search using the following

keywords: targeted radiotherapy, molecular radiotherapy,

radioimmunotherapy, and cancer. The purpose of this review is

to provide a background for non-specialists in these areas and a

comprehensive survey of the current research and clinical state of

targeted radionuclide therapy (TRT).
Radionuclides commonly used in
medicine

Table 1 shows examples of radionuclides commonly used in

nuclear medicine. Imaging radionuclides are g-emitters for single-

photon emission computer tomography (SPECT) or positron (b+)
emitters for positron emission tomography (PET). Technetium-

99m (99mTc) is used in the majority (>80%) of nuclear medicine

scans due to its practical half-life (t1/2 = 6 h) and ideal imaging g-
emission energy of 140 keV, with high detection efficiency (10).

Fluorine-18 (18F) is the most commonly used PET isotope which

has a low positron energy (0.6 MeV) and produces high-resolution

images (11). The positron-emission tomography (PET)

radionuclides with short t1/2s, fluorine-18 (18F) and gallium-68

(68Ga) (t1/2 of 110 min and 68 min, respectively), are suitable for
FIGURE 1

Diagrammatic representation of a targeted radionuclide therapy (TRT) radiopharmaceutical radiolabelled with metal radionuclides. Targeting groups
include antibodies, truncated antibodies, and peptides. Examples of linkers include short linear molecules, polyethylene glycol (as monomer or
polymer), and a nanoparticle. Metal radionuclides (as in the example in the diagram) are captured in a chelator conjugated to the linker.
*Arginylglycylaspartic acid.
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labelling small ligands such as peptides, which demonstrate rapid

(hours) blood clearance. Antibodies with longer blood residence

times (days) are labelled with longer-lived radionuclides,

particularly Zirconium-89 (89Zr) with a t1/2 of 78 h (12).

Patients selected for TRT have pretreatment SPECT or PET

scans to ensure tumour expression of the target receptor. Therapy

with radionuclides is delivered using b- or a- and less commonly

Auger emitters (13). The deposition of energy within the tumour

from radioactive decay causes DNA damage. When unrepaired or

incorrectly repaired, DNA damage can result in cell death. High

linear energy transfer (LET), characteristic of a- and Auger

emissions, results in high-density localised DNA damage (13),

whereas sparsely ionising but longer range b-emitters improve

radiation dose heterogeneity across tumours (14).

Production of radionuclides

Most medical radioisotopes are produced in a nuclear reactor

(e.g., 177Lu), or through proton or ion particle bombardment in a

cyclotron (15, 16). The imaging radionuclide 99mTc is produced in

generators frommolybdenum-99 [99Mo], delivered weekly to nuclear

medicine departments (17). There is currently great interest in

treating patients with neuroendocrine tumours (NENs) and other

cancers using Actinium-225 (225Ac)-labelled radiopharmaceuticals

(18). Actinium-225 is obtained as a decay product of 229Th of which

there is a limited supply (enough to produce 68 GBq/year of 225Ac—

just a few hundred patient doses) (19). Several production pathways

attempting to overcome supply limitations of 229Th include neutron

irradiation of 226Ra and accelerator routes (19). Table 2 shows

fabrication routes for other clinically used radionuclides and ones

with potential clinical application. Isotopes of terbium have great

potential for imaging and therapy, but their production is

problematic. The reader is referred to a comprehensive review on

production routes for Tb radioisotopes (47).
Theragnostic systems: imaging and
therapy with the same construct

Imaging biomarkers include measures of the uptake of single-

photon emission computer tomography (SPECT) and positron

emission tomography (PET) tracers based on diagnostic
Frontiers in Oncology 03
analogues of TRT therapeutics (48). The tissue/tumour uptake is

usually defined as a standardised uptake value which is uptake per

gram tissue per injected dose of the tracer. Tracers based on TRT

molecules are used as part of a TRT inclusion criteria and for

dosimetry prediction and dose tailoring of the TRT (48).

Theragnostic strategies involve imaging and treatment of the

tumour using the same radiopharmaceutical (if the radionuclide has

an imaging emission) or imaging with an otherwise identical

radiopharmaceutical as for TRT but labelled with an imaging

radioisotope (theragnostic pair) (49). Tumour uptake and

biodistribution of the imaging radiopharmaceutical informs on

the potential benefit of TRT for that patient (see Figure 2).

Theragnostic systems are a rapidly growing component of

nuclear medicine combining radionuclide interchangeability to

facilitate imaging and therapeutic capability (49). In addition to

confirming patient suitability for TRT, pretreatment imaging allows

predictive dosimetry to tailor administered therapeutic dose (50).

Radioiodine, which has a long history in nuclear medicine has a

multitude of isotopes. The commonly used radioiodine nuclides for

medical applications, 123I, 124I, 125I, and 131I, between them achieve

single-photon emission computed tomography (SPECT) imaging,

positron emission tomography (PET) imaging from gamma,

positron (b+) decay properties, Auger, and b-emission for

targeted radiotherapy (51).

Many radionuclides are metals and require chelation to enable

stable integration into a radiopharmaceutical. Some metals, for

example, scandium (Sc), have multiple isotopes suitable for

imaging and treatment (52). Thus, 43Sc (t1/2 = 3.9 h) and 44Sc

(t1/2 = 4 h) are positron emitters whereas 47Sc (t1/2 = 3.35 d) is a b-
emitter, suitable for therapy and a primary gamma-emission suitable

for SPECT. Scandium forms stable complexes with the chelator,

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), but

complexation requires heating to 80°C (52). Terbium has four

particularly valuable radionuclides for nuclear medicine 149Tb

(t1/2 = 4.2 h, a, b+-emitter), 152Tb (t1/2 = 17.5 h, EC and b+

emitter), 155Tb (t1/2 = 5.3 d, EC SPECT), and 161Tb (t1/2 = 6.9 d,

b−, Auger) (47).
Chelators which allow coordination of chemically diverse

metals are particularly useful, allowing complexation of

radiometals with different emission characteristics for broad-

range theragnostic systems. Simms et al. (53) have recently

developed a chelator that can bind to [225Ac]Ac3+, [177Lu]Lu3+,

[111In]In3+, or [44Sc]Sc3+, enabling delivery of treatment with a-
TABLE 1 Examples of radionuclides used clinically with characteristics.

Emission Range LET Examples (range in tissue - for b-emitters) Use

g 111In, 99mTc Imaging

Positron (b+) 89Zr, 18F Imaging

b Up to 10 mm low 177Lu (1mm), 90Y (10 mm) TRT

a Up to 100 mm high 223Ra, 225Ac TRT

Auger electrons <0.5 µm high 125I, 89Zr, 111In, 123I TRT
Zr, zirconium; In, indium; Tc, technetium; Lu, lutetium; Y, yttrium; Ra, radium; Ac, actinium; I, iodine.
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TABLE 2 Established and novel methods for production of radionuclides.

Radionuclide (emission) Reaction Cyclotron/neutrons/ Generator Reference

Diagnostic radionuclides

Positron emitters

64Cu (b+, b− t1/2 = 12.7 h)

63Ni (p, g) 64Cu
64Ni (p, n) 64Cu*
65Cu (p, pn) 64Cu
67Zn (p, a) 64Cu

Medium flux nuclear reactor
Cyclotron
Cyclotron 18 MeV
Cyclotron 18 MeV

(20)
(21)
(21)
(21)

48V (b+ t1/2 = 16 d) NatTi (p, n) 48V Cyclotron 18 MeV (22)

43Sc (b+, EC t1/2 = 3.9 h)
42Ca (d, n) 43Sc
NatCa (a, p) 43Sc

Cyclotron 18 MeV
(23)
(24)

44Sc (b+ Eave 0.63 MeV
t1/2 = 3.93 h)

44Ca (p, n) 44Sc Cyclotron (15–25 MeV) (25)

72As (b+ 2.47 MeV t1/2 = 26 h) 72Ge (p, n) 72As Cyclotron (26)

66Ga (b+ t1/2 = 9.49 h) 66Zn (p, n) 66Ga Cyclotron (27)

69Ge (b+, b− Emax = 1.2 MeV t1/2 = 39 h) 69Ga (p, n) 69Ge Cyclotron (28)

124I (g, b+, t1/2 = 4.2 h) 124Te (p, n) 124I Cyclotron (29)

89Zr (b+, t1/2 = 3.3 d) 89Y (p, n) 89Zr Cyclotron (30)

SPECT radionuclides

123I (EC g, t1/2 = 13.3 h) 127I (p, 5n) 123Xe, 123Xe decays to 123I Cyclotron (31)

111In (EC g, t1/2 = 2.8 d) 112Cd (p, 2n) 111In Cyclotron (32)

99mTc (EC g, t1/2 = 6 h) Decay of 99Mo Generator (17)

Therapeutic radionuclides

90Y (b−, t1/2 = 64 h) 90Sr (b−) 90Y Decay of 90Sr (33)

177Lu (b−, g, t1/2 = 6.65 d) 176Lu (n, g) 177Lu Nuclear reactor (34)

223Ra (a, t1/2 = 11.4 d) 227Ac (a, b) 223Ra Generator (35)

213Bi (a, t1/2 = 46 min) Generator; parent 225Ac (36)

225Ac (a, t1/2 = 9.92 d)
Purified from 229Th
226Ra (p, 2n) 225Ac Cyclotron 16 MeV

(19)

211At (a, EC t1/2 = 7.2 h) 209Bi (a, 2n) 211At Cyclotron K150 (37)

32P (b−, t1/2 = 14.3 d) Emax1.7 MeV 32S (n, p) 32P Neutron irradiation (38)

153Sm (b− Emax=0.81MeV g 103 keV t1/2 = 1.93 d) 152Sm (n, g) 153Sm Nuclear reactor (39)

67Cu (b−, t1/2 = 61.8 h) 70Zn (p, a) 67Cu Cyclotron 30 MeV (40)

47Sc (b− E 0.6
MeV t1/2 = 3.35 d)

46Ca (n, g)47Ca, 47Sc
47Ti (n, p)47Sc
NatV (n, p)47Sc

Thermal neutrons
High energy neutrons
Cyclotron 20 MeV

(41)
(41)
(42)

170Tm (b− Emax= 0.97 MeV t1/2 = 128 d) 169Tm (n, g) 170Tm Thermal neutron flux (43)

165Er (Auger t1/2 = 10.4 h) 165Ho (p, n) 165Er Cyclotron 16 MeV (44)

167Tm (Auger, g208 KeV t1/2 = 9.25 d) 168Er (p, 2n) 167Tm Cyclotron 23 MeV (45)

195mPt (Auger t1/2 = 4 d) 195Pt Neutron activation (46)
F
rontiers in Oncology
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1Enriched 64Ni is expensive.
Bi, bismuth; S, sulphur; P, phosphorus; Er, erbium; Ho, holmium; Ni, nickel; Cu, copper; Zn, zinc; Ga, gallium; Ge, germanium; At, astatine; V, vanadium; Ti, titanium; Sc, scandium; Ca, calcium;
Ac, actinium; Sm, samarium; Tm, thulium; Pt, platinum; At, astatine; Te, tellurium.
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and b-emitters and imaging with SPECT and PET, respectively, on

the same molecule.

Imaging 223Ra-SPECT generates poor images due to the small

photon abundance and scarcity of the injected activity (54). Due to

the similar co-ordination chemistry of Ra and Ba, it has been

suggested that 223Ra could form a theragnostic pair with 131Ba

(t1/2 = 11.5 d) and 135mBa (t1/2 = 28.7 d). 131Ba and 135mBa decay by

electron capture with g-emissions of 124 keV (30%) and 268 keV

(16%), respectively. Suitable multidendate chelators are being

produced (54). An alternative approach to chelation includes

encapsulation of [223Ra] by hydroxyapatite nanoparticles (55)

and/or linkage to nanoparticles (56).

The chelator DOTA can form stable chelates with cerium (Ce),

Th, and Ac (57). Cerium-134 decays (t1/2 = 3.2 days) to the positron

emitter 134La (t1/2 = 6 min). The in vivo generator 134Ce/134La

enables application of the short-lived 134La as a PET imaging

nuclide for both alpha-emitting 225Ac and 227Th radionuclides.

MicroPET images of [134Ce]Ce-DOTA-Trastuzumab demonstrated

high tumour uptake and low bone and l iver uptake

analogous to previously reported [225Ac]Ac-DOTA-Trastuzumab

biodistribution results (57).
Frontiers in Oncology 05
Preclinical/early clinical TRT
radiopharmaceuticals

Experimental approaches to treating prostate cancer with TRT,

explored at the preclinical stage, include using different prostate-

specific membrane antigen (PSMA) ligands, radionuclides, or

targeting other receptors upregulated on prostate cancer cells (23,

58–60). Garnuszek et al. (58) radiolabelled PSMA-D4 with the three

b-emitters 177Lu, 90Y, 47Sc, and the a-emitter 225Ac. All

radiocomplexes demonstrated high accumulation in LNCaP

tumour xenografts and rapid clearance from blood and non-

target tissues. Scandium-47 forms a theragnostic pair with the b+

-emitting 43Sc. 43Sc- and 47Sc-PSMA-617 demonstrate congruous

uptake by LNCaP-ENZaR xenografts (23). Other a-emitting

radionuclides including, 212Pb and thorium-227 (227Th) (t1/2 =

18.7 days), and the radiohalogen, astatine-211 (211At), have been

investigated in preclinical research targeting PSMA (59). Böhnke

et al. (60) fabricated a PSMA ligand from PSMA-617 with a

modified linker and chelator (carboxy-HOPO), which

demonstrated stable chelation of 227Th, high uptake by PSMA-

expressing tumours in mice, and fast renal clearance.
FIGURE 2

(A) Scheme showing decision to treat with TRT (targeted radionuclide therapy) based on imaging. (B) Radiopharmaceutical targets cancer cells with
radionuclide for imaging and therapy. The molecule for imaging and therapy is identical for a theragnostic except for the radionuclide.
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Prostate cancer overexpresses other cell surface proteins besides

PSMA. These include the proteases human kallikrein peptidases

(HK2 and HK3) and receptors such as delta-like ligand 3 (DLL-3),

CD46, and CUB domain-containing protein 1 (CDCP1) (59).

Prostate stem cell antigen (PSCA) which is overexpressed on

metastatic prostate, pancreatic, and bladder cancer cells is an

alternative target to PSMA (61). Antibodies conjugated to

chelated metals are internalised on binding to surface receptors

on both tumour and non-tumour cells and the metal retained in the

lysosomal compartment. Tsai et al. (7) compared the anticancer

efficacy and biodistribution of the anti-PSCA minibody, A11 Mb

labelled by iodination with 131I, which is not retained, with a

[177Lu]-DTPA. Both exhibited similar cancer cell killing in vivo.

However, dosimetry, determined using immunoPET studies with
124I and 89Zr as surrogates for 131I and 177Lu, demonstrated

clearance of 124I from liver and kidneys but retention of 89Zr by

kidneys. This suggests that 131I is a better choice for delivering

tumour-inhibitory radiation dose but minimising non-tumour

retention (7). However, trans-iodination associated with halogen-

labelled radiopharmaceuticals can result in non-tumour exposure.

Studies of peptides targeting the gastrin-releasing peptide

receptor (GRPR), on the surface of localised and metastatic

prostate cancers, are also underway (62). [64Cu]Cu-SAR-BBN is in

clinical development for PET imaging of GRPR-expressing prostate

cancer using bombesin peptides. A preclinical study has shown that

Cu-SAR-BBN labelled with the therapeutic radionuclide [67Cu] is an

effective treatment for PC-3 tumours (62). Radiolabeled GRPR

antagonists are considered safer than agonists and have shown

higher tumour uptake and clearance than agonists. Kanellopoulos

et al. (63) labelled GRPR antagonists with 99mTc radiotracers

demonstrating high uptake by GRPR-expressing tumours.

Rapid clearance of small-molecule ligands such as [225Ac]Ac-

PSMA-617 can limit tumour delivery (64). To increase circulatory

residence time, albumin-binding entities can be incorporated into

radiopharmaceuticals enabling binding to circulatory albumin. The

benefit of this approach was examined in [225Ac]Ac-PSMA-ligands

([225Ac]Ac-SibuDAB) (64) and [64Cu]Cu-PSMA-BCH (65). Both

agents demonstrated increased circulation time and tumour uptake

(64, 65). Response of xenografts bearing PSMA-expressing cancer

cells was greater in mice injected with [225Ac]Ac-SibuDAB

compared with [225Ac]Ac-PSMA-617 (64). Uptake by normal

tissue was also greater but did not result in greater toxicity (64).

Dosimetry modelling can be highly informative and contribute

to decisions regarding radionuclide of choice. A modelling study of

the a-emitting 225Ac, 211At, 212Pb, 223Ra, and 227Th and the b-
emitting therapeutic radionuclides 67Cu, 131I, 177Lu, and 90Y

demonstrated that the b- and a-emitters 177Lu and 211At

respectively are most suited for prostate radionuclide therapy

because they can reduce toxicity exposure to surrounding organs

but provide sufficient dose to treat the prostate tumour (66).

Table 3 summarises many of the different proteins upregulated on

other cancer types and the imaging and TRT radiopharmaceuticals for

their targeting that are in preclinical and in some cases clinical trials.

Most targeted treatments are tailored to cancer type, but an

approach that could lead to a pan-cancer TRT radiopharmaceutical
Frontiers in Oncology 06
exploits targeting the non-tumour cells present in the tumour

microenvironment, particularly cancer-associated fibroblasts

which overexpress the fibroblast-activating protein.

The tumour microenvironment, in addition to cancer cells,

consists of immune cells, cancer-activated fibroblasts (CAFs), and

host epithelial cells (91). Overwhelming evidence indicates that

CAFs, or at least some CAF subtypes, are tumour promoting (92).

Fibroblast activation protein (FAP) is a type II membrane-bound

glycoprotein overexpressed in CAFs and is highly expressed in the

stromal compartments of several malignant cancers (92).

The tumour inhibitory potential of FAP inhibitors has been

explored but proved not particularly effective. However, FAP

inhibitors radiolabelled with 68Ga, e.g., [68Ga]Ga-FAPI-46, are

informative for the diagnosis and staging of several cancer types

(93–97). Oster et al. (93) demonstrated in patients with glioblastomas

a correlation between histological FAP expression and tumour SUV

mean and SUV peak of [68Ga]Ga-FAPI-46 using PET. Higher FAP

expression was present in a gliosarcoma subgroup, suggesting that

[68Ga]Ga-FAPI-46 uptake may be useful diagnostically. Unterrainer

et al. (94) demonstrated that [68Ga]Ga-FAPI-46-PET could be

beneficial in lymph node staging for patients with bladder cancer.

Compared with CT alone, [68Ga]Ga-FAPI-46-PET/CT improved the

accuracy of staging resulting in major changes in the treatment of

patients with oesophageal cancer (95) and pancreatic cancer (96).

[68Ga]Ga-FAPI-46-PET scans highlighted metastasis that were not

evident in FDG-PET scans. However, for patients with NENs or

prostate cancers, imaging of patients with [68Ga]Ga-FAPI-PET is less

informative than [68Ga]Ga-DOTATATE (98) or [68Ga]Ga-/[18F]F-

PSMA-11 (99), respectively.

Recent studies have explored radiolabelled FAP inhibitors or

antibodies to FAP for tumour treatment. Kuyumcu et al. (100)

demonstrated that the mean absorbed dose to organs at risk with

the 177Lu-labelled quinoline-based inhibitor of FAP, FAPI-04, in

four patients with metastatic cancers is reasonably low. FAPI-46,

which has longer tumour residence times than FAPI-04 (101),

radiolabelled with 90Y (102–104) and 177Lu (105), have been

recently explored in dose-escalation studies with limited patient

numbers. Nine patients with high FAP-expressing metastatic soft-

tissue or bone sarcoma or pancreatic cancers who had exhausted

other conventional treatments were given [90Y]Y-FAPI-46 (102).

Three patients received one treatment cycle, and six received two

cycles. Radiographic disease control was evident in four patients.

At-risk organ doses were low. In a larger study of a cohort of 21

patients with different cancers treated with [90Y]Y-FAPI-46, partial

response in one patient and stable disease in seven was reported

(103). Thrombocytopenia and anaemia were evident in several

patients. Patients with solitary fibrous tumours (11) received two

or three cycles of [90Y]Y-FAPI-46 (104). Disease control was

evident in 9 of the 11 patients. A dose-escalation study of [177Lu]

Lu-FAPI-46 in 18 patients with FAP-expressing inoperable or

refractory metastatic cancers (105) demonstrated good tolerance.

Patients received 1.4 GBq increasing to 4.4 GBq of [177Lu]Lu-FAPI-

46 with no toxicity evident in most patients.

Short retention times compromise the therapeutic efficacy of

some FAP inhibitors and potentially the efficacy of TRT via FAP.
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Several strategies to improve retention have been explored

preclinically including ligand dimerization, covalent bond

formation at the binding site, and the use of antibodies to FAP.

To improve binding, Zhong et al. (106) produced a dimerised

version of FAPI-04 and compared tumour uptake of the monomer

and dimer labelled with 68Ga and 177Lu using micro-PET. Images of

SKOV3, A431, and H1299 xenografts revealed that tumour uptake

of the dimer was greater than by the monomer. They also showed

that [177Lu]Lu(FAPI-04)(2) effectively reduced tumour growth. Pang

et al. (107) compared tumour uptake of dimer and tetramer versions

of FAPI-46 labelled with 68Ga by FAP-expressing xenografts. They
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demonstrated far greater uptake and lower washout of the tetramer

compared with the dimer. Tumour growth inhibition by [177Lu]Lu-

FAPI-04) was significantly (p<0.001) greater than by [177Lu]Lu-

FAPI-46 monomer. The first-in-human study of a [177Lu]-labelled

FAPI dimer was given to patients with treatment refractory breast,

thyroid, or paraganglioma cancers (108). The study demonstrated

increased residence time and higher median lesion absorbed dose

using a dimer version of FAPi (6.7 Gy/GBq) compared with the

monomer (0.6 Gy/GBq).

The FAPI FAP-2286 is a cyclic peptide with high-affinity FAP-

binding characteristics. PET/CT scans of 21/21 patients with
TABLE 3 Targets preclinically evaluated as TRT for different cancers.

Target Cancer type Ligand Radionuclide Reference

PD-1/PD-L1 (programmed death
receptors)

Non-small cell lung carcinoma; melanoma;
colorectal cancer (CRC)

PD-1 [68Ga] (67)

Neurotensin receptor CRC Neurotensin [68Ga], [177Lu] (68)

Gonadotrophin-releasing factor receptor
(GRFR)

GRFR-expressing cells, e.g., prostate, breast,
ovarian

Leuprolide [68Ga], [177Lu] (69)

Insulin-like growth factor-1 (IGF1)
receptor

Several cancer types IGF1 receptor affibodies [68Ga], [111In] (70)

IGF2R receptor Osteosarcoma IGFR2-Fab1 [225Ac], [111In] (71)

Glypican-3 (GPC3)

Hepatocellular carcinoma (HCC) RAYZ8009 (macrocyclic peptide) [177Lu], [225Ac] (72)

Hepatocellular carcinoma (HCC) Anti-GPC3-Ab (aGPC3) [227Th] (73)

Glioblastoma
GC332

Mab vs. scvf3
[225Ac]
[89Zr]

(74)

Nectrin-1 Breast cancer NP137 Mab [111In], [177Lu] (75)

CXCR4 Non-small cell lung carcinoma (NSCLC) AMD3465 [99mTc] (76)

Brevican (matrix protein) isoform dg-
Bcan

Glioblastoma BTP7 [18F] (77)

Mutant K-Ras cells: K-Ras4B oncogenic
isoform bind PDE-6

Colorectal cancer (CRC)
Inh of K-Ras4B/PDE-6
dissociation (I-C19)

[131I] (78)

DLL3 Notch inhibitory ligand Small cell lung carcinoma (SCLC) Anti-DLL3 antibody SC16 [177Lu] (79)

Carbonic anhydrase (CA9)4
CRC

Dual: CA9 inhibitor
acetazolamide+CA9 probe

[111In] (80)

Renal cell carcinoma CA9 Ab [111In] (81)

PDGFRb Carcinomas Affibodies [68Ga] (82)

VPAC1 receptor
Epithelial cancers

VP2 small fusion protein binds
VPAC1

[211At]5 (83)

Bladder cancer TP3805 [64Cu] (84)

Tissue factor (TF) Gastric cancers Anti-TF Ab [211At] (85)

CD123 Acute leukaemia Anti-CD123 Abs [211At] (86)

CD13+angiogenesis related amino-
peptidase (APN)

Angiogenic tumour vessels
Dual: asparagine-glycine-arginine
(NGR) +APD

[68Ga] (87)

Death receptor 5 (DR5) Colorectal cancer Anti-DR5 Ab (CTB006) [89Zr], [177Lu] (88)

CDCP1 CRC Anti-CDCP1 Ab [89Zr] (89)

Gastrin-releasing peptide receptor (GRPR) Gastrointestinal stromal tumour (GIST) NeoB–GRPR binding protein [177Lu] (90)
1Fab, fragment antibody. 2Modest survival benefit for mice bearing HepG2 tumours but marked haematological toxicity due to long circulatory residence time of antibodies. 3Both internalised
but greater uptake with whole Ab. 4Carbonic anhydrase is a cellular biomarker of hypoxia. 5High stomach uptake—late toxicity in mice.
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different malignancies including breast, pancreatic, and thyroid

cancer demonstrated uptake of [68Ga]Ga-FAP-2286 within

primary solid tumours, adjacent excised tissues, and metastatic

lesions (109), suggesting the potential of a general cancer tracer.

The first-in-human study of [177Lu]Lu-FAP-2286 for peptide-

targeted radionuclide therapy (PTRT) was carried out on 11

patients with advanced adenocarcinomas of the pancreas, breast,

rectum, or ovary with prior confirmation of uptake on [68Ga]Ga-

FAP-2286 or [68Ga]Ga-FAPI-04 PET/CT. [177Lu]Lu-FAP-2286 was

well tolerated and demonstrated significant retained tumour

uptake (110).

Most TRT is mediated through the interaction of a radionuclide

conjugated ligand or antibody to an overexpressed cell surface

receptor via a temporary non-covalent interaction. To increase the

duration of target exposure to the radionuclide, radiopharmaceuticals

that interact and form covalent bonds with the target receptor have

been examined in preclinical work. Cui et al. (111) modified a FAP

inhibitor by inclusion of an aryl fluorosulphate (FS) to covalently link

with nucleophilic centres in the binding site of FAP. The FS-modified

[177Lu]Lu-FAPI demonstrated 2.5× higher tumour uptake, 13×

longer retention, and significantly greater tumour control

compared with [177Lu] Lu-FAPI.

Xu et al. (112) developed a theragnostic pair targeting FAPa
with two novel recombinant anti-FAPa antibodies labelled with
89Zr and 177Lu. PET/CT and SPECT/CT imaging of the 89Zr and
177Lu antibodies AMS002-1-Fc respectively demonstrated good

tumour uptake by both and tumour control by [177Lu] Lu-

AMS002-1-Fc. Sibrotuzumab is an anti-FAP monoclonal antibody

that was trialled for metastatic colorectal cancer but failed to show

benefit. However, Xu et al. (112, 113) demonstrated using PET/CT,

high uptake, and retention of the 89Zr-labelled derivative of

sibrotuzumab, PKU525, by FAP-expressing xenografts. They also

showed correspondingly high tumour uptake of [177Lu]Lu-DOTA-

NCS-PKU525, e.g., 23% and 33% ID/g at 24 and 96 h, respectively,

and achieved tumour growth inhibition with a single 3.7-MBq dose.

Liu et al. (114) produced a FAPI which could be radiolabelled

with short t1/2 imaging 18F, or therapeutic 213Bi to pair the rapid

kinetics. The inhibitor included an organotrifluoroborate linker

which increased cell internalisation. FAPI has also been

radiolabelled with 211At (115).

Early clinical trials of radiolabelled FAP ligands for the

treatment of FAP-expressing cancers indicate that they are well

tolerated. Developments in FAPI molecules that enhance tumour

residence time may improve their therapeutic potential. Evidence

suggests that prostate cancers and NENs are more effectively

targeted, respectively, with PSMA ligands and somatostatin

analogues than FAPIs. However, FAP targeting may be a useful

way forward for the application of TRT to other cancer types.
Licensed cancer-targeting TRT
radiopharmaceuticals

There are licensed TRT radiopharmaceuticals available to treat

three types of malignancy, namely, B-cell lymphoma and
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neuroendocrine and prostate cancers. B-cell malignancies can be

treated with licensed antibody-based TRT radiopharmaceuticals

targeting upregulated receptors including CD20, whereas

neuroendocrine and prostate cancers can be treated with licensed

small-molecule TRT radiopharmaceuticals targeting the

somatostatin receptor and PSMA, respectively.

Several anti-CD20 monoclonal antibodies such as rituximab,

ofatumumab, or obinutuzumab improved the therapy of B-cell

malignancies through mechanisms including cellular cytotoxicity

and induction of apoptosis (116). When radiolabelled, these

antibodies exploit the radiosensitivity of lymphoma cells with

increased benefit (117). The first FDA-approved radiolabelled

antibody was the [90Y]Y-murine anti-CD20 antibody

ibritumomab for the treatment of indolent lymphoma in 2002

(118), followed by [131I]I-tositumomab (Bexxar) in 2003 (119).

Despite clear patient benefit including long-term remission in many

patients and relatively low cost compared with other treatments for

lymphoma, the uptake of these treatments is low due to a range of

logistical reasons (119).

Most neuroendocrine cancers (NENs) overexpress the

somatostatin receptor, which has several subtypes (120). The

peptide ligand somatostatin is rapidly degraded in the circulation

(121). Degradation-resistant somatostatin analogues including

[111In]In-DTPA-pentetreotide (Octreoscan®) were developed in

the 1980s and have been used for several decades for diagnosing

neuroendocrine tumours (NENs) (122). However, image

interpretation is complicated by high uptake by the liver, spleen,

and kidneys. [111In]In-DTPA-pentetreotide has been a treatment

for NENs due to emission of Auger and internal conversion

electrons by 111In. This was replaced by b-emitter-labelled

somatostatin analogues, e.g., [177Lu]Lu-DOTA-TATE, under the

name Lutathera®, which can also be labelled with 68Ga facilitating

imaging by PET with improved resolution over SPECT (123).

Positive outcomes reported in the NETTER trial for patients with

midgut NENs treated with Lutathera® led to approval by the FDA

for SSTR2-positive gastroentero-pancreatic NETs (GEP-NETs) in

adults (124).

Patients benefit from Lutathera®, but many patients will relapse

(125). Improving overall treatment outcome may be achieved by

several routes. The [90Y]-labelled version has been suggested for

larger lesions as the b-emissions have a longer range than from

[177Lu] (126). Approaches using both [90Y]- and [177Lu]Lu-ligands

may be advantageous (127), but combination studies are limited.

Improving the radiopharmaceutical using antagonists ([177Lu]Lu-

DOTA-LM3 and -JR11) (128) which demonstrate greater receptor

binding facilitates their application to cancers with lower SSTR

density such as breast cancer (129). The use of radionuclides that

produce more DNA damage such as the shorter range a-emitters

including 225Ac may also improve outcomes and decrease normal

tissue exposure (130).

Treatment of patients with prostate cancer is dependent on

stage (131). Patients with advanced-stage metastatic castration-

resistant prostate cancer (CRPC) may receive radionuclide

treatments targeting prostate-specific membrane antigen (PSMA)

(132). PSMA, a transmembrane protein, is also known as folate
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Hydrolase 1. As such, PSMA has a role in folate metabolism and

internalises ligands. It is overexpressed on most prostate cancers

and exploited as a target for the treatment of patients with CRPC

(133). PSMA is commonly targeted with radiolabelled urea-based

ligands particularly [177Lu]Lu-PSMA-617 (134). Last-line salvage

treatment of patients with bone involvement CRPC demonstrated

that [177Lu]Lu-PSMA-617 improves survival and is well tolerated

(134). However, more than 50% of patients with CRPC do not show

biochemical response (a 50% reduction in PSA) to [177Lu]Lu-

PSMA-617 (135). Refractory patients can receive PSMA-ligands

labelled with a-emitter radiometals such as 225Ac (see section on a-
emitters). Interestingly, a systematic review of several trials (136)

identified that pretreatment with [177Lu]Lu-PSMA-617 in some

patients may induce resistance to treatment with [225Ac]Ac-

PSMA-617.

Several normal tissues, including the salivary gland, also express

PSMA attracting binding by radiolabelled PSMA ligands, which can

result in loss of salivary function resulting in xerostomia (dry mouth)

(137). This side effect is particularly frequent in patients receiving

PSMA ligands labelled with a-emitters (137). Mitigation can be

achieved by the co-administration of mono-sodium glutamate

(MSG), but xerostoma is considered a dose-limiting toxicity for

patients receiving radiolabelled PSMA-targeted ligands (137). A

phase I clinical trial of [225Ac]Ac-labelled J591 reduces xerostomia

and nephrotoxicity in metastatic castration-resistant PC (mCRPC)

patients associated with radiolabelled PSMA-617 (138).
Strategies to improve the efficacy of
TRT

Use of high linear energy transfer alpha
emitters

Patients with prostate cancer where the disease has spread to

bone, in the absence of visceral metastasis, may receive the bone-

seeking agent radium-223 dichloride, [223Ra]RaCl2, Xofigo
® (139).

Radium is a calcium mimetic, and as such, 223Ra is concentrated in

regions of bone turnover including adjacent to sites where

metastatic cancers have established (139). Xofigo®, the only a-
emitter radiopharmaceutical to be clinically approved, is very

effective at palliation of bone pain and has been shown to

improve overall survival of patients with metastatic castration

resistant prostate cancer (140).

Some patients with mCRPC can become resistant to ligands

radiolabelled with b-emitters such as 177Lu-PSMA but demonstrate

response to a-emitters such as [225Ac]Ac-PSMA (18, 141). A phase

I dose-escalation trial is currently underway to establish an optimal

amount of activity for response that can be administered (141).

Other [225Ac]-labelled therapeutics include [225Ac]Ac-DOTATOC

and [225Ac]Ac-DOTA-substance-P, which have proven to be

beneficial in patients with neuroendocrine tumours and gliomas,

respectively (18).

Thorium-227 (227Th), which decays to 223Ra, can be chelated

with octadentate 3,2-hydroxypyridinone (3,2-HOPO). Several
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conjugates of [227Th]Th-HOPO have been developed to target

CD22-positive B cell cancers and CD33-positive leukaemia,

and solid tumours overexpressing renal cell cancer antigen

CD70 and membrane-anchored glycoprotein mesothelin in

mesothelioma (142).

An a-decay event results in high-energy recoil (approximately

2% of the a-particle emission energy), which is sufficient to breach

the integrity of the carrier radiopharmaceutical (143). Consequent

release and free movement of the daughter species outside the

tumour can result in irradiation of non-tumour tissue if the

daughter undergoes further decays, sometime after the initial

event, and contribute to toxicity (143).
225Ac (t1/2 = 10 d, E = 6 MeV) produces six predominant

radionuclide daughters in the decay cascade to stable bismuth-209

(209Bi) two high-energy gamma emissions, of which 213Bi 440 keV is

used for imaging (144). The 225Ac radionuclide daughters escape

and circulate through the body and accumulate in different organs,

and renal toxicity from released 213Bi is the major concern (145).

Some success with nanostructures to contain radionuclide

daughters after a-emission has been achieved reducing release

(146). Toro-González et al. (147) encapsulated [225Ac]Ac3+

chelated by a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand

in poly(lactic-co-glycolic acid) (PLGA) nanoparticles, a

biocompatible delivery platform used for drug delivery.

Encapsulation within 155-nm PLGA nanoparticles was found to

decrease the release of daughter species [221Fr]Fr+ and [213Bi]Bi3+

but only by approximately 50%. Karpov et al. (148) modified silica

nanoparticles (SiO2 NPs) with metallic shells composed of titanium

dioxide (TiO2) and gold (Au) nanostructures of 110 nm in size. In

vivo and in vivo studies demonstrated that the metallic surface

coating of SiO2 NPs promotes an enhanced sequestering of

radionuclides (225Ac and its daughter isotopes) compared

with nonmodified SiO2. However, clearance of these large

nanoparticles is hepatobiliary, which is undesirable due to the

radiosensitivity of the intestinal tract.
211At decays with the release of a single a-emission. Feng et al.

(149) have demonstrated good tolerability of [211At]At-labelled

PSMA ligands YF2 and L3-Lu in mice bearing xenografts, derived

from prostate cancer cells. Laszlo et al. (86) developed anti-CD123+

targeting 211At-labelled antibodies, which extended the survival of

mice bearing CD123+-expressing xenografts.
212Pb initially undergoes b-decay to 212Bi, which then decays by

a-emission. The initial b-decay is accompanied by a high yield of

conversion electrons and a cascade of Auger electrons converting

the oxidation state of Bi to between Bi4+ to Bi7+, which has been

shown to result in up to 40% release of daughter [212Bi]Bi from

chelation (150). However, preclinical work has demonstrated

retention of a significant proportion of the disassociated [212Bi] in

the tumour environment (150).

Moving forward with radiopharmaceuticals carrying a-emitters

including 225Ac and 212Pb that release unchelated active daughters

is likely to be challenging (151). Encapsulation in nanoparticles is

an approach being explored to contain daughter species released by

long-lived a-emitters, but due to the high recoil energy during a-
decay, these need to be relatively large (~100 nm) (152). The large
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size of these particles results in hepatobiliary excretion and

subsequent gut exposure (153). A further consideration with

release of multiple daughter species is dosimetry. Encouragingly, a

study has demonstrated that dual window planar imaging can

discriminate 223Ra from 227Th in patients receiving 223Ra

treatment (154), which enables accurate dosimetry to be

determined. Clinical studies have demonstrated benefit and low

toxicity of longer-lived a-emitters for example 225Ac to patients

with advanced treatment refractory mCRPC (155). Exploration of

a-emitting radionuclides towards the end of decay chains including
212Bi and 213Bi (t1/2s ~1 h) have demonstrated, at least preclinically

good tumour control. However, the therapeutic index from [213Bi]

Bi-PSMA-617 was reported to be lower than for [225Ac]Ac-PSMA-

617 (156).
Pre-targeting approaches to
radionuclide delivery

Antibody-targeted TRT radiopharmaceuticals are larger than

the renal membrane and consequently have long blood clearance

times, which can result in high levels of normal tissue radiation

exposure (157). Pre-targeting is the initial administration of a

complex consisting of an antibody conjugated, traditionally with

avidin (part of an affinity pair with biotin) (see Figure 3). Following

an interval of several days for tumour targeting and blood clearance

of non-bound complex, the patient receives a radionuclide biotin

conjugate, which is rapidly cleared from the circulation due to its

small size (~1 kDa).

Alternative affinity pairing systems include the Diels–Alder

click reaction between tetrazine (Tz) and trans-cyclooctene

(TCO) (158). The TCO-modified antibody binds with the

radiolabelled Tz-substituted effector poly-L-Lysine. This system

has been demonstrated to carry 211At for targeted alpha therapy

and radioiodine for imaging. Poly-L-lysine was functionalised with

a prosthetic group, for the attachment of both radiohalogens and

tetrazine (159). As for direct targeting, pre-targeted approaches to

TRT delivery require imaging using the same format of delivery
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system so that the imaging biomarkers accurately demonstrate

tumour uptake of the therapeutic.

The theragnostic capability of the Tz/TCO pre-targeting system

with the copper isotopes [64Cu]- and [67Cu]-radiolabelled Tz

([64/67Cu]Cu-MeCOSar-Tz) was evaluated in a murine model of

colorectal cancer (160). Mice pre-administered with the huA33

antibody modified with TCO (huA33-TCO) were treated 72 h later

with [64/67Cu]Cu-MeCOSar-Tz. Tumour uptake of [64Cu] predicted

response to treatment with [67Cu]Cu-MeCOSar-Tz given either in a

single dose or fractionated. Theragnostic approaches using the Tz/

TCO system has also been examined using a self-assembling and

disassembling molecular system for treating glioblastoma using

murine models (161).
Combination of TRT with immune
activation and radiosensitisation

The primary mechanism of cell death induced by 223Ra is by

induction of DNA damage particularly double-strand breaks

(DSBs) (162). Other mechanisms that may contribute to the

therapeutic efficacy of Xofigo® include immunogenic mechanisms

(163). DNA damage can activate the stimulator of interferon gene

(STING) signalling pathway activating NLRP3-dependent

pyroptosis, a typical form of immunogenic cell death, to enhance

antitumor immune response. This may be an important mechanism

of tumour control induced by 223Ra-irradiation (163). Biomarkers

that can guide selection of patients for treatment with PD-1/PD-L1

inhibitors include PD-1/PD-L1 expression and mismatch repair

deficiency (164).

TRT treatments may enhance immune response through

enhancement of infiltration of CD4+ and CD8+ T cells (165).

Zboralski et al. (166) have shown that combined treatment of

mice bearing FAP-expressing xenografts with a [177lu]Lu-labelled

FAP inhibitor ([177Lu]Lu-FAP-2287) and a PD-1 inhibitor

increased recruitment of tumour-infiltrating CD8(+) T cells.

Clinical trials combining immune checkpoint inhibitors (ICIs)

with TRT are underway including the STARLITE 2 Phase 2 trial of
FIGURE 3

Multistep pre-targeted procedure. *Avidin and **biotin have a strong mutual affinity.
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patients with clear cell renal carcinoma treated with the ICI,

nivolumab, and [177Lu]Lu-girentuximab, which is an anti-

carbonic anhydrase IX antibody (167).

Interestingly, the type of radionuclide influences the synergistic

therapeutic effect of TRT with PD-1 inhibitors. Compared with

monotherapy, combination treatments of PD-1 inhibitors with

[213Bi]-anti-melanin and to a lesser extent [177lu]Lu-anti-melanin,

but not [225Ac]-anti-melanin, increased the treatment response of

melanomas (168).

Chimeric antigen receptor T cells (CART) are T lymphocytes

that have been taken from a patient and reprogrammed to identify

and attack their cancers (169). CARTs are relatively ineffective

against solid tumours, but this can be increased by exposure of the

cancers to radiation (170). Sodji et al. (170) compared the effector

(cytotoxic activity against GD2 expressing human neuroblastoma

(CHLA-20) and M21 melanoma cells) and viability of anti-GD2

CART cells after exposure to different doses from 225Ac or 177Lu.

Radiation enhanced the cytotoxic activity of these CAR T cells

against CHLA-20 and M21 independent of dose tested and type of

radionuclide. 225Ac was more toxic than 177Lu to anti-GD2 CAR T

cells, suggesting that 177Lu-based TRT may be preferred over 225Ac-

based TRT to enhance CAR T activity.

Radiosensitisers are commonly used to improve the therapeutic

efficacy of external beam radiotherapy (171). Radio-sensitisation

can be mediated through many mechanisms including

chemotherapy and inhibition of DNA damage response proteins

such as ATM and DNA-PKcs and DNA repair enzymes, e.g.,
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topoisomerase I and PARP inhibitors. Phase 1 trials of

radiotherapy with the potent ATM/DNA-PKcs inhibitor XRD-

0394 has recently reported favourable results (172). Beneficial

patient outcomes of radiosensitisers with radiation therapy

are a strong rationale for combination treatments with

molecular radiotherapy.

Antimetabolite chemotherapy drugs including 5-fluorouracil

(5FU) and capecitabine are commonly used in combination with

radiotherapy (171). Combination treatments of patients with

neuroendocrine tumours with [177Lu]Lu-DOTATATE and 5FU

or capecitabine are well tolerated (173). Some studies have

demonstrated that combining TRT with capecitabine improves

patient outcome (174).

Response to radiation-based treatments is countered by DNA

repair mechanisms (175). Targeting DNA repair enzymes is an

established form of radiosensitisation (176). Poly(ADP-ribose)

polymerase 1 (PARP-1) is essential in DNA single-strand break

(SSB) repair (see Figure 4). Several PARP inhibitors (PARPi) are

now clinically approved (176). These bind to PARP/SSB complexes

formed on damaged DNA preventing repair and disengagement of

the repair complex, which in turn results in double-strand break

(DSB) formation. BRCA1/2 mutant cancers have a limited capacity

to repair DSBs. PARP inhibitors are particularly effective for

patients with mutant BRCA1/2 cancers (177). Combination

treatment of a murine model of a triple-negative breast

cancer with the radiolabelled FAP inhibitor [177Lu]Lu-

DOTAGA.(SA.FAPi)(2) and PARP inhibitor olaparib increased
FIGURE 4

Mode of action of poly ADP-ribose and its inhibition during repair of single-strand DNA breaks.
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therapeutic efficacy over [177Lu]Lu-DOTAGA.(SA.FAPi)(2) alone

(178). Clinical trials (early phase) assessing combination PARPi +

[177Lu]Lu-DOTATATE for pancreatic and metastatic NENs are

ongoing (173).

Tyrosine kinases (TK) are components of receptors and cell

signalling pathways, many of which induce cell growth and

proliferation. Anticancer treatments include TK inhibitors (TKI)

(173). Some TKIs are multi-TK inhibitor, such as sunitinib, and can

inhibit angiogenesis as well as cancer cell growth. Early phase trials

of combination treatments of sunitinib and other TK inhibitors

with NEN-targeted TRT are ongoing (173).

To discover potential strategies for sensitisation to TRT, Qin

et al. (179) examined protein activation in cholecystokinin B

receptor expressing A431 cancer cells treated with a 225Ac-labeled

minigastrin analogue ([225Ac]Ac-PP-F11N) using proteomics and

phospho-proteomics. They identified several upregulated proteins

associated with carcinogenesis and DNA repair pathways including

histone deacetylases (HDAC) for which there is an FDA-approved

inhibitor, SAHA. Treatment of A431/CCKB cells with SAHA and

[225Ac]Ac-PP-F11N was synergistic over treatment with each alone

delivering increased DSB formation and tumour cell kill.

Many studies have demonstrated that hyperthermia can improve

response to radiotherapy (180). Heating is delivered through several

techniques including ultrasound to raise local temperature to 40 °C-

43°C. Mechanisms responsible for the beneficial effect of

hyperthermia include improved blood flow, inhibition of DNA

repair, and immune activation (176). Gold nanoparticles have the

property of near IF light (NIR) to heat conversion, known as the

photothermal effect (PT). When incorporated into tumour tissue and

activated by NIR, AuNPs can achieve localised and targeted

hyperthermia (181). Simón et al. (181) demonstrated that PT,

delivered with NIR irradiation of xenografts in mice administered

with AuNPs, improved the therapeutic efficacy of [177Lu]Lu-DOTA-

TATE PRRT against SSTR-expressing cancers in mice.

DNA irradiated with ionising radiation is damaged either by

direct interaction with radiation or via the formation of free radicals

particularly reactive oxygen species (ROS) (182). Photodynamic

therapy (PDT) is mediated by the formation of ROS frommolecular

oxygen by the transfer of energy from photosensitisers excited by

light at specific wavelengths (183). Generated ROS will then

contribute to DNA damage. A precursor of the photosensitiser,

protoporphyrin IX (PpIX), 5-aminolevulinic acid (5-ALA),

accumulates in cancer tissue (184). Jo et al. (184) demonstrated

that photodynamic therapy can be elicited using Cerenkov

luminescence energy transfer (CLET) from the decay of 64Cu to

PpIX in mice administered with [64Cu]Cu-DOTA-trastuzumab and

5-ALA for high-precision PDT of HER-2-overexpressing cancer.

Gold nanoparticles can enhance radiosensitivity (185). Cysteine

functionalised glutathione-coated gold nanoparticles, l-Cys-GSH-

AuNP, aggregate in the acidic conditions in lysosomes facilitating

lysosomal accumulation on internalisation by cancer cells. PET

imaging of xenograft-bearing mice injected with [68Ga]Ga-l-Cys-

GSH-AuNP demonstrated long-term tumour accumulation and

increased response to external beam radiotherapy (185).
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Discussion

TRT is a relatively recent addition to the anticancer treatment

repertoire. In the last few years, the phase 3 NETTER and VISION

trials of [177Lu]-radiolabelled TRT agents for neuroendocrine cancer

and prostate cancer respectively have reported beneficial outcomes

in terms of improved progression free survival (PFS) (NETTER)

(124) and overall survival and PFS (VISION) (162). These findings

have greatly increased interest in TRT especially for prostate cancer

treatment and expansion to other cancer types. This has brought

into focus the requirement for reliable supplies of medical

radionuclides and the need for an expansion in production facilities.

Pretreatment imaging of candidate patients is essential to

demonstrate suitability for TRT and inform on dosimetry (48).

Ideally, imaging should be carried out with an imaging component

of a theragnostic pair to provide biodistribution and dosimetry

information that will most accurately predict the pharmacokinetics

of the therapeutic (49).

Combining TRT with other treatments can improve efficacy

increasing long-term benefit or allow for lower radioactive doses

reducing toxicity and helping to minimise the number of patients

who withdraw from treatment. Radiosensitisers are commonly used

with external beam radiotherapy (EBRT) to improve response but

could be applied alongside TRT (186). Predictive biomarkers can be

used clinically to inform on radiosensitiser use for patients with

hypoxic, and therefore radioresistant, cancers (187).

Approximately 25% of patients with lymphoma treated with

[90Y]Y- 90 Y-ibritumomab tiuxetan (90Y-IT, Zevalin, Acrotech

Biopharma) demonstrate complete long-term remission (119).

Many patients with mCRPC patients benefit from [177Lu]PSMA-

617, but approximately 30% do not respond. These findings illustrate

the need for predictive biomarkers based on intrinsic tumour biology

to stratify patients for treatment modalities. Several cancer types

have been shown to be differentiable into molecular subtypes (188).

The molecular subtype is associated with response or resistance to

different treatment types; for example, some subtypes of bladder

cancer are resistant to chemotherapy but sensitive to other

treatments (188). Studies that stratify TRT response by molecular

subtype may help to define which patients may benefit from TRT or

require sensitisation. Other approaches include the use of intrinsic

radiosensitivity gene expression signatures as developed for external

beam radiotherapy (189). Studies have examined TRT-upregulated

genes which may help to identify candidate signature genes (190).

These approaches will require multiple large patient cohorts for

validation. Applying biomarkers to combination treatments will

require an assessment of suitability of the patient for each

treatment type using multiple biomarkers.

Some patients, refractory to b-emitter-radiolabelled PSMA and

somatostatin ligands, have demonstrated beneficial response to

ligands radiolabelled with a-emitters such as 225Ac (125).

Daughter decay products from the longer-lived a-emitters like
225Ac tend to be released from their chelate and associated with

normal tissue toxicity. Fortunately, toxicity associated with [225Ac]

Ac-PSMA-617 treatment of patients with mCRPC is considered low
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(155). However, supply of 225Ac is a serious issue. A further

limitation in some European countries is the requirement for

hospital confinement for several days post-treatment reducing the

number of patients who can be treated at any one time.

Inhomogeneous dose distribution is a common problem with

TRT due to the heterogeneity in target expression between cancer

cells, even within the same tumour, and regions of poor blood

perfusion due to the rudimentary nature of the tumour vasculature

(191). Dose distribution inhomogeneity may result in

undertreatment of some cancer cells and inevitable tumour

recurrence. The crossfire effect, which is the deposition of energy

emitted from a radionuclide into distant cells, particularly from b-
emitters, helps to even out dose across tumours. Combinations of b-
emitters with different energies will result in a greater spread of dose

and may further help in overcoming dose inhomogeneities (127).

Hypoxic cancer cells which are resistant to low LET radiation

but sensitive to high LET radiation tend to be distributed as single

cells or small groups of cells (192). Alpha-particles with their short

range and highly damaging characteristics within a few cell

diameters are ideal for targeting hypoxic cells in tumours.

TRT is an exciting approach to cancer treatment with many

variation possibilities including use of multiple radionuclides to

improve dose distribution, combined with other treatments to

synergise treatment efficacy to bring about its optimisation.

Validated biomarkers to identify patients most likely to benefit or

conversely who may not benefit from TRT are crucial. The capacity

to produce and deliver medically radionuclides particularly, 177Lu,

for treatment is essential to ensure that these effective treatments

can be expanded to fulfil the predicted demand.
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