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Digital spatial profiling identifies
phospho-JNK as a biomarker for
early risk stratification of
aggressive prostate cancer
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Anja Lisa Riediger1,2,3,5, Olga Lazareva1,6, Sarah Böning4,
Glen Kristiansen7, Constantin Schwab8,9, Albrecht Stenzinger8,
Holger Sültmann3,10, Stefan Duensing4, Anette Duensing11*

and Magdalena Görtz1,2*
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of Biosciences, Heidelberg University, Heidelberg, Germany, 6Division of Computational Genomics
and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany, 7Institute of
Pathology, University Hospital Bonn, Bonn, Germany, 8Institute of Pathology, Heidelberg University,
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Background: Prostate cancer (PCa) is a highly heterogeneous disease, ranging

from indolent to highly aggressive forms. Ongoing research focuses on

identifying new biomarkers to improve early risk stratification in PCa,

addressing current limitations to accurately evaluate disease progression. A

promising new approach to aid PCa risk stratification is digital spatial profiling

(DSP) of PCa tissue.

Methods: A total of 94 regions of interest from 38 PCa patients at first

diagnosis were analyzed for the expression of 44 proteins, including

components of the PI3K/AKT, MAPK, and cell death signaling pathways as

well as immune cell markers. An additional validation cohort consisting of 154

PCa patients with long-term fol low-up data was analyzed using

immunohistochemistry (IHC) to assess the consistency of the identified

biomarkers across a larger sample set.

Results: DSP identified the proliferation marker Ki-67 and phosphorylated c-Jun

N-terminal protein kinase T183/Y185 (p-JNK), a member of the MAPK signaling

pathway, as significantly upregulated proteins in aggressive PCa (Gleason grades

4 or 5) compared to indolent disease (Gleason grade 3; p<0.05). The upregulation

of p-JNK was confirmed by IHC. High p-JNK expression was associated with a

shorter time to biochemical recurrence (log-rank, p=0.1).
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Conclusion: Our results indicate that p-JNK may contribute to PCa progression

and serve as an early biomarker for aggressive PCa stratification. Identification of

this biomarker through DSP could prove crucial in advancing disease

management and addressing the critical unmet need for more targeted

therapies in the treatment of PCa. Further studies are warranted to evaluate

the role of p-JNK in PCa progression.
KEYWORDS

prostate cancer, digital spatial profiling (DSP), p-JNK, risk stratification,
biomarker discovery
1 Introduction

Prostate cancer (PCa) is the most frequent non-cutaneous

malignancy in men (1) and is characterized by its high

heterogeneity and complexity. In case of elevated prostate-specific

antigen (PSA) and/or suspicious digital rectal examination, a

prostate biopsy is performed and histopathologically evaluated

using the Gleason grading system. The Gleason score is based on

the classification of prostate adenocarcinoma growth patterns, with

the most common and most aggressive Gleason grades defining the

score in prostate biopsy specimens, whereas the two most common

Gleason grades define the score in prostatectomy specimens (2, 3).

The distinction between Gleason pattern 3 and 4 is crucial, as

pattern 4 indicates a shift towards more aggressive disease (4).

The Gleason grading system has consistently demonstrated

significant prognostic value in stratifying PCa. However, recent

research has highlighted the heterogeneity of molecular alterations,

posing challenges for its diagnosis and treatment (5, 6). Therefore,

additional diagnostic methods are often necessary to effectively

stratify PCa into high- and low-risk categories, enabling the

selection of appropriate therapies for each patient at the time of

initial diagnosis. For patients with indolent disease, active

surveillance with regular monitoring is the preferred approach, as

it avoids unnecessary radical treatment while ensuring timely

intervention if the disease progresses (7).

This heterogeneity in PCa is further emphasized by spatial

relationships between cell populations, which can significantly

influence disease progression and treatment outcomes (8).

Consequently, spatial profiling of protein expression might aid in

better understanding the biology of PCa and facilitate risk

stratification. Biomarkers related to immune cell signaling and

cell death pathways hold significant potential for improving PCa

prognosis (9–11). Especially, expression of genes related to cell cycle

progression, in particular, Ki-67 have been associated with poor

prognosis across various types of cancer (12–14), including PCa

(15). Additionally, the PI3K/AKT pathway, regulating cell growth,

survival, and metabolism, provides valuable insights into the
02
molecular mechanisms that drive aggressive PCa (16). Recent

research has also revealed that the complex interactions between

the mitogen-activated protein kinase (MAPK) signaling pathway

and other cell-signaling cascades can further contribute to PCa

progression, highlighting its role in the disease’s development (17).

However, the full extent of the MAPK signaling network during

prostate tumorigenesis, as well as the involvement of spatial niches

in tumor progression and disease recurrence, remain to be fully

determined. Studies have shown that c-Jun N-terminal kinase

(JNK), a key member of the MAPK signaling pathway, is

associated with tumor progression and survival in various cancers

(18–20) and contributes to the growth of PCa (21). In this proof-of-

concept study, we used digital spatial profiling (DSP) to examine

protein expression across four key cellular pathways involved in

PCa. We identified Ki-67 and phospho-JNK T183/Y185 (p-JNK) as

key drivers of disease progression and recurrence distinguishing

aggressive Gleason patterns 4 and 5 PCa from indolent Gleason

pattern 3 disease.
2 Methods

2.1 Study population

Tissue microarrays (TMAs) were obtained from localized and

locally advanced (N1M0) PCa patients who had undergone radical

prostatectomy at first diagnosis at the Department of Urology,

University Hospital of Heidelberg, Germany. The study design

comprised specimens from 192 patients, divided into two

independent cohorts: one cohort subjected to analysis by DSP

(n=38) and a larger validation cohort with long-term follow-up

data (n=154) analyzed by immunohistochemistry (IHC) (Table 1).

All tissue-based experiments in this study were in accordance with

the regulations of the tissue bank as well as under the approval of

the Ethics Committee of the Medical Faculty of the University of

Heidelberg (votes: S-130/2021 and S-864/2019). Written informed

consent was obtained from all participants.
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2.2 TMA construction

TMAs were constructed using 1 mm diameter cores punched

from each formalin-fixed paraffin-embedded (FFPE) tissue blocks.

TMAs for both DSP and IHC cohorts were retrieved from the tissue

bank of the National Center for Tumor Diseases Heidelberg. The

IHC cohort primarily comprised patients with high-risk PCa (11,

22). For each patient, we separated tissues into Gleason 3 and

Gleason 4 patterns, and, when available, also collected tissues from

those with Gleason 5.
2.3 Digital spatial profiling sample
preparation

The GeoMx® DSP platform (NanoString Technologies, Seattle,

Bruker Corporations, Billerica, MA, USA) was used for the spatial

analysis of PCa TMAs, and the TMA cores were prepared as
Frontiers in Oncology 03
described previously (8, 23). Briefly, slides were deparaffinized in

staining jars by incubation for 3 x 5 min in xylene followed by

rehydration for 2 x 5 min in 100% ethanol, 2 x 5 min in 95% ethanol

and 2 x 5 min in deionized water. Antigen retrieval was performed

in 1X citrate buffer (pH 6) for 15 min in a pressure cooker at high

temperature and high pressure. The slides were then washed in 1X

TBS-T buffer, and the tissue sections were blocked with Buffer W

for 1 h in a humidity chamber at room temperature (RT) before

incubation with a mixture of the barcoded antibodies and

morphology markers overnight at 4°C. In this study, the

NanoString barcoded antibody panels consisted of the human

protein Immune cell profiling, PI3K/AKT and MAPK signaling,

and cell death modules (Supplementary Table 1). CD45 was used to

identify T-cells, panCK to label epithelial cells, and SYTO13 to stain

cell nuclei, serving as morphological markers for the visualization of

the tissue architecture using the NanoString Solid Tumor TME

Morphology Kit. After antibody staining, slides were washed 3 × 10

min in 1X TBS-T and post-fixed in 4% paraformaldehyde at RT for

30 min, followed by 2 × 5 min washes in 1X TBS-T. Nuclei were

stained with 500 nM SYTO13 for 15 min at RT and rinsed with 1X

T-TBS before loading into a GeoMx® instrument (v.2.4.2.2).
2.4 Digital spatial profiling analysis

Slides were scanned with the GeoMx instrument and regions of

interest (ROIs) were carefully selected by an experienced

pathologist (S.D.) using morphology markers, as described

previously (23). To aid in selecting ROIs, consecutive

hematoxylin- and eosin-stained (H&E) sections were examined

simultaneously under a microscope. The selection process focused

on capturing cancerous tissue while excluding non-cancerous

regions. Within each TMA core, ROIs were carefully chosen to

ensure that only carcinoma areas were included. No further

segmentation was performed within the selected ROIs. Each ROI

was illuminated with UV light and cleaved barcodes were collected

and hybridized with fluorescent probes for 16 h at 67°C. Hybridized

probes were then processed using the nCounter® MAX/FLEX Prep

Station (v4.1.0.1) and counted using the nCounter® Digital

Analyzer (v4.0.0.3). Data analysis was conducted using the

GeoMx® DSP analysis suite and R (v.4.2.3). Raw counts

generated from the DSP were normalized using the housekeeping

proteins GAPDH and S6 to ensure consistency (Supplementary

Table 2), followed by log2 transformation to minimize variability.

Quality control measures were rigorously applied, and samples with

inadequate signal-to-noise ratios were excluded from further

analysis. Visualization of the data was achieved using R (v.4.2.3).
2.5 Immunohistochemical staining

TMA cores were stained for p-JNK expression and prepared as

described previously (23). Heat-mediated antigen retrieval was

performed using antigen retrieval solution (Dako, Glostrup,

Denmark) and slides were blocked in goat serum. Anti-p-JNK1/2
TABLE 1 Patient characteristics.

Prostate
cancer patients

DSP
cohort (N=38)

IHC
cohort (N=154)

Age, years, median (range) 65 (49–76) 66 (48-79)

PSA level, ng/ml,
median (range)1

7 (1.52–40) 0.36 (0.18-1165)

ISUP grade group, Gleason score, n (%)2

2 (7a) 27 (71) 38 (25)

3 (7b) 4 (11) 51 (33)

4 (8) 0 (0) 60 (39)

5 (9-10) 7 (18) 4 (3)

pT stage, n (%)

T2 22 (58) 26 (17)

T3
T4

16 (42)
0 (0)

114 (74)
14 (9)

pN stage, n (%)

N0 25 (66) 44 (29)

N1 8 (21) 110 (71)

Nx 5 (13) 0 (0)

cM stage, n (%)

M0 36 (95) 149 (96)

M1
Mx

2 (5)
0 (0)

4 (3)
1 (1)

R status

R0 21 (55) 49 (32)

R1 16 (42) 67 (43)

Rx 1 (3) 38 (25)
1Data available for 84/154 patients from IHC cohort.
2Data available for 153/154 patients from IHC cohort.
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(T183/Y185, Invitrogen/ThermoFisher Scientific, Waltham, MA,

USA) was used as a primary antibody. Biotinylated anti-rabbit

secondary antibody (ab97049, 1:200; Abcam) and streptavidin-

peroxidase conjugate (1:1250, Merck/Sigma-Aldrich, Taufkirchen,

Germany) were used to detect the primary antibody. For tissue

staining and counterstaining, 3,3’-Diaminobenzidine (Abcam,

Cambridge, UK) and Hematoxylin Gill I (Sigma Aldrich, St.

Louis, MO, USA) were used. TMA cores were then dehydrated,

and mounted with HistoMount solution (Life Technologies,

Carlsbad, CA, USA). Single TMA cores were stained for p-JNK

expression, according to the described immunohistochemistry

protocol. p-JNK expression was assessed by a semiquantitative

immunoreactive score (IRS) considering signal intensity and

proportion of positively stained cells.
2.6 Statistical analysis and R packages

Statistical analysis of spatial protein expression data was

performed using the GeoMx® DSP software (v2.4.2.2) and R

(v.4.2.3). To identify statistically significant differences in protein

expression between Gleason grades 4/5 and Gleason grade 3, we

conducted Mann–Whitney U tests on log2-transformed protein

expression data across the DSP cohort. P values were adjusted using

the Benjamini-Hochberg method, with a significance threshold set

at p < 0.1. Survival data were evaluated according to Kaplan–Meier

and survival between groups was compared using the log-rank test

(p < 0.1). R packages used for data visualization were ggplot2 (3.5.1),

pheatmap (1.0.12) and survminer (0.4.9).
3 Results

3.1 DSP of protein expression in PCa
patients

To characterize the spatial distribution of tumor cells in PCa, we

constructed TMAs using samples from various sites within the

prostatectomy specimen of 38 PCa patients (Figure 1). These

samples were selected to represent tumor heterogeneity,

incorporating regions with different Gleason grades. We selected

and analyzed a total of 94 ROIs (Supplementary Table 3) to profile

the expression of 44 proteins, including key components of the

PI3K/AKT, MAPK, and cell death signaling pathways as well as

immune cell markers. Due to differences in staining quality and

tissue characteristics, we were able to analyze ROIs containing

Gleason 3 and 4 patterns from 21 patients. Two patients had

ROIs with Gleason grades 3 and 5, but no Gleason 4 pattern.

Additionally, 11 patients had ROIs containing either Gleason 3 or 4

pattern and four patients had ROIs corresponding to all three

Gleason patterns (3, 4, and 5) (Supplementary Table 3). An

unsupervised hierarchical clustering was performed to further

explore the expression patterns. This analysis revealed significant

variability in protein expression and pathway activity between

Gleason pattern 3 (indolent disease) and Gleason patterns 4 or 5
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(aggressive PCa) as shown in Figure 2A. To assess the impact of the

Gleason patterns, we arranged the columns (patient samples)

according to increasing Gleason grades, while retaining

unsupervised hierarchical clustering of the rows (target proteins).

As shown in Figure 2B, this approach allows for the evaluation of

gene expression patterns in relation to Gleason patterns.
3.2 DSP identifies p-JNK and Ki-67 as
biomarkers for prostate tumor risk
stratification

The analysis of 94 ROIs derived from immune cell profiling,

PI3K/AKT, MAPK signaling pathways, and cell death modules

revealed the upregulation of several proteins when comparing

Gleason 4 and 5 to Gleason 3 samples. A Wilcoxon rank-sum test

was performed to assess the statistical significance of differences in

target expression between samples with Gleason grade 3 and those

with Gleason grades 4 or 5. p-JNK and Ki-67 were the only

significantly upregulated targets (adjusted p value of 0.01 and

0.02, respectively) in Gleason 4 and 5 PCa compared to Gleason

3 PCa (Figure 3A). The ROIs were selected to evaluate prostate

tumor cells, and p-JNK expression could be attributed to tumor

cells in H&E sections. Upregulation of p-JNK was observed in the

ROIs selected from TMA cores representing prostate cancer tissue,

with Gleason grades 4 or 5 showing a higher expression of p-JNK

compared to Gleason grade 3. p-JNK expression was found to be

homogeneous within the tumor in the respective ROI.
3.3 p-JNK expression correlates with a
shorter time to biochemical recurrence

To further investigate the role of JNK phosphorylation in tumor

progression, we conducted a validation cohort analysis using TMAs

of 154 PCa patients with long-term follow-up data (Table 1). The

validation cohort was stained for p-JNK expression using IHC. For

each TMA core, the p-JNK immunoreactive score (IRS) was

calculated based on two components: the intensity of p-JNK

staining and the fraction of positively stained cells. The staining

intensity was scored on a scale of 0 to 2.5, where 0 represents

negative, 1 indicates weak staining, 1.5 signifies weak to moderate

staining, 2 denotes moderate staining and 2.5 corresponds to

moderate to strong staining (Figure 3B). The proportion of

positive cells was defined as follows: negative staining was scored

as 0, below 10% of stained cells was scored as 1, 10–50% was scored

as 2, 50% to 90% was scored as 3, and above 90% was scored as 4.

The IRS was then calculated by multiplying the staining intensity

score by the score of the proportion of positive cells. The highest

IRS of all evaluable TMA cores per patient (TMA cores per patient

[median, range] = 3, 1-6) was considered the IRS of an individual

patient and the p-JNK IRS distribution ranged from 0 to 8

(Figure 3C). When patients were stratified into two groups

according to p-JNK IRS, Kaplan-Meier analysis showed that

patients with high p-JNK expression (p-JNK IRS > 4.5) tended to
frontiersin.org
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have a shorter time to biochemical recurrence (p = 0.1; Figure 3D).

To evaluate the sensitivity of p-JNK as a biomarker for predicting

biochemical recurrence, we determined the true positive and false

negative rates in the cohort of 153 patients from the IHC dataset

with available Gleason scores. True positive cases were defined as

Gleason ≥8 cases correctly identified as aggressive by p-JNK, while

false negative cases were Gleason ≥8 cases incorrectly classified as
Frontiers in Oncology 05
non-aggressive by p-JNK. For specificity, we assessed the number of

Gleason 7 cases correctly identified as non-aggressive by the

biomarker p-JNK (true negatives) and the cases misclassified as

aggressive by p-JNK (false positives). Our results showed a

sensitivity of 18.2% and a specificity of 92.1% for p-JNK. Due to

the low sensitivity but high specificity, p-JNK behaves as a rule-in

biomarker rather than a screening test for aggressive disease. A
FIGURE 1

Representative GeoMx® DSP scan of PCa specimen Gleason 3 and 4 TMA cores stained with morphology markers SYTO13, CD45 and PanCK along
with H&E staining. Scale bar = 250 µm.
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positive p-JNK result means high probability that patients truly

harbor aggressive disease. To further explore prognostic factors for

biochemical recurrence, we incorporated pathology−derived

parameters (e.g., Gleason score, and T stage) into our analysis.

Using Kaplan-Meier curves, we compared recurrence-free survival

across different risk groups defined by combination of these
Frontiers in Oncology 06
variables. This approach allowed us to determine whether

combining these pathology−derived parameters with p-JNK offers

improved predictive value for biochemical recurrence (Figure 4A-

C). Our results suggest that combining p-JNK with pathology

−derived parameters, Gleason score and T stage, enhances the

accuracy of predicting aggressive PCa and is associated with a
FIGURE 2

(A) Unsupervised clustering and heatmap of DSP protein expression data obtained from 94 Gleason grade ROIs from 38 PCa patients. Data
normalized to house keeper GAPDH & S6. (B) Heatmap visualization of target protein expression across patient samples ordered by Gleason score.
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FIGURE 4

Combined analysis of p-JNK status with pathology-derived parameters. (A) p-JNK status combined with Gleason score. (B) p-JNK status combined
with T stage. (C) p-JNK status combined with both Gleason score and T stage. p-JNK expression was stratified into high and low according to the
immunoreactive score (cutoff >4.5).
FIGURE 3

(A) Volcano plot of 44 differentially expressed target proteins in 94 ROIs comparing Gleason 3 to Gleason 4 and 5. The vertical dotted lines represent
the log2(fold change) of 0.5 and − 0.5. The horizontal dotted line shows the adjusted p-value (Benjamini-Hochberg) < 0.1. Significantly upregulated
proteins are p-JNK and Ki-67, highlighted in blue (p = 0.01 and 0.02, respectively). (B) A representative patient in the IHC cohort stained with p-JNK
(Thr183/Tyr185). The staining intensity was scored on a scale of negative, weak, weak-moderate and moderate and used to calculate the IRS of p-
JNK. Scale bar = 100 µm. (C) Histogram showing the distribution of p-JNK IRS in the validation cohort of 154 patients. (D) Kaplan–Meier curve for
154 patients of the validation cohort, stratified into patients with high (> 4.5; n = 24) or low (≤ 4.5; n = 130) p-JNK IRS.
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more unfavorable progression-free survival in PCa (p<0.05 for the

combination of p-JNK with Gleason score, p-JNK with T stage and

p-JNK with Gleason score and T stage, respectively).
4 Discussion

Heterogeneous malignancies such as PCa pose significant

challenges for risk stratification and clinical decision-making in

patients. Addressing this challenge requires advanced diagnostic

techniques to assess multiple tumor regions accurately, classify PCa

subtypes, and identify biomarkers associated with aggressive disease

(24). Emerging technologies such as DSP offer promising

opportunities to better characterize intratumoral heterogeneity,

particularly in FFPE slides, which are the standard method for

storing tumor tissue (8, 25). DSP is particularly well-suited for

comparing different regions within a tumor, as it enables precise

selection of specific areas of interest, offering a notable advantage in

spatially heterogenous tumors (11, 23, 26).

In this study, we utilized two independent cohorts of PCa

patients: one cohort (n=38) to identify biomarkers for PCa

aggressiveness via DSP and a larger validation cohort (n=154) with

available follow-up data to correlate these markers to biochemical

recurrence using IHC. Through the analysis of the spatial

composition in TMA of 38 PCa patients, we demonstrated that

PCa with varying Gleason grades exhibited distinct expression

patterns for two key proteins, Ki-67 and p-JNK, when comparing

Gleason pattern 3 to Gleason pattern 4 or 5 PCa. Considering that

Gleason grade 3 tumors represent a less aggressive form of PCa,

whereas Gleason grade 4 or 5 tumors are associated with more

aggressive disease, the differential expression of Ki-67 and p-JNK

suggests that these proteins may play a role in promoting tumor

aggressiveness. Ki-67, a marker of cellular proliferation, has been

repeatedly identified as a promising prognostic biomarker for PCa,

with a higher Ki-67 index correlating with worse biochemical

recurrence-free survival (27). JNK, a member of the MAPK family,

regulates a wide range of cellular processes (28). In this study, we

further focused on p-JNK because, unlike Ki-67, its role as a

biomarker for PCa aggressiveness remains less established. In our

validation cohort of 154 PCa patients, immunostaining with p-JNK

antibody revealed that higher p-JNK expression was associated with a

shorter time to biochemical recurrence, highlighting a potential role

of p-JNK upregulation in tumor progression. Combination of p-JNK

status and pathology-derived parameters such as Gleason score and T

stage was associated with improved risk stratification and provided a

more accurate prediction of progression-free survival in PCa. Given

the high specificity but low sensitivity of p-JNK observed in our study,

its potential clinical applications lie in refining patient stratification.

Specifically, p-JNK positivity can be used to identify a subset of

patients who could benefit from earlier or more aggressive adjuvant

therapies such as radiotherapy or systemic treatment following

prostatectomy. In cases where p-JNK is negative, it may serve a

valuable role when combined with other strong negative clinical or

pathology-derived predictors.
Frontiers in Oncology 08
JNK has a dual role in cancer, acting either as a tumor

suppressor by inducing cell death or as a promoter of cell

proliferation, depending on factors such as the type of stimuli,

tissue specificity, and signal intensity (29, 30). In response to stress,

JNK can initiate cell death by activating pro-apoptotic transcription

factors (31). Conversely, the loss of JNK signaling can contribute to

tumor formation through phosphorylation of specific signaling

proteins that stimulate growth-related gene expression (28). In its

dual role, JNK also promotes cell survival by downregulating

FoxO1-dependent autophagy (32–34). However, prolonged JNK

activation often leads to apoptosis mediated by TNFa (35). In other

tumor entities, JNK pathway deficiency was shown to support

HER2+-driven breast cancer (36), while elevated JNK expression

was associated with worse prognosis in colorectal cancer patients

(37). Increasing evidence indicates that JNK signaling is closely

related to cellular senescence, a state of permanent growth arrest

(38). The secretory profile of senescent cells can modify the tissue

microenvironment by evading immune surveillance and creating

conditions that robustly drive PCa progression (39, 40).

In PCa, JNK contributes to both apoptosis and tumor

progression, reflecting its complexity in cancer pathway

regulation. Activation of JNK has been shown to increase

sensitivity to chemotherapy and promote apoptosis in PCa cells,

indicating its potential in sensitizing tumors to treatment (41).

Similarly, inhibition of autophagy through the JNK pathway

significantly enhances apoptosis in PC3 cells (42). However, JNK

also promotes prostate tumor growth through interactions with the

tumor microenvironment (40, 42). Higher JNK expression corelates

with higher Gleason score and is associated with shorter overall and

progression-free survival in patients with castration-resistant PCa

(43). These findings suggest that targeting the JNK pathway could

be a promising therapeutic strategy for PCa, potentially improving

the effectiveness of current treatments. In addition, JNK as a

biomarker in early PCa could help differentiate aggressive from

indolent disease, thereby improving decision-making regarding

active surveillance versus radical treatment in PCa.

This study has several limitations including the small DSP

cohort. The use of a TMA containing Gleason 3, Gleason 4, and

Gleason 5 tumor areas is likely insufficient to fully capture the

spatial distribution of p-JNK expression across the entire tumor.

The relatively small protein panel includes primarily oncogenes,

while tumor suppressor genes were underrepresented. Furthermore,

whether p-JNK is also a biomarker in patients undergoing prostate

biopsy remains to be determined. Although our Kaplan-Meier

analysis suggested a potential association between high p-JNK

expression and shorter biochemical recurrence-free survival, this

trend did not reach statistical significance (p = 0.1). Therefore, our

findings regarding p-JNK must be considered exploratory, and

further validation in larger cohorts is required to establish its

prognostic value and its clinical utility beyond its initial

identification as a biomarker.

In summary, differentially expressed proteins in aggressive versus

indolent PCa can shed light on the molecular mechanisms driving

disease progression. Proteins that are upregulated in high-grade
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tumors could serve as potential biomarkers and open new therapeutic

avenues. This approach can ultimately contribute to the field of

personalized medicine by helping clinicians to tailor treatment

strategies based on the molecular characteristics of the tumor.
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