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the gene expression of the
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including genes involved
in cancer progression
and drug resistance
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2Biotherapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San
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Introduction: The tumor microenvironment (TME) plays a crucial role in cancer

progression, yet the interactions between tumor cells and stromal components,

such as fibroblasts, remain poorly understood. Traditional two-dimensional (2D)

culture models fail to accurately replicate the complexities of the TME, hindering

progress in cancer research and drug development.

Methods: This study presents a novel 3D spheroid model, generated using the

hanging drop system, that incorporates both tumor cells (B16F10mousemelanoma)

and fibroblasts (NIH/3T3), and aimed at simulating the early-stage TME.

Results:We demonstrate that fibroblasts are essential for ECM deposition, which

is absent in spheroids composed only of tumor cells. Co-cultured spheroids

exhibited a more organized structure, enhanced ECM deposition (type-VI

collagen), and more closely resembled the morphology of native tumors

compared to monocultures. RNA sequencing analysis revealed that the gene

expression profile of B16F10–NIH/3T3 spheroids closely matched that of in vivo

tumors, with 693 genes involved in critical pathways such as “pathways in cancer”

and those linked to drug resistance.

Discussion: These findings highlight the importance of fibroblast inclusion in 3D

models to replicate the genetic and structural features of the TME. Our spheroid

system provides a more accurate representation of early tumor stages and offers a

promising platform for drug screening, reducing the need for in vivo models by

allowing the selection of themost effective compounds for further testing. This work

underscores the potential of 3D culture systems in advancing our understanding of

tumor biology and improving the precision of cancer therapeutics.
KEYWORDS
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1 Introduction

The tumor microenvironment (TME) is a complex system

shaped by direct interactions among different cell types, soluble

factors, and extracellular matrix (ECM) (1). Thus, cancer cells form

only one component of the TME. The tumor stroma is composed of

mesenchymal cells supporting its structure (tumor-associated

fibroblasts and macrophages), endothelial cells and pericytes

feeding the system, and immune-system cells responding to the

cancer insult (T, B, and natural killer cells) (2). Structural cells

behave differently in different environments (3). Cancer-associated

fibroblasts constitute 5–10% of the total cells of many solid

epithelial tumors, such as those of the pancreas, stomach, and

breast (4), and they have diverse functions in the TME, including

matrix deposition and remodeling, extensive reciprocal signaling

with cancer cells, and crosstalk with infiltrating leukocytes (5). They

also contribute to carcinogenesis, tumor progression, and

metastasis (6, 7).

The ways in which non-cancerous cells and non-cellular

components of the TME collaborate with cancer cells and help

them to acquire invasive and metastatic features remain unclear. In

addition, the specific signals induced during pathological epithelial–

mesenchymal transition (EMT) have not been identified (8).

Currently, we know that it becomes increasingly important for

cancer cells to sustain their growth and functions achieved by

recruiting cellular components and modulating their ECM as a

tumor develops. Additionally, tumors become increasingly hypoxic

with increased size, causing the formation of new vasculature to

facilitate the diffusion of nutrients and oxygen to cancer cells

through angiogenesis (9, 10). Thus, the TME plays key roles in

cancer promotion and maintenance by regulating stemness

properties via the activation of key signaling pathways involved in

self-renewal, angiogenesis, and the promotion of long-term survival

(11). Cancer cells appear to “educate” surrounding (e.g., stromal

and immune) cells by secreting signals that recruit, transform, and

alter microenvironment functions and activities, in turn facilitating

tumor growth and cancer progression (12). Tumors thus leverage

ECM remodeling to create a microenvironment that promotes

tumorigenesis and metastasis.

Given the emerging importance of the TME in the modulation

of cell morphology and function, sophisticated tumor models

incorporating TME features are needed to elucidate cellular,

molecular, and immunological mechanisms of tumor response

and resistance (13, 14). The intensive assessment of in-vitro

models for the study of tumor complexity has led to the

generation of various three-dimensional (3D) culture methods

that better mimic in-vivo conditions than do usual two-

dimensional (2D) methods (15, 16). 3D mono- and co-cultures

reproduce in-vivo features such as 3D cell morphology, which

permits cells to better execute their functions and deposit

significantly more ECM (17, 18). These culture techniques also

induce cellular phenotype switches from physiological to

pathological profiles related to epithelial–mesenchymal transition

and cancer-associated fibroblast markers (19–22). Recent studies

conducted with 3D cancer models have focused on the cultivation
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of single cells or spheroidal cell groups, with or without different

types of matrix (13–15). The production of cell spheroids is possible

when cells have the ability to self-assemble. Hanging drop, scaffold,

and hydrogel systems have been developed for this purpose, and

spheroid cultures have been applied in drug and nanoparticle

testing and disease modeling (23–25). Each approach offers

distinct advantages and disadvantages suitable for different

research objectives. The hanging drop method relies on gravity-

driven self-assembly of cells into spheroids in hanging droplets of

cell suspension: surface tension keeps the droplet intact, preventing

cells from adhering to a flat surface and promoting cell-to-cell

interaction, resulting in the formation of a multicellular aggregate

(26). Among the advantages, there surely are its low cost and the

easy controlled spheroid size, by adjusting cell number seed. The

hanging drop method is moreover very useful for studying cell-cell

and cell-extracellular matrix interactions, and this is the reason why

we selected it for our study. On the other hand, this system required

experience from the operator, to avoid the risk of spheroid loss

during media changes. Moreover, the time of observation is limited

(2–3 weeks on average) due to the inability of media to penetrate in

the core of the spheroid, leading the system to die. Scaffold-based

cell culture, instead, provides a structural framework for cells to

grow and organize in 3D and can facilitate the delivery of cells,

drugs, or growth factors. Scaffolds are typically made of biomaterials

(natural or synthetic) mimicking the ECM and allowing cells to

attach, proliferate, and migrate within the structured environment.

This system supports enhanced cell organization and more realistic

cell interactions compared to 2D cultures and hanging drop system.

Indeed, scaffolds are extensively useful for tissue engineering and

regenerative medicine. The possibility of choosing the more suitable

scaffold among many types is definitely an advantage but every

scaffold can influence cell behavior differently, requiring careful

selection and optimization for each application. Moreover, cells

might not well tolerate biomaterials and, because if this matter,

most 3D culture system are now build with hydrogels. The hydrogel

system utilizes water-swollen, cross-linked polymer networks, as a

3D scaffold, for cell encapsulation or surface coating. Cells can be

mixed with hydrogel precursors and encapsulated during gelation,

or seeded onto pre-formed hydrogel substrates, allowing them to

grow in a 3D environment surrounded by a biomaterial that

resembles the ECM (27). Since hydrogels are often composed by

decellularized and lyophilized ECM, they are the only system that so

far better mimics the native tissue environment, also due to high

water content and controllable stiffness. However, some hydrogels

may exhibit limited mechanical strength.

Hanging drops, scaffolds, and hydrogels each offer unique

capabilities for 3D cell culture. The choice between these methods

depends on the specific research question. In this work, we used a

hanging drop system to generate spheroids since we are studying the

ECM deposition capability and its impact on tumor cells features.

Moreover, it is a 3D culture system suitable for the study of the initial

stage of the TME and the understanding of biological mechanisms,

pathways, cell crosstalk, and morphological changes occurring in

different cells present in the tumor bulk. It is scaffold free, which

enables the observation of ECM deposition by the cells forming the
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spheroid. In this study, we also demonstrate the importance of

fibroblast inclusion in 3D tumor systems and the similarities of

RNA pathways in the system to those in a real model. Compared to

previous studies on 3D melanoma spheroids generated by hanging

drop system (24, 28), the addition of NIH/3T3 fibroblasts in the

proposed model allows a longer lasting experimentation time (up to 3

weeks) and a more realistic tumor cell gene expression, especially for

genes involved in therapy resistance. The study findings suggest that a

better understanding of tumorigenic ECM remodeling is crucial not

only for the discovery of new biological mechanisms, but, more

importantly, also for the discovery of new targets and development of

new cancer treatments.
2 Materials and methods

2.1 Cell lines and animals

The B16F10 (ATCC® CRL-6475™, Manassas, Virginia) mouse

melanoma cell line was cultivated in RPMI medium supplemented

with 10% fetal calf serum and 1% penicillin/streptomycin/fungizone

solution. The NIH/3T3 mouse fibroblast line (Interlab Cellular

Bank Cell Line Collection, San Martino Hospital, National

Institute of Cancer Research, Genova, Italy) was cultivated in

complete Dulbecco’s modified Eagle medium with 10% fetal calf

serum and 1% penicillin/streptomycin/fungizone solution. One-

year-old female C57BL/6 mice (Charles River Laboratories,

Wilmington, MA) were used for this study.
2.2 Spheroid generation and morphological
analysis

B16F10 cells were seeded alone or with NIH/3T3 cells at a ratio

of 1:4 (700:3000 cells, due to the difference in proliferation rate) in

20 µL complete Dulbecco’s modified Eagle medium in lidded sterile

Petri dishes (29). For the creation of fluorescent spheroids and

examination of cell distribution therein, B16F10 and NIH-3T3 cells

in co-culture were stained with PKH26 (2 µM/106 cells) and

carboxyfluorescein succinimidyl ester (10 µM/106 cells),

respectively. The efficacy of staining was evaluated by flow

cytometry (LSRFortessa; Becton Dickinson, Franklin Lakes, NJ).

Starting from day 5 of culture, the medium was changed as needed.

On day 7, the 3D morphology of the spheroids generated was

observed under an FV500 confocal laser scanning microscope, and

the classification of Kenny et al. (30) was used to characterize cell

organization. Spheroid roundness was measured using the

roundness function with ImageJ software (National Institutes of

Health, Bethesda, MD, USA; http://rsb.info.nih.gov/ij/).
2.3 Animal procedures

The mice were handled according to guidelines conforming to

Italy’s current regulations regarding the protection of animals used
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for scientific purposes. The animal experimentation ethics

committee of the National Institute of Cancer Research and the

Italian Ministry of Health approved the study procedures (protocol

517: 22418.142). Mycoplasma-free B16F10 cells (n = 500,000) in

100 µL phosphate-buffered saline were injected subcutaneously into

both flanks of the mice (13). The mice were sacrificed when the

tumor volumes [1/2 (length ×width2)] reached 1 cm3 (31).
2.4 Green fluorescent Linterna™ B16F10
cell sorting

The Linterna™ B16F10 cell line (Innoprot, Derio, Spain), with

turbo–green fluorescent protein (GFP) at the cytoplasmic level, was

used to generate spheroids with red fluorescent NIH/3T3 cells

(Innoprot), 2D co-culture with NIH/3T3 cells, and a monolayer.

GFP-positive cells were isolated from the cultures using a FACS

ARIA IIU-2 sorter. Dead cells were excluded by 7-aminoactinomycin

D staining.
2.5 RNA isolation and sequencing

Total RNA from 2D cultured cells, spheroids and cells sorted

from tumors (n=3) was extracted using Trizol reagent (Invitrogen,

Carlsbad, CA, USA) and an RNeasy kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions. Total RNA

concentrations and quality were evaluated for sample inclusion in

subsequent in-vitro transcription assays based on spectrophotometric

absorption ratios of 260/280 > 1.8 (NanoDrop, Wilmington, DE,

USA) and RNA integrity numbers > 8.0, determined via

electrophoretic analysis (Genewiz, NJ, USA). The RNA was used

for next-generation sequencing library generation (Genewiz).

Differential expression analysis was performed using NOIseq (32)

and GFold (33).
2.6 Pathway analysis

A heatmap comparing gene expression in GFP Linterna™

sorted cells from in-vivo mouse tumor tissue and 2D and 3D co-

cultured cell samples with respective control samples was generated

using the heatmap.2 tool of the gplots package (version 3.1.1) in R.

The average normalized expression across the three B16F10 control

conditions was used to generate the heatmap because the NOISeq R

package (version 2.34.0) simulates technical replicates for

differential expression analysis when an insufficient number of

replicates is available, resulting in slight differences among

comparisons. Database for Annotation, Visualization, and

Integrated Discovery (a web-based tool for gene annotation and

the interpretation of biological meaning) Kyoto Encyclopedia of

Genes and Genomes pathway analysis was performed using

unregulated genes that overlapped only between the mouse tumor

and spheroid samples. To identify these genes, we first selected

genes with the same expression levels in the spheroids and in vivo
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model, and then excluded genes with the same expression levels also

in the two 2D culture samples. A mean difference (MD) plot (log-

intensity ratios vs. log-intensity averages) was generated based on

differential expression between GFP B16F10 Linterna™ cells sorted

from 3D co-culture with fibroblasts and in-vivo tumors generated

from the same cell line.
2.7 Immunohistochemistry and
immunofluorescence analyses

Tissues were embedded in optimal cutting temperature

compound, cut into 7-µm-thick sections (unless otherwise

specified) with a cryostat (CM3050S; Leica, Wetzlar, Germany),

and stained with hematoxylin and eosin (Bio Optica, Milan, Italy)

or with Picrosirius Red Stain kit (24901, Polyciences, Warrington,

PA), according to the manufacturer ’s instructions. For

immunofluorescence (IF) analysis, the sections were blocked with

20% goat serum and incubated with the primary antibody type-VI

collagen (1:100, ab6588; Abcam, Cambridge, UK) or mTOR (1:500,

PA5-34663, Invitrogen, Waltham, MA). The slides were then

washed and incubated with Alexa Fluor 594–labeled goat anti-

rabbit immunoglobulin G (heavy and light chains, 1:400, A11007;

Invitrogen, Waltham, MA] or Alexa Fluor 488–labeled goat anti-

rabbit immunoglobulin G (heavy and light chains, 1:800, A11006;

Invitrogen). The nuclei were stained with 500 ng/mL 4′,6-
diamidino-2-phenylindole (d9542; Sigma-Aldrich). Random fields

of each specimen were photographed under a direct microscope,

and ECM (type-VI collagen) deposition was assessed on frozen

sections obtained on days 7, 14, and 21 of spheroid culture.

Quantification of collagen VI signal was assessed by calculating

the Integrated Density value via ImageJ software of three different

spheroids each group.
2.8 Statistical analysis

Graphs were created using the GraphPad Prims software

(version 8). Data are reported as means ± standard deviations.

Data from pairs of experimental groups were compared using the

two-sided Student’s t test. P values < 0.05 were considered to

be significant.
3 Results

3.1 Fibroblasts are needed for the
generation of an early-stage 3D tumor
model

Using the hanging drop system, B16F10 spheroids, which did

not last more than 1 week, and B16F10–NIH/3T3 spheroids were

generated to reproduce an early 3D tumor stage model suitable for

the study on cell crosstalk and ECM (Figure 1A). Structural analysis

were assessed every 7 days for 3 weeks. Deposition of ECM was
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detected through IF analysis and Picrosirius Red Staining. Signals

reflecting type-VI collagen deposition were barely detectable in

B16F10 spheroids, but clear in co-cultured spheroids

(Figures 1B–E). Similarly, red staining, representing collagen

(Figures 1B–E, Picrosirius Red), increases with the addition of

fibroblasts to the spheroid model and over time. Quantification of

Collagen VI in Figure 1F clearly shows the difference of spheroids

ECM in presence or not of fibroblasts. Also, nuclear signaling

decreased over time, reminding the limitation of the spheroids 3D

system. (Figures 1D, E).

As Figure 2 shows, it is very evident how, beside the deposition

of ECM, even the morphology of the single- and two-cell spheroids

differed. According to the classification of Kenny et al. (25), each cell

line adopts a colony morphology of one of four main classes in 3D

culture. These morphologies reflect gene expression profile and

protein expression patterns of the cell lines, and distinct

morphologies are also associated with tumor cell invasiveness and

metastases formation. According to this classification, the B16F10–

NIH/3T3 spheroids belong to the “mass class” (roundness index =

0.914), with cells organized regularly around the colony center

(Figure 3). The B16F10 spheroids belong instead to the “grape-like

class” (roundness index = 0.613, p = 0.003 vs. B16F10–NIH/3T3

spheroids), with poor cell–cell contact, resulting in a lack of

compactness and a grape-like appearance (Figure 3). Therefore,

the B16F10 spheroids exhibited a lack of robust cell–cell adhesion

and the absence of type-VI collagen. Fluorescence examination of

B16F10–NIH/3T3 spheroids indicated that the two cell lines were

distributed homogeneously in the co-cultured spheroids (Figure 2).
3.2 The 3D spheroid model shares many
biological processes with the in vivo TME

To understand the genetic signature beyond the different

spheroids’ phenotype, gene expression of B16F10 cultured in the

different condition was analyzed and the derived heatmap revealed

no evident similarity or difference in gene expression among the

four samples compared (Figure 4). The MD plot between B16F10

sorted from B16F10–NIH/3T3 spheroids and from in vivo tumor

showed, instead, that 1780 genes were unregulated, meaning having

the same level of expression in the co-culture spheroid model and in

vivo model (Figure 5). In this comparison, 6263 genes were instead

downregulated and 5670 genes were upregulated in B16F10 cells

cultured in spheroid with fibroblasts compared to in vivo tumor.

The exclusion from this list of 1780 genes of the genes having the

same expression level even in the other two 2D systems (B16F10

cultured alone and with fibroblasts) allowed us to identify a set of

693 genes with the same expression levels in B16F10–NIH/3T3

spheroids and in vivo tumor samples (Figure 6A). These 693 genes

were involved in 39 Kyoto Encyclopedia of Genes and Genomes

pathways, 23.1% of which were associated with the TME. Notably,

the “pathways in cancer” term was most enriched (Figure 6B,

Table 1). In particular, the following 20 genes were associated

with this term: EGLN1 [the proline hydroxylase mediating

degradation of hypoxia-inducible factor a (HIFa) that is
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associated with tumorigenesis and radioresistance (34)]; RALBP1

[it plays a role in receptor-mediated endocytosis, is a downstream

effector of the small GTP-binding protein RAL and mediates

multidrug-resistance (35–37)]; FZD3 [the receptor for the
Frontiers in Oncology 05
wingless type MMTV integration site family of signaling proteins,

that is involved in ovarian cancer resistance (38)]; PTGER1 [the

prostaglandin E receptor 1 that mediates proliferation of tumor cells

(39)]; BRAF [it plays a role in cell growth and division and is tumor
FIGURE 2

Spheroid morphology. (A) Confocal laser scanning microscopic images of representative spheroids made with B16F10 and/or NIH/3T3 cells on day
7. Magnification = 10×. (B) Spheroid roundness (mean ± standard deviation, n = 9). **p < 0.01 (B16F10 vs. co-culture, p = 0.003).
FIGURE 1

Spheroid generation and ECM deposition. (A) Spheroids were generated by B16F10 cells and by B16F10 and NIH/3T3 cells combination. At days 7, 14 and 21
analyses of morphology and extracellular matrix deposition were executed. ECM deposition has been detected by type-VI collagen deposition in B16F10
spheroids at 7 days (B) and B16F10–NIH/3T3 spheroids at 7 (C), 14 (D), and 21 (E) days, and has been quantified (F). Magnification = 40×. H&E, hematoxylin
and eosin. DAPI, 4′,6-diamidino-2-phenylindole. Collagen in spheroids at day 7, 14 and 21 has been analyzed also with Picrosirius Red Staining (B–E).
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drug target (40)]; PRKCA [a protein kinase involved in cisplatin

resistance (41)]; ADCY7 [it catalyzes the formation of cyclic AMP

from ATP and is abnormally expressed in multiple human cancers

(42)]; MTOR [it controls many cell functions, including cell

division, survival, and growth, and is involved in cancer drug

resistance (43–45)]; CKS1B [it plays a critical role in cell cycle

progression, is associated with the pathogenesis of many human

cancers and strictly related to drug resistance (46)]; NFKBIA [the
Frontiers in Oncology 06
NF-kappa-B inhibitor that can provoke drug resistance in cancer if

mutated (47)]; RASSF1 [it is a tumor suppressor agent and his

inactivation can dysregulate the RAS, Hippo, Wnt and other tumor-

related signaling pathways potentially leading to drug resistance

(48)]; CDK6 and CDK4 [that regulate cell cycle and are involved in

the development of several types of cancer (49)]; GNAQ [part of a

trimeric G protein complex is mutated mostly in uveal melanomas

(50)]; TRAF5 [his inhibition drives cancer cell apoptosis and
FIGURE 4

Heatmap of gene expression. The average normalized expression of the B16F10 control conditions from the three comparisons was used to
generate the heatmap.
FIGURE 3

Cell distribution in representative B16F10–NIH/3T3 spheroids (cells stained with PKH26 and carboxyfluorescein succinimidyl ester, respectively) on
day 7. Some spheroids were generated with fluorescently stained cells (PKH26 for B16F10 and CSFE for NIH/3T3 cells) for the examination of cell
distribution by confocal laser scanning microscopy. Confocal laser scanning microscopic images, magnification = 10×.
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improves retinoic acid sensitivity in multiple cancers models (51)];

MAPK1 [the MAPK pathway is responsible for sequential

activation of downstream targets, such as MEK and the

transcription factor ERK, which control numerous cellular and

physiological processes, including organism development, cell cycle

control, cell proliferation and differentiation, cell survival, and

death: defects in this signaling cascade are associated with cancer

development (52)]; EP300 [it regulates cell growth and division, is
Frontiers in Oncology 07
critical for normal development and has recently been shown as

tumor activator, to promote cancer cell proliferation, immune

evasion and drug-resistance (53)]; ITGA6 [the transmembrane

receptor involved in cell adhesion and signaling which enhances

radiation resistance via PI3K/Akt and MEK/Erk signaling (54)];

VHL [his mutation causes cancer and his germline inactivation

causes hereditary cancer syndrome (55)]; and RAF1 [pro-oncogene

contributing to cell proliferation (56)]. To validate the RNA
FIGURE 5

Plot of mean differential gene expression between green fluorescent protein B16F10 LinternaTM cells sorted from three-dimensional co-culture with
fibroblasts and in-vivo tumors generated from the same cell line. Black dots, unregulated genes (n = 1780); red dots with negative (positive) x-axis
values, genes down-regulated (upregulated) in spheroids relative to tumor samples.
FIGURE 6

Selection of genes, KEGG pathways analysis and protein validation. (A) For each of the 3 comparisons, the genes having the same expression level
were selected, generating 3 lists of genes, one for each comparison. All the genes present in the 2 lists of genes generated from comparisons 2 and
3 were removed from the list of genes generated from the comparison 1, obtaining the exclusive gene signature in common between spheroid and
in vivo model. (B) Ratio of the number of genes involved in a pathway to the total of 693 genes. FDR: false discovery rate. (C) mTOR protein IF
images representing of 3D co-cultures, 2D co-cultures, monocultures and tumor tissue. mTor in yellow and Dapi in blue. Dot plot shows relative
mTOR quantification.
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analysis, we quantified with IF the level of mTOR protein

(Figure 6C), confirming the presence of the protein exclusively

within the actual tumor tissue and the B16F10–NIH/3T3 spheroids.

All these genes play a critical role in cancer progression and

more importantly, they are associated to therapy resistance. These

results underlay the remarkable differences existing between 2D and

3D tumor culture systems mainly impacting on the in vitro re-

creation of a TME reliably reminiscent of the in vivo original one

and the subsequent induction of gene expression patterns related to

cancer progression and therapy resistance, crucial aspects in cancer

research devoted to identification of pathogenic pathways and

target molecules for therapeutic agents.
4 Discussion

The study of the TME is becoming essential in the field of

oncology. Reproducing tissues in vitro should realistically

recapitulate the native cell–microenvironment crosstalk, central

for the correct functionality. Indeed, the structure and chemical

nature of the scaffold material when culturing in 3D play a pivotal

role. However, in vitro techniques for the generation of models

incorporating the ECM are still in a developing stage. Synthetic or
Frontiers in Oncology 08
semi-synthetic materials have often led to disappointing results due

to the difficulty in replicating the sophisticated signals encoded

within the native ECM (57). Although formed by the same

structural units (i.e., elastin, collagen, hyaluronan, proteoglycans,

fibronectin, and laminin), the specific organization and amount of

structural units of the ECM vary from organ to organ, making

necessary to reproduce a realistic ECM composition to mimic a

native environment. In this work, we demonstrated the importance

of the natural cell produced ECM for in vitro experimentation. We

developed a model that mimics the early-stage tumor environment

culturing and analyzing spheroids made from tumor cells (B16F10)

alone and in co-culture with fibroblasts (NIH/3T3 cells). The

system we choose for the generation of the spheroids was the

hanging drop system, allowing an undisturbed ECM deposition by

fibroblasts. To determinate the abundance of the ECM in our

system, we decided to keep track of Collagen type VI, since it is

abundant in melanoma and other tumor tissues (58–60). We

detected ECM only in the co-cultured spheroids (tumor cells +

fibroblasts): indeed only these spheroids lasted for more than 1

week (up to 21 days). Based on these results, we deduce that

spontaneous ECM deposition can be obtained only when tumor

cells and fibroblasts are both present in a spheroid model, and thus

that ECM deposition is fibroblast dependent. Moreover, the
TABLE 1 KEGG pathways for 693 genes with same expression levels in B16F10 cells sorted from three-dimensional co-culture with fibroblasts and
in-vivo tumor samples.

Pathway Genes (n) Pathway Genes (n)

Pathways in cancer 20 Melanogenesis7 8

RNA transport 14 T-cell receptor signaling pathway 8

Spliceosome 13 HIF-1 signaling pathway 8

Proteoglycans in cancer 13 Lysosome 8

Regulation of actin cytoskeleton 13 Non-small cell lung cancer 7

Purine metabolism 12 Long-term depression 7

Rap1 signaling pathway 12 Renal cell carcinoma 7

FoxO signaling pathway 11 ErbB signaling pathway 7

Hepatitis B 11 GnRH signaling pathway 7

Oxytocin signaling pathway 11 Phosphatidylinositol signaling system 7

Calcium signaling pathway 11 Glucagon signaling pathway 7

Vascular smooth muscle contraction 10 One carbon pool by folate 6

Insulin signaling pathway 10 Pancreatic cancer 6

cGMP-PKG signaling pathway 10 Chronic myeloid leukemia 6

Influenza A 10 Gastric acid secretion 6

Type II diabetes mellitus 9 Prolactin signaling pathway 6

TNF signaling pathway 9 Bladder cancer 5

mTOR signaling pathway 8 SNARE interactions in vesicular transport 4

Glioma 8 Primary immunodeficiency 4

Long-term potentiation 8
Bold text indicates cancer-associated pathways (23.1% of the total).
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B16F10–NIH/3T3 spheroids have a “mass” morphology, whereas

the B16F10 spheroids have a “grape-like” morphology due to the

lack of type-VI collagen deposition, confirming the fibroblast-

dependent nature of ECM deposition. Therefore, fibroblasts are

needed for the generation of the early tumor stage 3D model we

proposed, because of their major roles as ECM producers and TME

organizers (61). Moreover, we observed homogenous distribution of

the two cell lines in the spheroids, indicating that they interacted

with each other in equilibrium and synergy, without competition, to

build an organized structure.

Not only the structural similarity, but we also demonstrated the

gene expression likeness between a subcutaneous tumor tissue and a

tumor-fibroblast spheroid model. Indeed, a major limitation of in

vitro 2D monoculture models is the lack of the realistic cancer cell

signatures. Cougnoux et al. (62) compared pathway analysis of

cancer cells grown in 2D and cells from 3D spheroids: 3D spheroids

successfully recapitulated in vivo transcriptional states characterized

by high expression of genes involved in the ribosome, in the

proteosome and in glycolysis/gluconeogenesis. 2D-cultured tumor

cells appear to be sensitive to certain drugs that are ultimately not

effective in real environments, including in patients with cancer.

Moreover, nowadays it is well described the importance of cancer

associated fibroblasts in tuning cancer progression and drug

resistance (63, 64). Thus, the use of 3D culture models including

matrisome cells like fibroblasts is essential to improve our

understanding of tumor biology and the precision of drug

screening. We confirmed the gene expression similarity between

the co-cultured spheroid and the native tumor microenvironment

particularly regarding genes involved in cancer-related pathways.

We even validated mTOR protein levels and demonstrated that it

was detectable exclusively in the 3D system including both cell lines,

as well as in the actual tumor tissue, compared to single cell line

culture, or 2D co-culture. The mTOR protein level is higher in the

proposed 3D model compared to the actual tumor tissue most

probably because just cancer cells and fibroblasts compose the 3D

system while the actual tumor tissue includes many other cell type

and matrix where mTOR is not present. This means that we are

highlighting the real features of cancer cells in the proposed system,

but the heterogeneity of the whole TME is still not well

represented yet.

These results highlight the importance of 3D models including

fibroblasts mimicking of the TME for tumor experimentation. The

spheroid model we proposed is therefore eligible for a realistic early

tumor stage in vitro system incorporating tumor cells, tumor

associated fibroblast and ECM, that all together tunes the genetic

expression towards a more realistic environment, incorporating

tumor progression gene expression and drug resistance features.

However, the tumor heterogeneity and especially the immune

system interaction are missing in the proposed model. A more

sophisticated and complete system, perhaps with the incorporation

of endothelial cells and functioning vessels, would allow the

better media perfusion, for a longer lasting system, and the
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possibility to incorporate the immune system component, to

test immunogenicity and immune cells response to different

challenges. The increase utilization of this 3D system will

furthermore reduce significantly in vivo experimentations, being a

model for screening a considerable number of drugs and select the

only ones with promising results for the next step of screening in

vivo (65).
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