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Purpose: The goal of this paper is to compare the effectiveness of three deep

learning models (2D, 3D, and 2.5D), three radiomics models(INTRA, Peri2mm,

and Fusion2mm), and a combined model in predicting the spread through air

spaces (STAS) in non-small cell lung cancer (NSCLC) to identify the optimal

model for clinical surgery planning.

Methods: We included 480 patients who underwent surgery at four centers

between January 2019 and August 2024, dividing them into a training cohort, an

internal test cohort, and an external validation cohort. We extracted deep learning

features using the ResNet50 algorithm. Least absolute shrinkage selection operator

(Lasso) and spearman rank correlation were utilized to choose features. Extreme

Gradient Boosting (XGboost) was used to execute deep learning and radiomics.

Then, a combination model was developed, integrating both sources of data.

Result: The combined model showed outstanding performance, with an area

under the receiver operating characteristic curve (AUC) of 0.927 (95% CI 0.870 -

0.984) in the test set and 0.867 (95% CI 0.819 - 0.915) in the validation set. This

model significantly distinguished between high-risk and low-risk patients and

demonstrated significant advantages in clinical application.

Conclusion: The combined model is adequate for preoperative prediction of

STAS in patients with stage T1 NSCLC, outperforming the other six models in

predicting STAS risk.
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Introduction

Lung cancer remains the leading cause of cancer-related

deaths worldwide, with non-small cell lung cancer (NSCLC)

accounting for approximately 80% of cases (1). Among NSCLC

subtypes, lung adenocarcinoma (LUAD) is the most prevalent.

Surgical resection is the standard treatment for localized NSCLC,

yet postoperative recurrence remains a significant challenge,

often linked to unique invasion patterns such as spread through

air spaces (STAS) (2, 3). STAS, defined by the WHO in 2015 as

the presence of tumor cells in the lung parenchyma surrounding

the primary tumor, is recognized as the fourth type of tumor

invasion in LUAD and is associated with poorer prognosis (1).

For STAS-positive individuals with early-stage lung cancer,

lobectomy provides a better clinical prognosis compared to

sublobar resection, reducing postoperative tumor recurrence

and metastasis (2, 3).

The gold standard for STAS diagnosis is histopathological

examination post-surgery. However, preoperative biopsy and

intraoperative frozen section examination often face limitations

such as low sensitivity and limited tissue samples (4, 5).

Consequently, there is a pressing need for non-invasive methods

to predict STAS preoperatively, aiding in surgical planning and

improving patient outcomes.

Several studies indicate that STAS results in specific radiological

features in CT imaging of lung cancer, such as lobulation, vascular

convergence, pleural retraction, and the proportion of solid tumor

components (6, 7). This suggests that these imaging characteristics

may help predict STAS. Radiomics provides a non-invasive method

for extracting large amounts of imaging information quickly,

generating high-dimensional, mineable data from images,

allowing for deeper analysis, prediction, and interpretation of

extensive imaging datasets (8). Numerous scholars worldwide

have init iated studies on predicting early-stage lung

adenocarcinoma STAS using radiomics (9–11). However,

traditional radiomics features are manually defined and may not

fully capture the tumor phenotype. Deep learning, particularly

convolutional neural networks (CNNs), offers a more adaptive

approach by extracting features directly from raw images,

potentially enhancing predictive accuracy (12–14). Recent studies

have demonstrated the effectiveness of deep learning models in

predicting STAS, with 3D CNN models showing superior

performance (15–17).

The novelty of this study lies in the integration of multiple deep

learning models (2D, 2.5D, and 3D) with radiomics models

(INTRA, Peri2mm, and Fusion2mm) to predict STAS in stage T1

NSCLC. While previous studies have explored either radiomics or

deep learning approaches separately, our combined model leverages

the strengths of both methods to improve predictive accuracy.

Additionally, this is the first study to introduce a 2.5D CNN

model for STAS prediction, which captures features from both

the primary tumor slice and adjacent slices, offering a more

comprehensive analysis of tumor characteristics. This approach

not only enhances the predictive power but also provides a more
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robust tool for preoperative surgical planning, potentially

improving patient outcomes.
Patients and methods

Patient characteristics

All procedures in this research adhered to the guidelines laid out in

the Declaration of Helsinki. Approval of the study protocol was granted

by the Huzhou First People’s Hospital Ethics Committee, which allowed

informed consent to be waived because the study was retrospective. The

overall workflow of this study is illustrated in Figure 1.

We selected 480 patients who underwent a procedure to remove

clinical stage IA lung adenocarcinoma (tumor size ≤3 cm) based on

the 8th edition of the TNM classification at four centers between

January 2019 and August 2024 (Figure 2).

The inclusion criteria were: (i) tumor diameter on preoperative

CT imaging not exceeding 3 cm according to the 8th edition of

TNM staging guidelines; (ii) CT imaging performed within one

month before surgery; (iii) pathological confirmation of invasive

lung adenocarcinoma.

Exclusion Criteria were: (i)History of neoadjuvant therapy; (ii)

Presence of multiple pulmonary nodules on preoperative CT scans;

(iii)Past or present diagnosis of other malignant tumors; (iv)pure

ground glass nodules on CT; (v)Evidence of distant metastasis.

The development dataset included 247 lesions obtained from 480

patients. We partitioned the dataset at random into a training set of 172

lesions and a test set of 75 lesions, maintaining a 7:3 ratio. Approximately

30% of the lesions in each dataset tested positive for STAS. To validate

the models further, we included 233 individuals whose lung cancer was

surgically resectioned during its early stages at three institutions between

January 2019 and August 2024 as the validation set. Thus, the outcome

cohort for predicting STAS consisted of 480 patients from the training,

test, and internal validation sets.
Histopathological evaluation

Clinical outcomes involved re-evaluating the hematoxylin and

eosin tissue sections using WHO criteria for STAS to establish an

agreement on STAS status. Tum cells in lung air spaces identified

STAS positivity away from the primary tumor’s boundary. There

are three main forms of STAS: (i) air spaces filled with micro nipple

structures that do not have central fibrovascular cores; (ii) solid

nests where air spaces are filled with the tumor’s solid components;

and (iii) air spaces with multiple discrete and separate single cells.
Clinical variables

Patient clinical information was gathered from our hospital’s

electronic medical records, including gender, age, smoking history,

and levels of CEA and CA125.
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Image acquisition and preprocessing

All patients received a standard chest CT scan. Comprehensive

details regarding treatment protocols and clinical information are

outlined in the Supplementary Methods. Initially, we resampled all

the CT images and standardized the voxel dimensions to 1 mm x

1 mm x 1 mm. Subsequently, we standardized the window width

and window level to 1300 and -300, respectively, which we

determined to be suitable for the segmentation of the region of

interest (ROI).
Region of interest segmentation

A radiologist with forty-five months of expertise in chest CT

manually sketched the ROI around the tumor outline, referred to as

INTRA. They segmented each slice of the images in the lung

window (width: 1300 HU; level: -300 HU) using the open-source

software ITK-SNAP (version 3.8.0, http://www.itksnap.org). All

ROIs that radiologist A had manually segmented were reviewed

by radiologist B, who has ten years of experience in the field. We
Frontiers in Oncology 03
expanded the initial ROIs by 2 mm into the peritumoral regions,

which we termed the peri2mm areas. We then combined the tumor

ROIs with the peri2mm areas to create a new region of interest

called the fusion2mm ROI. We utilized this data to perform an

intraclass correlation coefficient (ICC) analysis, assessing the

dependability and uniformity of the ROI delineations.
Radiomics feature extraction and model
construction

Our study used PyRadiomics to extract the radiomics features

from INTRA, Peri2mm, and Fusion2mm. We extracted a total of

1,834 radiomic features, such as first-order, shape-based, and

texture features; detailed parameters for this extraction can be

found on the PyRadiomics website (https://pyradiomics.

readthedocs.io/en/latest/).

Radiomic features were standardized using z-score

normalization. To handle the high degree of feature-to-feature

correlation (Spearman correlation coefficient = 0.9 or higher), we

used a greedy, recursive filtration technique. This method iteratively
FIGURE 1

Workflow diagram for the development of the predictive models. Tumor segmentation and region of interest (ROI) delineation are performed by
experienced radiologists. The Radiomics model is developed using PyRadiomics. INTRA refers to the internal region of the tumor. Peri2mm
represents the region within 2 mm around the tumor. Fusion2mm stands for the combined region of the internal part of the tumor and the region
within 2 mm around it. For the deep learning (DL) model, the pre-trained ImageNet ResNet50 is fine-tuned based on our training data. For the two-
dimensional deep learning (2D DL) model, the tumor’s maximal ROI cross-section is cropped as the input for ResNet50. For the 2.5D DL model, the
tumor’s maximal ROI cross-section and six adjacent CT slices above and below it from seven channels are cropped as the input for ResNet50. For
the 3D DL model, The 3D images of the primary tumor, along with their corresponding labels, were then used as input for ResNet50. We applied the
Least Absolute Shrinkage and Selection Operator(Lasso) regression technique to select features. The extracted features from four basic models are
combined for the early fusion model to train an XGboost classifier. The output probabilities from four basic models are used for the late fusion
model to develop a stacking model with an XGboost classifier. Receiver Operating Characteristic (ROC) curves are used to evaluate the predictive
model’s performance. The Delong test was employed to compare the AUC values.
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removes the most redundant features until no features with a

correlation coefficient above 0.9 are left. Subsequently, features

that demonstrated high stability were retained, as indicated by

intraobserver and interobserver ICC values greater than 0.75.

To enhance the selection of features, we applied the

multivariate Least Absolute Shrinkage and Selection Operator

(Lasso) regression technique. Extreme Gradient Boosting

(XGBoost) is a machine learning technique for solving

classification and regression predictive modeling challenges. For

precise gradient boosting implementation, T. Chen and C. Guestrin

(18) created it. For accurate results and to avoid over-fitting during

training, it uses sequentially built shallow decision trees. We trained

an XGboost classifier to develop the predictive models. A five-fold

cross-validation method was adopted to determine the most

suitable model configuration and hyperparameter adjustments.

The XGboost classifier was fed a training dataset, where each

entry included a feature set and a label indicating whether STAS

was present. The outcome was a classifier model foretrained to

estimate the probability of STAS in patients within the test and

validation groups. This model’s output gave a probability score

(ranging from 0 to 1) indicating the presence of STAS in the

evaluated patient.
Frontiers in Oncology 04
2D model development and feature
extraction

In 2D deep learning applications, the bounding box is the

rectangular boundary of the most significant tumor cross-section.

This box is employed to crop the maximum tumor ROI. The

cropped ROI is then saved in PNG format. The ResNet50 model

was first pre-trained on the ImageNet dataset, and then transfer

learning was used on the training set. ImageNet is a large database

that contains millions of labeled images that are organized into

categories. Transfer learning based on ImageNet has been used in

many medical studies. We used a global fine-tuning strategy to

update the model parameters, which improved the ResNet50’s

ability to predict STAS.

The images of primary tumors and their corresponding labels

were utilized as inputs for the 2D Convolutional Neural Network

(2D CNN). In the beginning stages of training, the parameters of

ResNet50 were iteratively updated through backpropagation, and

the cross-entropy loss function was employed to interpret the

output probabilities and pathological labels. The learning rate was

set at 1×10^-4, and the parameters were updated using the Adam

optimizer. The following batch size was used: 64, along with L2
FIGURE 2

Flowchart diagram shows the patient selection process from four medical centers. STAS indicates spread through air spaces: Val cohort,
validation cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1572720
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2025.1572720
regularization and early stopping strategies to avoid overfitting.

After completing the training of ResNet50, we used it to extract

2048 deep learning features from the ROI image using the

penultimate average pooling layer of ResNet50.
2.5D model development and feature
extraction

Considering that 2D CNN only extracts features from the most

significant ROI slice, lacking features from adjacent slices, we

introduced a 2.5D CNN for feature extraction. In addition, it

includes the most essential ROI slice and encompasses three

adjacent axial slices above and below it. In contrast to the approach

in this study (19), where CNNs are trained separately for each layer of

image slices, and their predicted features are later fused, our goal is to

simplify training by using seven-channel images together.

The presence of STAS was indicated by assigning identical

labels to multiple image patches from the same patient. The images

of primary tumors and their corresponding labels from seven

channels were utilized as inputs for the 2.5D CNN. After training

ResNet50, by utilizing the penultimate average pooling layer, we

were able to extract 2048 deep learning features from every patch.
3D model development and feature
extraction

In 3D deep learning, the bounding box refers to the smallest

enclosing cube of the tumor ROI. Next, the 3D CNN was fed the

primary tumor’s 3D pictures along with their labels. With the help of

backpropagation and the Adam optimizer, the network parameters

were fine-tuned. We carried out 100 training epochs with a learning

rate set to 0.02. Ultimately, the trained 3D CNN could predict the

patient’s STAS. Two thousand forty-eight features of the tumor image

were extracted from the penultimate averaging pooling layer of the

3D ResNet50 model as the 3D deep learning features for each patient.
Construction of the combined model

Merging the output probabilities from multiple models is

known as late fusion or decision-level fusion. The six underlying

models’ output probabilities were combined using a stacking

ensemble method. A five-fold cross-validation technique was used

on the training set to establish the optimal hyperparameters for the

XGboost classifier. The final result was testing on both internal and

external datasets to determine the performance of the “combined

model,” the stacking model that had been trained optimally.
Statistical analysis

We employed Chi-square or Fisher’s tests for the comparison of

categorical variables and utilized the Mann–Whitney U or
Frontiers in Oncology 05
independent T-test for continuous variables. The effectiveness of

the predictive model was evaluated using Receiver Operating

Characteristic (ROC) curves, AUC, accuracy, sensitivity, and

specificity. To calculate the 95% Confidence Interval (CI) for

AUC, the ci. Auc function from the pROC package in R was

used. The Delong test was adopted to compare the AUC values.

A p-value below 0.05 was deemed to indicate statistical significance.

The statistical analysis was conducted in R(version 4.4.1) and the

scikit-learn package (version 0.18) in Python 3.13.
Results

Baseline characteristics of the patients

This study comprised 480 individuals with clinical T1 stage

invasive lung adenocarcinoma, comprising 172 patients in the

training set (83 STAS-positive and 89 STAS-negative), 75 patients

in the internal test set (33 STAS-positive and 42 STAS-negative),

and 233 patients in the external validation set (146 STAS -positive

and 87 STAS -negative). Patient clinical data, CT characteristics,

and pathological information were recorded. In Table 1 you can see

all of the patients’ clinical baseline data. In univariate analysis,

smoking and preoperative CEA level are risk factors for STAS, while

multivariate analysis suggests that CEA level is an independent risk

factor for STAS (Table 2).
Detailed analysis of radiomics, 2D,2.5D and
3D deep learning features

By applying LASSO feature selection, we identified 31, 18, and

29 critical radiomic features from the INTRA, Peri2mm, and

Fusion2mm datasets out of 1834 radiomic features. In addition,

28 2D deep learning (DL) features, 48 2.5D DL features and eight

3D DL features were identified as having notably high weights,

qualifying them as the most significant features (Supplementary

Figure S1). We utilized T-SNE for dimension reduction to visualize

these features (Supplementary Figure S2). As illustrated in

Supplementary Figure S3, 2.5D DL features demonstrated

superior prediction accuracy compared to radionics, 3D, and 2D

DL features. From Supplementary Figure S4, it can be seen that

2.5D has a high degree of discrimination.
Performance analysis of the radiomics
models, deep learning models, and the
combined model

Table 3 presents the diagnostic indicators for the predictive

models used within the study sets. The combined model reached the

greatest AUC, which is between 0.867 and 1.000, showing

significant superiority over all models in the validation set (P =

0.000-0.007) (Figure 3). In contrast to the 2.5Dmodel(AUC=0.999),

the AUCs for the 3D DL, 2D DL, INTRA, Peri2mm, and
frontiersin.org
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Fusion2mm were 0.980 (P=0.034), 0.999(P =0.747), 0.996 (P

=0.214), 0.995(P =0.223), and 0.999 (P =0.503)respectively in the

training set. Plus, the 2.5D DL model achieved an impressive AUC

of 0.895 on the test set and 0.812 on the validation set, indicating its

satisfactory performance. However, the test and validation sets

found no significant differences in AUC between the 2.5D DL

model and the 2D DL, 3D DL, and radiomics models (Figure 3).

Figure 4 shows that the combined model’s calibration curves were

very consistent over a wider range of probabilities in the data sets.

The DCA curves showed that the combined model was more

beneficial overall (Figure 4).
Discussion

STAS serves as a crucial risk factor for an unfavorable

postoperative prognosis of stage T1 stage lung adenocarcinoma

(LUAD) (20, 21). An earlier study found that the STAS-positive

group had a higher proportion of solid-based and micropapillary-

based types in the postoperative pathological results (22). When

evaluating the aggressiveness of early-stage lung adenocarcinoma,

STAS is a crucial indicator to consider. This finding is in line with
Frontiers in Oncology 06
earlier research (23, 24) showing that T1 stage LUAD with STAS is

more malignant. Existing literature evaluated STAS using various

morphological parameters of pulmonary nodules through routine

preoperative imaging (25, 26). These parameters included the

proportion of solid components, the presence of abnormal

bronchial gas phase, the largest diameter of the lesion, and the

blurred ground-glass boundaries around subsolid lesions (27, 28).

This novel method is highly dependent on the radiologist’s

practical expertise. Thus, it is essential to thoroughly investigate

the imaging features of T1 stage LUAD to develop a predictive

model that offers greater diagnostic efficiency and more precise

diagnostic criteria.

To the best of our knowledge, this study is the initial one

concentrating on the 2.5D DL model in predicting STAS of LUAD.

Radiomic features from intratumoral regions are widely used to

indicate the prognosis of LUAD (29–31). But there has not been

much research on using peritumoral imaging features to help with

these predictions, and the peritumoral region’s definition is still

up for debate. STAS typically occurs around 2-3mm from the

tumor (32, 33). Consequently, this study treats the 2 mm

peri-tumoral area as a separate Region of Interest (ROI) for

extracting radiomic features.
TABLE 2 Logistic regression analysis identified independent clinical predictors for STAS (+).

Variable Univariable logistic regression Multivariable logistic regression

OR(95%CI) P value OR(95%CI) P value

Age 0.999(0.995,1.003) 0.731

Gender 1.066(0.910,1.249) 0.503

Somke 2.636(1.473,4.721) 0.006 2.011(1.097,3.684) 0.058

CEA 5.200(2.328,11.612) 0.001 4.299(1.895,9.757) 0.003

CA125 0.500(0.120,2.077) 0.423
TABLE 1 Baseline characteristics of study sets.

Variable Training set (n = 172) Test set (n = 75) External validation set (n = 233) P value

Age 65.058 ± 9.332 65.800 ± 9.317 64.021 ± 10.991 0.347

Gender 0.564

Male 88 (51.163) 35 (46.667) 126 (54.077)

Female 84 (48.837) 40 (53.333) 107 (45.923)

Somke 0.805

No 132 (76.744) 59 (78.667) 175 (75.107)

Yes 40 (23.256) 16 (21.333) 58 (24.893)

CEA 0.556

Negative 141 (81.977) 57 (76.000) 186 (79.828)

Positive 31 (18.023) 18 (24.000) 47 (20.172)

CA125 0.758

Negative 166 (96.512) 71 (94.667) 222 (95.279)

Positive 6 (3.488) 4 (5.333) 11 (4.721)
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Additionally, we integrated the tumor and the peri-tumoral

2mm for radiomics feature selection to predict STAS. Then, we

contrasted the performance of 2D, 2.5D, and 3D DL models with

radiomic models, including the INTRA model, Peri2mm model,

and Fusion2mmmodel. Ultimately, we developed a joint model that

combines 2D CNN, 2.5D CNN, and 3D CNN deep learning models

with the INTRA, Peri2mm, and Fusion2mm radiomic models to

improve the prediction of STAS status. Clinical data analysis

identifies smoking and preoperative serum CEA levels of 5mg/L or

higher as risk factors for STAS. Multifactorial logistic regression

analysis indicates that preoperative serum CEA levels are

independent predictive factors for STAS. These findings align

with the conclusions of previous studies (34).

In this study, the AUC values for the radiomics models are

INTRA at 0.996, Peri2mm at 0.995, and Fusion2mm at 0.999 in the

training set. In the test set, they are 0.884, 0.794, and 0.824,

respectively. Furthermore, during external validation, the AUC

values for the models were 0.801 for INTRA, 0.714 for Peri2mm,
Frontiers in Oncology 07
and 0.794 for Fusion2mm. In the radionics model, INTRA emerged

as the best-performing model in the test set, exhibiting a higher

AUC than the Fusion2mm and Peri2mm models, with statistically

significant differences. The same conclusion was consistent in the

external validation set. From the INTRAmodel, we extracted eleven

first-order features, one shape feature, and nineteen second-order

indexes, which include GLCM, GLDM, GLRLM, GLSZM, and

NGTDM features. Eight First-order features, one Shape feature,

and nine second-order indexes, including GLCM, GLDM, GLRLM,

and GLSZM features, were extracted from the Peri2mm. Eight First-

order features and twenty-one second-order indexes, including

GLCM, GLDM, GLRLM, GLSZM, and NGTDM features, were

extracted from the Fusion2mm.

First-order statistics refer to voxel intensity distribution in the

image area defined by the mask using basic metrics. Meanwhile,

second-order parameters relate to the spatial relationships of voxel

intensity (34). Shape describes the geometry of the region of

interest. It includes volume, sphericity, surface area, and
TABLE 3 Performances of the predictive models in the study sets.

Model Accuracy AUC 95% CI Sensitivity Specificity Precision Threshold

Training set (n = 172)

2D 0.977 0.999 0.9978 - 1.0000 0.988 0.966 0.965 0.428

3D 0.953 0.980 0.9613 - 0.9983 0.904 1.000 1.000 0.563

2.5D 0.988 0.999 0.9983 - 1.0000 0.976 1.000 1.000 0.588

INTRA 0.977 0.996 0.9911 - 1.0000 0.976 0.978 0.976 0.461

Peri2mm 0.971 0.995 0.9889 - 1.0000 0.952 0.989 0.987 0.613

Fusion2mm 0.977 0.999 0.9966 - 1.0000 0.976 0.978 0.976 0.549

Combined_model 0.994 1.000 1.0000 - 1.0000 0.988 1.000 1.000 0.672

Test set (n = 75)

2D 0.800 0.836 0.7435 - 0.9290 0.788 0.810 0.765 0.574

3D 0.760 0.796 0.6894 - 0.9029 0.818 0.714 0.692 0.395

2.5D 0.853 0.895 0.8169 - 0.9724 0.939 0.786 0.775 0.391

INTRA 0.813 0.884 0.8082 - 0.9595 0.818 0.810 0.771 0.313

Peri2mm 0.733 0.794 0.6918 - 0.8955 0.879 0.619 0.644 0.443

Fusion2mm 0.773 0.824 0.7268 - 0.9204 0.818 0.738 0.711 0.428

Combined_model 0.867 0.927 0.8703 - 0.9839 0.848 0.881 0.848 0.499

External validation set (n = 233)

2D 0.723 0.804 0.7440 - 0.8642 0.750 0.710 0.548 0.527

3D 0.742 0.803 0.7399 - 0.8665 0.779 0.724 0.570 0.523

2.5D 0.681 0.812 0.7555 - 0.8683 0.882 0.586 0.500 0.317

INTRA 0.765 0.801 0.7363 - 0.8656 0.676 0.807 0.622 0.561

Peri2mm 0.653 0.714 0.6404 - 0.7882 0.691 0.634 0.470 0.425

Fusion2mm 0.723 0.794 0.7325 - 0.8550 0.750 0.710 0.548 0.433

Combined_model 0.770 0.867 0.8192 - 0.9151 0.809 0.752 0.604 0.423
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FIGURE 4

Calibration curves of the 2D DL model, 3D DL model, 2.5D DL model, INTRA model, Peri2mm model, Fusion2mm model, and combined model in
the training set (A), internal test set (B), and external validation set (C). The decision-curve analysis plot depicts the standardized net benefit of each
model in the training set (D), internal test set (E), and external validation set (F).
FIGURE 3

Performances for spread through air spaces (STAS) prediction. The receiver operating characteristic (ROC) curves of the 2D DL model, 3D DL model,
2.5D DL model, INTRA model, Peri2mm model, Fusion2mm model, and combined model in the training set (A), internal test set (B), and external
validation set (C). AUC indicates the area under the curve. P value was calculated through the Delong test. The comparison of the area under the
AUC curves among various models in the training set (D), internal test set (E), and external validation set (F).
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compactness, which assist in tumor diagnosis, evaluate treatment

effects, and facilitate research data comparisons. Therefore, various

gray-level features indicating intratumor heterogeneity were

included in the radiomics model, proposing their contribution to

the observed high diagnostic accuracy (35, 36).This may be related

to the internal differences within the tumor. Studies (37) have

shown that after incorporating semiquantitative analysis of SUV

ratios, especially the SUVmax nodule/SUVmean BP ratio, the

specificity of this imaging modality in patients can be

significantly improved.

Additionally, our results showed that the first-order_Maximum

feature is strongly associated with STAS, having the highest

estimated coefficient among the selected first-order parameters

from the INTRA ROI. The first-order_Maximum feature refers to

the maximum value among the gray values of all voxels within the

region of interest (ROI) (38). In addition, first-order_Root Mean

Squared was the highest estimate coefficient among the selected

first-order parameters from Peri2mm ROI. In tumor images, factors

such as the tumor tissue’s internal cell density and metabolic state

can change the gray values. “First-order_Root Mean Squared” can

reflect the overall magnitude of these changes in gray values. A

higher root mean squared value indicates more significant

fluctuations in the gray values within the region of interest (ROI);

the tissue has a higher heterogeneity, which may imply multiple

different cell components or physiological states within the

tumor tissue.

Similar to how Size-zone non-uniformity and level variance,

two radionics features that represent gray-level characteristics, have

been linked to STAS-positive tumors in earlier studies (36, 38).

Furthermore, our clinical-CT model demonstrated that the solid-

density type and lower GGO ratio were the most important

determinants of STAS risk. The features extracted by the

radiomics analysis are confirmed to be reliable and interpretable,

as computer-automated feature extraction is more objective and

accurate than subjective and manual measurements.

ResNet50, a popular CNN, is commonly used in medical image

recognition and semantic segmentation (39, 40). ResNet, as a deep

residual network, is notable for its “skip connections,” which add

cross-layer links in each residual block (41). This enables direct

information transfer to the following convolutional layers,

preserving the original features and preventing their gradual loss.

Therefore, ResNet provides distinct advantages in feature extraction

over other CNN architectures. Numerous studies in radiomics have

leveraged ResNet for this purpose, demonstrating its established

effectiveness in medical image feature extraction (42–44). For our

analysis, we employed a ResNet50 model pre-trained on ImageNet

(45, 46), a comprehensive dataset in computer vision, to derive deep

learning features.

In the deep learning models, the 2.5D deep learning model was

the top performer in the test set, achieving a higher AUC (0.895)

compared to the 2D(AUC=0.836) and 3D(AUC=0.796) models.

However, the differences were not statistically significant. The

external validation set produced similar results, confirming the
Frontiers in Oncology 09
findings from the test set. Among all the radiomics and deep

learning models evaluated, the 2.5D deep learning model stood

out as the best-performing single model. Meanwhile, the INTRA

model significantly outperformed the 2D and 3D deep learning

models. The findings reveal that these deep learning features only

sometimes enhance prediction accuracy compared to traditional

radiomics features extracted using PyRadiomics.

In the test set, the INTRA model that used only traditional

radiomics features performed better than the 3D deep learning

model. This finding is backed by research conducted by Feng et al.

(47), which found that models using deep learning features from

VGG19 had lower AUC scores than those using other non-machine

learning techniques. In a multicenter cohort study by Cui et al. (48),

deep learning and manually crafted radiomics features were used to

develop a nomogram predicting the response to neoadjuvant

chemotherapy in advanced gastric cancer. However, these studies

and ours noted that models combining deep learning with

radiomics generally outperformed standalone models. The models

developed using deep learning features did not outperform those

built with conventional handcrafted radiomics features; however,

models that incorporated deep learning features demonstrated

enhanced performance.

Nevertheless, our research also has certain drawbacks. Firstly,

considering the long follow-up duration, this research was

retrospective. Secondly, the relatively small sample size may affect

the generalizability of the results. And the relatively small sample

size may increase the risk of overfitting, particularly in complex

models like deep learning. However, the model exhibited good

performance in the external validation set, somewhat alleviating this

shortcoming. Third, the samples are limited in terms of their

demographics and ethnicities, so it will be necessary to verify the

results in the future using samples from multiple ethnic groups. In

the future, we will concentrate on improving and validating the

combined model by conducting high-quality, multicenter

prospective studies.
Conclusion

To sum up, this retrospective cohort study presents a novel

model that combines preoperative CT-based radiomics and deep

learning with postoperative pathology-confirmed adenocarcinoma

spread to predict postoperative metastasis in stage I lung

adenocarcinoma. This model demonstrated superior predictive

efficacy in internal and external validation sets, suggesting it can

help formulate surgical and postoperative treatment strategies for

patients with stage T1 lung adenocarcinoma.
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