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Introduction: Achieving accurate preoperative risk stratification for endometrial

cancer (EC) is challenging due to the need for histopathology to obtain the

necessary parameters. This study aimed to establish and validate a

multiparametric magnetic resonance imaging (MRI) radiomics nomogram that

incorporates the peritumoral region for preoperative risk stratification in

EC patients.

Methods: Three-hundred seventy-four women with histologically confirmed EC

were divided into training (1.5-T MRI, n=163), test (1.5-T MRI, n=70), and

independent validation (3.0-T MRI, n=141) cohorts. As per the guidelines of the

European Society of Medical Oncology, patients were categorized into four risk

groups: low, intermediate, high-intermediate, and high. Binary classification

models were subsequently constructed to distinguish between low- and non-

low-risk individuals. Radiomic features were extracted from intra- and

peritumoral regions via T2-weighted imaging (T2WI) and apparent diffusion

coefficient (ADC) maps. Feature selection was carried out via univariate

analysis, least absolute shrinkage and selection operator (LASSO) regression,

and multivariate logistic regression. A radiomic model (radscore) was established

using the selected features. A nomogram combining the radscore and most

predictive clinical parameters was developed. Decision curve analysis (DCA) and

the net reclassification index (NRI) were used to assess the clinical benefit of

the nomogram.

Results: Nine radiomic features were selected from intra- and peritumoral

regions on ADC maps and T2W images. The nomogram combining the

radscore, age, maximum anteroposterior tumor diameter on sagittal T2WI

(APsag), and the tumor area ratio (TAR), achieved the highest area under the

curve (AUC) values across all cohorts (training: 0.949, test: 0.947, independent

validation: 0.909). The nomogram demonstrated superior performance

compared to the radscore (AUCtraining = 0.929, AUCtest = 0.917, and

AUCindependent validation = 0.813) alone and the clinical model (AUCtraining

= 0.855, AUCtest = 0.845, and AUCindependent validation = 0.842). DCA and the

NRI demonstrated that the nomogram achieved greater diagnostic performance

and net clinical benefits than did the radscore alone.
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Conclusion: The developed MRI radiomics nomogram achieved high diagnostic

performance in classifying low- and non-low-risk EC preoperatively. This tool

could provide valuable support for therapeutic decision-making and

demonstrates robustness across various field strength data, increasing its

potential for widespread clinical application.
KEYWORDS

endometrial cancer, risk stratification, peritumoral, magnetic resonance
imaging, radiomics
1 Introduction

Endometrial cancer (EC) is the sixth most common cancer and

the fourth leading cause of cancer-related death among women

globally (1). Its effective management and prognosis depend on

accurate risk stratification, which can guide treatment decision-

making, especially regarding lymphadenectomy (2). The European

Society for Medical Oncology (ESMO) classifies EC into four risk

groups according to histological grade, cell type, depth of

myometrial invasion (MI), lymphovascular space invasion (LVSI),

extrauterine invasion, nodal involvement, and molecular subgroups

(3). Low-risk EC includes LVSI-negative International Federation

of Gynecology and Obstetrics (FIGO) stage IA endometrioid

endometrial carcinoma (EEC), grades 1-2; intermediate-risk EC

includes LSI-negative, FIGO stage IB EEC, grades 1-2; high-

intermediate-risk EC includes FGO stage IA EEC grade 3 (with

or without LVSI) or LVSI-positive stage IA/IB EEC, grades 1-2; and

high-risk EC consists of FIGO stage IB EEC grade 3 (with or

without LVSI), FIGO stages ≥ II EEC, and non-EEC tumors (4).

Low-risk EC is treated with total hysterectomy and bilateral

salpingo-oophorectomy (THBSO), whereas high-risk EC may

require THBSO, lymphadenectomy, or adjuvant therapy (4).

Thus, precise preoperative risk stratification is crucial for

determining the appropriate individualized treatment.

Magnetic resonance imaging (MRI), which is highly specific for

assessing deep myometrial invasion (DMI) in EC, is recommended

for the preoperative staging of EC patients (5). Diffusion-weighted

imaging (DWI) provides in vivo insights into tissue cell density and

has proven valuable in predicting tumor grade, DMI, and LVSI in

EC patients (6). Various tumor morphological parameters (such as

tumor size (TS, tumor maximum diameter), the tumor volume ratio

(TVR), the tumor area ratio (TAR), and the maximum

anteroposterior tumor diameter on sagittal T2-weighted images

(APsag)) evaluated via MR images are correlated with DMI, tumor

grade, lymph node metastasis (LNM), and the LVSI status in EC

patients (7–10). These results suggest that tumor morphological

indices could be leveraged for predicting ESMO classification. A

recent study developed a nomogram from tumor morphological

parameters that predicted non-low-risk EEC in patients,

performing well in a cross-field MR cohort (area under the curve
02
(AUC): 0.856 in the training set, 0.849 in the validation set). In

addition to tumor morphology, clinical factors such as age and

serum CA125 levels are linked to EC risk.

Radiomics, an emerging technology, can reveal imaging

biomarkers that are not easily detectable by the human eye,

thereby enhancing risk stratification with additional information

(11). Numerous studies have highlighted the utility of radiomics—

which involves imaging methods such as ultrasound, computed

tomography (CT), and MRI—in different facets of EC management,

including forecasting lymph node metastasis (LNM) (12), assessing

MI (13), evaluating tumor grade (14), predicting high-risk EC (15),

tumor recurrence (16), and survival (17). Recent studies have

underscored the importance of examining not only intratumoral

but also peritumoral regions in radiomic analysis (12). The tumor

microenvironment, which includes the peritumoral area, plays a

critical role in cancer progression and metastasis. Therefore, the

incorporation of features from both intratumoral and peritumoral

regions may yield a more comprehensive assessment of tumor

biology and increase the accuracy of risk prediction.

The integration of radiomic features with clinical and

conventional imaging parameters has facilitated the creation of

radiomic nomograms, demonstrating potential in enhancing

diagnostic precision and risk prognostication across various

cancer types (18). In the context of EC, radiomic nomograms

have been investigated for their utility in predicting LVSI (19),

evaluating DMI (20), and assessing overall survival (21). Few

studies have employed radiomics to perform preoperative risk

stratification in patients with EC (15), focusing solely on the use

of intratumoral radiomic data. To our knowledge, no study has

attempted to construct a risk stratification model that incorporates

peritumoral radiomic information.
2 Materials and methods

2.1 Patients

Approval for this retrospective study was granted by the

institutional review board, and the necessity for informed consent

was waived. A total of 461 patients, all with confirmed EC through
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postoperative histology from June 2015 to July 2022, were enrolled

in the study following preoperative MR examination. The study

included patients who met the following criteria: (1) confirmation

of EC through histopathology; and (2) availability of clinical and

histopathological characteristics, such as age, histopathological

type, tumor grade, MI depth and cervical stromal invasion (CSI),

EI, LVSI and postoperative lymph node status. The exclusion

criteria were as follows: (1) absence of total hysterectomy within

2 weeks post-MRI; (2) prior chemoradiation treatment; (3) tumors

too small for MRI detection; (4) images with evident motion

artifacts; (5) MRI contraindications; (6) incomplete clinical data;

and (7) concurrent EC with other malignancies. A total of 374

patients, with a mean age of 54.3 ± 8.1 years, were included in the

study after 87 patients were excluded. Surgical staging for all

patients consisted of total hysterectomy with bilateral salpingo-

oophorectomy and lymph node assessment, which included pelvic

lymphadenectomy and paraaortic lymphadenectomy.
Frontiers in Oncology 03
The 1.5-T MRI dataset (n = 233) was divided into training (n =

163) and testing (n = 70) sets at a 7:3 ratio for selecting features and

building prediction models. To improve the model’s generalizability,

a 3.0-T dataset (n = 141) was assigned as an independent validation

cohort. Importantly, the independent validation cohort was not part

of the model training and testing phases. Figure 1 displays a flow

chart outlining the patient demographics and exclusion criteria.
2.2 Risk stratification of patients with EC

According to ESMO guidelines (22), individuals with EC were

classified into four risk groups: low, intermediate, high-

intermediate, and high. Given that lymphadenectomy is not

recommended for low-risk ECs, we opted to develop a binary

classification model to differentiate between patients in the low-

risk and non-low-risk groups.
FIGURE 1

Flow chart showing the selection of the study population, the exclusion criteria, and the grouping approach.
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2.3 MRI protocol

MRI scans were conducted using either a 1.5-T (EXCELART

VantageTM powered by Atlas, Canon Medical Systems Corp.,

Tochigi, Japan) or a 3.0-T (Siemens Magnetom Skyra, Erlangen,

Germany) scanner equipped with an 8-channel phased-array

abdominal coil. Prior to scanning, a 20-mg injection of

raceanisodamine hydrochloride (Hangzhou People’s Livelihood

Pharmaceutical Co.) was given intravenously to minimize artifacts

caused by intestinal motility. All MRI sequences were obtained

following the standard protocol, with specific details provided in

Supplementary Table 1. Diffusion-weight imaging (DWI) uses b

values of 0 and 650 s/mm2 for the 1.5-T scanner and b values of 0

and 1000 s/mm2 for the 3.0-T scanner. ADC maps were

automatically generated via a postprocessing workstation.
2.4 Radiomic features

Image preprocessing was conducted following a standard

workflow detailed in the Supplementary Materials. Two

experienced radiologists (T.Z. and B.Y.) were responsible for image

segmentation. After one month, 100 patients were randomly chosen

for tumor segmentation by a different radiologist (Y.D.) to evaluate

interreader reliability. More information on lesion segmentation can

be found in the Supplementary Materials. Manual whole-tumor

segmentation was performed via 3D Slicer software (version 4.10.2;
Frontiers in Oncology 04
https://download.slicer.org/) on axial T2WI and apparent ADC

maps. Three volumes of interest (VOIs) were selected, as shown

in Figure 2. The first VOI consisted of the intratumoral region,

where regions of hemorrhage and necrosis were delineated along

the edge of the lesion slice-by-slice, while normal anatomical

structures were avoided. These ROIs were combined to create a

three-dimensional (3D) VOI. The second VOI was the peritumoral

margin, which was generated by automatically expanding the tumor

contour by 3 mm. If the dilated VOIs extended beyond the uterus,

manual corrections were made to align the boundaries with the

uterus edge. Additionally, any other lesions in the myometrium

were manually identified to not be included in the dilated VOI. The

peritumoral region was defined as the dilated VOI minus the tumor

VOI. The third VOI consisted of a combination of the intra- and

peritumoral regions.

An artificial intelligence kit (AK, Version 3.3.0, GE Healthcare)

software was used to preprocess the images, and features were

extracted. Radiomics features, which include first-order, shape-based,

and texture features, were calculated for each VOI. The methodology

for obtaining the radiomic parameters is illustrated in Figure 2.
2.5 Tumor morphological parameter
measurements

Since TS, tumor volume (TV), TAR, and APsag have been

linked to LVSI, tumor grade, and DMI in EC, these factors were
FIGURE 2

Radiomic workflow. First, 3D VOIs for both the intra-tumoral and peritumoral areas were manually segmented. Second, radiomic features were
extracted. Third, feature selection was carried out through the Mann-Whitney U test, the minimum redundancy maximum relevance (mRMR)
algorithm, correlation tests, and least absolute shrinkage and selection operator (LASSO) regression. Fourth, the model was developed in the form of
a nomogram. Finally, the diagnostic performance was evaluated via receiver operating characteristic (ROC) curve, calibration curve, and decision
curve analyses.
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assessed as follows (7, 9, 11, 23). TS was measured in three

dimensions: the transverse (x) and anteroposterior (y) diameters

were measured on oblique axial T2-weighted images, and the

craniocaudal (z) diameter was measured on sagittal T2-weighted

images (Figures 3A, B). APsag was measured on sagittal T2-

weighted images (Figure 3B). According to the protocol in a

previous study (9), the TAR was calculated (Figures 3C, D) via

the following formula: TAR = (tumor area/uterus area) × 100%.
2.6 Statistical analysis

The statistical analysis was carried out via the R language (version

4.2.0, https://www.r-project.org) and the Python language (version

3.9, https://www.python.org). A binary classification model was

created to forecast the risk categorization as either “low-risk” or

“non-low-risk.” Clinical data were analyzed through both univariate

and multivariate logistic regression (LR) analyses for filtration, with

radiomic features being examined via t tests, Fisher’s exact tests, chi-
Frontiers in Oncology 05
square tests, and, when relevant, the Mann–Whitney U test.

Statistical significance was defined as P <0.05. The most

important radiomic features were identified via least absolute

shrinkage and selection operator (LASSO) regression, with LR

used for training the prediction models and creating a nomogram

that incorporated clinical and tumor morphological parameters,

along with the radiomic score (radscore). The performance of the

predictive models was assessed using the AUC values in the training,

test, and independent validation cohorts. The independent validation

cohort was utilized solely for evaluating model performance. On the

basis of prior research (24), the sample size was calculated to ensure a

minimum of 10 events per variable in the multivariate LR model.

Radiomic features were standardized via the standard scalar method

before data modeling. Intraclass correlation coefficients (ICCs) were

computed to evaluate the consistency among readers in assessing MR

morphological and radiomics features, with an ICC value above 0.8

indicating nearly perfect agreement.

The evaluation of the prediction model was conducted via

receiver operating characteristic (ROC) curve analysis, whereas
FIGURE 3

Approaches to measuring tumor morphology parameters. (A) Measurements of the tumor’s maximum transverse (x) and anteroposterior (y)
diameters were conducted on oblique axial T2W images. (B) The tumor’s maximum craniocaudal (z) and anteroposterior (APsag) diameters were
determined on sagittal T2W images. (C) The tumor border on the DW image is delineated by the white solid line. (D) The uterine border on the axial
T2W image is outlined by the white solid line.
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the calibration curve was assessed via the Hosmer–Lemeshow (HL)

test. A P value greater than 0.05 indicated satisfactory predictive

performance. Decision curve analysis (DCA) was employed to

compare the net benefits of the clinical models and radiomics

nomogram models, with ROC curve cutoff values determined by

the maximum Youden index. The AUC, accuracy (ACC), sensitivity

(SEN), and specificity (SPE), positive predictive value (PPV), and

negative predictive value (NPV) were subsequently calculated.
3 Results

3.1 Histopathologic and MRI morphological
findings

The histopathological andMRI morphological findings of the EC

patients in the training, test, and independent validation cohorts are
Frontiers in Oncology 06
summarized in Table 1. Among the 374 EC patients, 233 patients

underwent 1.5 T MRI scans, and 141 patents underwent 3.0 T MRI

scans. Among these patients, 142 patients were classified as low risk,

representing 38.0% of the total, and 232 patients were non-low-risk

patients. The percentages of non-low-risk patients in the training

(60.7%, 99/163) and (60.0%, 40/70) testing sets were comparable.
3.2 Radiomics feature extraction, selection,
and interreader reliability

Each VOI yielded 1036 features, including ADCintratumoral,

ADCperitumoral, T2WIintratumoral, and T2WIperitumoral

features. After feature selection, nine features were identified to

discriminate between low- and non-low-risk patients with EC,

collectively forming the radscore presented in Table 2. Additional

information on the feature extraction process can be found in the
TABLE 1 Clinical and morphological parameters and histopathological characteristics of 374 patients.

Characteristic

Training cohort
(1.5-T, n = 163)

P

Test cohort (1.5-T, n = 70)
Independent-validation cohort

(3.0-T, n = 141)

Low-risk
(n = 64)

Nonlow-risk
(n = 99)

Low-risk
(n = 28)

Nonlow-risk
(n = 42)

Low-risk
(n = 50)

Nonlow-risk
(n = 91)

Age, years 52.3 ± 7.0 56.1 ± 8.1 0.003 50.5 ± 7.0 56.3 ± 7.9 49.9 ± 7.7 56.4 ± 7.7

EEC 64 80 28 38 50 74

Non-EEC 19 4 17

Histological grade

Grade 1 (G1) 6 1 4 9 4

Grade 2 (G2) 58 46 24 23 41 46

Grade 3 (G3) 52 19 41

MI

Superficial 64 44 28 17 50 38

Deep 55 25 53

CSI

Yes 36 21 27

No 64 63 28 21 50 64

LVSI

Present 43 28 42

Absent 64 56 28 14 50 49

LNM

PLN 9 1

PALN 4 4

Tumor volume, cm3 7.709 ± 13.721 28.752 ± 54.362 0.000 6.966 5.752 28.355 ± 36.165 10.433 ± 16.144 32.696 ± 92.806

Tumor size, cm 3.426 ± 1.604 4.866 ± 2.525 0.000 3.350± 1.207 5.288 ± 2.259 3.758 ± 1.877 4.893 ± 2.683

APsag, cm 1.406 ± 0.674 2.626 ± 1.366 0.000 1.484 ± 0.597 2.835 ± 1.545 1.318 ± 0.777 2.552 ± 1.567

(Continued)
frontiersin.org

https://doi.org/10.3389/fonc.2025.1572784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yan et al. 10.3389/fonc.2025.1572784
Supplementary Tables 2, 3. The features in the training and test sets

were not significantly different (Table 3).

The ICCs for all the morphological parameters and radiomic

features indicated outstanding interreader reliability, ranging from

0.902 to 0.997. This strong agreement ensures the model’s

consistency for future clinical use. See Supplementary Tables 4-6

for further details.
3.3 Clinical model development and
performance

Univariate analysis revealed that age, TS, TV, APsag, and TAR

were significantly different between low- and non-low-risk patients

(all P < 0.05). Multivariate binary LR analysis revealed that age,
Frontiers in Oncology 07
APsag, and TAR were independent predictors for classifying low-

and non-low-risk patients with EC (all P < 0.05, Table 4). The AUCs

of the clinical model for classifying low-risk and non-low-risk EC

patients were 0.855 (95% CI: 0.806–0.887; SEN: 73.7%, SPE: 79.4%)

with the training cohort, 0.845 (95% CI: 0.799–0.873; SEN: 79.5%,

SPE: 84.8%) with the test cohort, and 0.842 (95% CI: 0.805–0.886;

SEN: 70.3%, SPE: 84.0%) with the independent validation cohort.
3.4 Radiomics model development and
performance

The performance of the radiomic models for different VOIs is

shown in Table 5. The combined feature model exhibited better

predictive performance than did the single-region prediction model
TABLE 1 Continued

Characteristic

Training cohort
(1.5-T, n = 163)

P

Test cohort (1.5-T, n = 70)
Independent-validation cohort

(3.0-T, n = 141)

Low-risk
(n = 64)

Nonlow-risk
(n = 99)

Low-risk
(n = 28)

Nonlow-risk
(n = 42)

Low-risk
(n = 50)

Nonlow-risk
(n = 91)

LNM

TAR, % 23.041 ± 10.977 41.278 ± 18.663 0.000 26.804 ± 14.517 50.396 ± 23.153 20.325 ± 9.733 41.044 ± 21.279

FIGO

I 64 53 28 17 50

I a 64 24 28 6 50 23

I b 29 11 27

II 24 13 13

III 21 10 26

III a 8 1 8

III b 1

III c1 9 6 12

III c2 4 3 5

IV 1 2 2

IV a 1 1 2

IV b 1

Risk stratification

Low 64 28 50

Intermediate 6 4 11

High-intermediate 24 8 23

High 69 30 57
EEC, endometrioid endometrial carcinoma; Non-EEC, Non-endometrioid endometrial carcinoma; LVSI, lymphovascular space invasion; G1, well differentiated; G2, moderately differentiated;
G3, poorly differentiated; MI, myometrial invasion; CSI, cervical stromal invasion; LNM, lymph node metastasis; PLN, pelvic lymph node; PALN, para-aortic lymph node; FIGO, International
Federation of Obstetrics and Gynecology. The words in bold indicate the indicators that have statistical differences.
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with both the training and testing cohorts, regardless of ADC maps

or T2W images (Table 5). Additionally, the combined feature model

achieved moderate predictive accuracy with the independent

validation cohort (Table 6).

To improve prediction accuracy, we opted to construct a

prediction model by merging VOIs from different sequences

(Table 7). The hybrid features derived from this model

(ADCintratumoral, ADCperitumoral, T2WIintratumoral, and

T2WIperitumoral) led to superior classification performance. The

model achieved an AUC of 0.929 and an accuracy of 85.3% with the

training set, an AUC of 0.917 and an accuracy of 81.2% with the test

set, and an AUC of 0.813 and an accuracy of 73.1% with the

independent validation set. In this study, the radscore was

composed of 9 features selected from the hybrid feature

model (Table 2).
Frontiers in Oncology 08
3.5 Diagnostic performance of the
radiomic nomogram

To increase the predictive ability of the model, we combined the

clinical and hybrid feature models to produce a clinical–radiomics

mixed model. For the training cohort, a nomogram was constructed

utilizing age, APsag, TAR, and the radscore (see Figure 4A). The

AUC values of the nomogram model for classifying low-risk

patients from the training (Figure 4B), test (Figure 4C), and

independent validation (Figure 4D) cohorts were 0.949 (95% CI:

0.912, 0.970; sensitivity: 91.0%, specificity: 84.9%, accuracy: 88.3%,

PPV:89.3%, NPV:86.4%), 0.947 (95% CI: 0.904, 0.962; sensitivity:

89.7%, specificity: 87.0%; accuracy: 88.2%, PPV:91.8%, NPV:83.3%),

and 0.909 (95% CI: 0.876, 0.931; sensitivity: 82.6%, specificity:

87.2%; accuracy: 84.7%, PPV:90.1%, NPV:80.5%), respectively.

The formula was as follows:.

Risk = -0 .0172*Age + 0.498*APsag + 0.553*TAR

+ 2.092*Radscore.

The nomogram calibration curve demonstrated good accuracy

in predicting non-low-risk EC for the training, test and independent

validation cohorts, as shown in Figures 5A–C. DCA confirmed the

utility of the MRI radiomics nomogram for predicting non-low-risk

EC in patients from both cohorts, as depicted in Figures 5D–F.

The reclassification measures revealed that the nomogram

outperformed both the radiomics and clinical models, with a net

reclassification index (NRI) of 0.082 (95% CI, 0.048–0.134) in

comparison with the radiomics model and an NRI of 0.164 (95%

CI, 0.086–0.226) compared with the clinical model.
4 Discussion

In this study, we created and validated a simple radiomic

nomogram for discriminating between low-risk and nonlow-risk

EC according to age, APsag, TAR, and the radscore. The model

demonstrated strong diagnostic accuracy (AUCtraining = 0.949,

AUCtest = 0.947, AUCindependent-validation = 0.909).

Additionally, the features extracted from different imaging

sequences (specifically T2W images and ADC maps) and diverse

VOIs (intratumoral, peritumoral, and combined regions) provided

complementary data. Ultimately, a dataset was developed with

diverse field strengths to act as an independent validation set,

thus enhancing the models’ predictive performance in real-

world situations.

The peritumoral region lies between the tumor and

the surrounding healthy tissue (25). Despite appearing

macroscopically similar to normal tissue, peritumoral tissue

exhibits microscopic heterogeneity (26). In this study, combining

intra- and peritumoral features proved to be valuable in predicting

non-low-risk EC (ADC maps: AUCtrain = 0.850, AUCtest = 0.763,

AUCindependent-validation = 0.719; T2W images: AUCtrain =

0.887, AUCtest = 0.827, AUCindependent-validation = 0.810).

When we integrated the two imaging sequences for a range of

VOIs, which included both intra- and peritumor regions, the hybrid

features showed superior prediction efficiency (AUCtrain = 0.929,
TABLE 2 Features forming the radscore using the logistic
regression classifier.

Imaging Region Feature

ADC mapping Intratumoral original_shape_LeastAxisLength

ADC mapping Intratumoral wavelet-HHH_firstorder_Skewness

ADC mapping Peritumoral wavelet-LLH_glcm_MCC

ADC mapping Peritumoral original_shape_LeastAxisLength

T2-weighted imaging Intratumoral original_glcm_Contrast

T2-weighted imaging Intratumoral wavelet-HHL_firstorder_Kurtosis

T2-weighted imaging Intratumoral wavelet-HLH_firstorder_Skewness

T2-weighted imaging Peritumoral original_shape_LeastAxisLength

T2-weighted imaging Peritumoral original_glcm_ClusterShade
ADC, apparent diffusion coefficient.
TABLE 3 Comparison of the radiomic, clinical and morphological
features in the training and test sets.

Features P value

Age 0.398

APsag 0.867

TAR 0.542

original_shape_LeastAxisLength (ADCintratumoral) 0.724

wavelet-HHH_firstorder_Skewness (ADCintratumoral) 0.806

wavelet-LLH_glcm_MCC (ADCperitumoral) 0.547

original_shape_LeastAxisLength (ADCperitumoral) 0.728

original_glcm_Contrast (T2intratumoral) 0.676

wavelet-HHL_firstorder_Kurtosis (T2intratumoral) 0.528

wavelet-HLH_firstorder_Skewness (T2intratumoral) 0.463

original_shape_LeastAxisLength (T2peritumoral) 0.732

original_glcm_ClusterShade (T2peritumoral) 0.912
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AUCtest = 0.917, AUCindependent validation = 0.813). This model

incorporates key features such as the wavelet transform (WT),

which includes histogram features (including kurtosis and

skewness), texture features (such as the gray-level cooccurrence

matrix (GLCM)), and shape features (specifically LeastAxisLength).

The WT method is applied to separate images into high- and low-

frequency components for both intratumoral and peritumoral areas

(27). The GLCM is created by examining the connection between

pairs of pixels and recording the occurrence of different

combinations of gray levels in an image or region of interest.

Compared with 2D ROIs, 3D VOIs have been shown to enhance

the specificity of GLCM features in identifying tumor components

(28). The GLCM was mentioned in a previous radiomic study on

the risk classification of EC (15). Furthermore, a previous study

revealed that kurtosis and skewness are correlated with the LVSI,

DMI , and h i gh -g r ad e tumor s o f th e EC (7 ) . The

original_shape_LeastAxisLength feature was derived from both

ADC maps and T2WI image sequences concurrently, as

highlighted in a prior study on LNM classification in EC (29).

However, these indicators are essential for evaluating the risk

stratification of tumors. Hence, extracting radiomic features from

ADC maps and T2W images, both intra- and peritumoral, is

essential for predicting non-low-risk EC patients.
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In predicting non-low-risk EC patients, the clinical model with

age, APsag, and TAR showed good performance, achieving AUC

values of 0.855 for training, 0.845 for testing, and 0.842 for

independent validation. The size of the tumor in EC is correlated

with the extent of invasiveness, with larger tumors having a higher

probability of DMI, LVSI, and LNM (30, 31). APsag and TAR are

both indicators of TS in separate dimensions. TAR offers a simpler

measurement approach by selecting the maximum cross section of

the tumor. This method was proposed by Yan and colleagues (9).

The results indicated that a TAR equal to or greater than 34.6%

could lead to the accurate prediction of DMI in stage I EEC patients,

with a sensitivity of 85.0% and a specificity of 84.8%. Furthermore, a

TAR of 38.9% or higher was associated with the prediction of high-

grade tumors, with a sensitivity of 83.3% and a specificity of 81.1%.

A recent study comparing MRI-based texture analysis with APsag

revealed that the latter was more efficient in predicting LVSI and

high-grade EEC tumors prior to surgery (32). Furthermore,

independent risk factors such as age, APsag, and TAR were found

in a previous study that used MRI morphological parameters to be

associated with predicting the risk stratification of EEC (23). The

AUC results for predicting high-risk EEC using MRI morphological

histograms, as highlighted by Yan et al., demonstrated consistency

with both the training (1.5-T set, AUC = 0.856) and validation (3.0-
TABLE 4 Logistic regression analysis results in classifying patients with EC into the low-risk and nonlow-risk groups with the clinical model
constructed from the training cohort data.

Parameters
Univariate Multivariate

OR 95% CI p OR 95% CI p

Age (years) 1.078 1.039-1.121 <0.001 1.066 1.019-1.120 0.007

Tumor volume (cm3) 1.077 1.045-1.116 <0.001 0.993 0.971-1.032 0.682

Tumor size (cm) 1.576 1.332-1.903 <0.001 1.084 0.836-1.415 0.548

APsag (cm) 4.723 3.084-7.693 <0.001 2.927 1.507-5.953 0.002

TAR (%) 1.080 1.056-1.107 <0.001 1.034 1.006-1.066 0.019
CI, confidence interval; OR, odds ratio. The words in bold indicate the indicators that have statistical differences.
TABLE 5 Comparison of two types of imaging sequence features from different VOIs in the training and test cohorts.

Imaging
sequence

Training cohort Testing cohort

Intratumoral Peritumoral
Combined
regions

Intratumoral Peritumoral
Combined
regions

AUC
(95%CI)

ACC
%

AUC
(95%CI)

ACC
%

AUC
(95%CI)

ACC
%,

AUC
(95%CI)

ACC
%

AUC
(95%CI)

ACC
%

AUC
(95%CI)

ACC
%

ADC
0.836
(0.788-
0.864)

77.2
0.797
(0.758-
0.826)

74.6
0.850
(0.812-
0.887)

78.2
0.803
(0.766-
0.836)

77.7
0.763
(0.725-
0.814)

67.1
0.848
(0.812-
0.879)

72.9

T2WI
0.852
(0.822-
0.896)

74.6
0.842
(0.800-
0.873)

75.6
0.887
(0.854-
0.923)

81.2
0.851
(0.817-
0.886)

74.1
0.827
(0.766-
0.857)

71.8
0.858
(0.824-
0.903)

77.7
fronti
ADC, apparent diffusion coefficient; AUC, area under the curve; ACC, accuracy; CI, confidence interval.
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T set, AUC = 0.849) cohorts. Our study yielded similar results,

especially with the independent validation cohort, indicating that

the clinical model performs reliably across datasets with different

field strengths.

The nomogram constructed by combining age, APsag, TAR,

and the radscore performed better that clinical models did in

predicting non-low-risk EC, particularly in improving the

robustness of the model (independent validation cohort,

AUCclinical vs. AUCnomogram with 0.813 vs. 0.909). A recent

meta-analysis further emphasized the importance of preoperative

MRI radiomics models for risk stratification in patients with EC

(33). Yan et al. (15) demonstrated the effectiveness of an MRI-based

radiomic nomogram in predicting high-risk EC, with good

performance for the validation groups, with AUCs ranging from

0.877-0.919. High-risk EC in their study was characterized by the

presence of DMI, high-grade tumors, LVSI, CSI, LNM, non-EEC

tumors, or EI. This classification corresponds with how patients in

the non-low-risk group are classified according to ESMO
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guidelines. Despite not outperforming their model, our model

requires fewer image sequences, which is advantageous for clinical

applications. In comparison, their study depended on data from

three distinct MRI sequences: T2W, diffusion-weighted, and

contrast-enhanced T1W (CE-T1W) images. Considering the vital

role of T2WI and DWI in the preoperative staging of EC patients

and their potential cost-effectiveness over CE-T1WI, we suggest

that radiomics models utilizing unenhanced images may offer more

advantages and be easier to implement in clinical practice. Recently,

a multiparametric MRI 3D radiomics-based machine learning

model was developed and validated by Lefebvre TL et al. for

predicting advanced International Federation of Gynecology and

Obstetrics (FIGO) stage (IB or higher, considered non-low-risk by

ESMO guidelines), achieving a test set performance of 0.84 (34).

More recently, Lin et al. (35) developed RadSignature, which

incorporates age, tumor type, size, and grade. This model

achieved moderate performance (with an accuracy of 75.4%) in

predicting high-risk patients with a test set. Compared with
TABLE 6 Comparison of two types of imaging sequence features from different VOIs in the independent validation cohort.

Imaging
sequence

Independent-validation cohort (3.0-T MRI, n = 141)

Intratumoral Peritumoral Combined regions

AUC (95%CI) ACC % AUC (95%CI) ACC % AUC (95%CI) ACC %,

ADC 0.729 (0.687-0.765) 69.5 0.732 (0.690-0.768) 69.5 0.719 (0.675-0.766) 69.5

T2WI 0.810 (0.773-0.847) 72.3 0.755 (0.722-0.804) 67.4 0.810 (0.766-0.847) 71.6
ADC, apparent diffusion coefficient; AUC, area under the curve; ACC, accuracy; CI, confidence interval.
TABLE 7 Combination of features from different imaging sequences and VOIs for classifying patients with EC into the low-risk and nonlow-
risk groups.

Combined
model

Training cohort Testing cohort Independent-validation cohort

AUC
(95%CI)

ACC
%

SPE
%

SEN
%

AUC
(95%CI)

ACC
%

SPE
%

SEN
%

AUC
(95%CI)

ACC
%

SPE
%

SEN
%

Model_1
0.840
(0.812-
0.886)

73.1 73.1 76.6
0.826
(0.772-
0.865)

78.8 87.2 68.4
0.780
(0.742-
0.834)

70.9 78.0 67.0

Model_2
0.852
(0.820-
0.896)

74.1 74.1 70.5
0.845
(0.804-
0.876)

75.3 73.6 78.1
0.815
(0.773-
0.856)

73.1 76.0 71.4

Model_3
0.882
(0.846-
0.921)

80.7 80.7 82.7
0.882
(0.852-
0.931)

77.7 86.1 69.1
0.760
(0.722-
0.804)

70.2 70.0 70.3

Model_4
0.882
(0.860-
0.921)

77.2 77.2 81.4
0.878
(0.834-
0.917)

76.5 79.5 73.9
0.811
(0.763-
0.851)

71.6 84.0 64.8

Model_5
0.929
(0.875-
0.962)

85.3 85.3 84.5
0.917
(0.867-
0.940)

81.2 70.5 92.7
0.813
(0.768-
0.845)

73.1 72.0 73.6
fronti
Model_1, ADCintratumoral + T2intratumoral; Model_2, ADCintratumoral + T2peritumoral; Model_3, ADCperitumoral + T2intratumoral; Model_4, ADCperitumoral + T2peritumoral;
Model_5, hybrid-feature (ADCintratumoral + ADCperitumoral + T2intratumoral + T2peritumoral); AUC, area under the curve; CI, confidence interval; ACC, accuracy; SPE, specificity;
SEN, sensitivity.
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previous radiomic and ML models, our model demonstrated

improved diagnostic performance with the validation cohort, with

an AUC of 0.909.

This study offers numerous potential advantages. (1) The

prediction model exhibits excellent robustness when tested with

cross-field strength datasets. Various field strengths, manufacturers,

and scanning protocols present challenges for artificial intelligence

prediction models. Our prediction model was developed using a

1.5-T dataset, and it has shown outstanding predictive performance

when tested using the same field strength dataset. This model was

also independently validated with a 3.0-T dataset, demonstrating
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the model’s strong generalizability and its potential as a valuable

tool for handling real-world problems. (2) The complementary

information provided by intra- and peritumoral radiomic features

offers a new strategy for developing AI models to predict the risk

stratification of EC. To our knowledge, this MRI radiomics model is

the first to incorporate peritumoral features in the prediction of

ESMO risk stratification of EC. (3) Our nomogram will prove

valuable for patients with endometrioid grades 1–2 histology at

preoperative biopsy who are deemed non-low-risk EEC, provided

that lymphadenectomy is a feasible option. This is particularly

relevant in cases where sentinel node procedures are unsuccessful
FIGURE 4

Radiomic nomogram for predicting low-risk and nonlow-risk EC. The nomogram was developed using morphological parameters (APsag and TAR),
the radiomic signature (radscore), and patient age in the training cohort. A higher nomogram score indicates a greater likelihood of the patient
having nonlow-risk EC. The formula for calculating the probability of a low-risk tumor is: 1 - Probability of a nonlow-risk tumor. Among all the
models, the radiomic nomogram had the highest AUC of 0.949 in differentiating low-risk and nonlow-risk EC in the training (B), test (C), and
independent validation cohort (D).
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(observed in 4%-22% of cases depending on the surgeon’s skill level

and technical challenges) (36) or in facilities where this technique

cannot currently be implemented.

Our study had several limitations. First, this study was a

retrospective single-center study, even though we established an

independent validation cohort to assess the strength of this model.

Moving forward, we plan to conduct multicenter prospective

research to confirm the generalizability of our findings. Second,

manual whole-tumor segmentation was carried out instead of

relying on automatic or semiautomatic methods. These manual

segmentations could introduce subjectivity and result in bias, even

though we assessed interreader agreement. Our goal in future

studies will involve designing an automatic network based on

deep learning to minimize tumor segmentation variability and

improve segmentation efficiency. Third, advanced risk

stratification approaches that include additional features, such as

the EC molecular profile, could be utilized in categorizing patients
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(37, 38). Nevertheless, their usage is not prevalent, and the lack of

data calls for further, more extensive research in the future.

Moreover, the model is constructed solely on T2W images and

ADC maps, omitting the consideration of contrast-enhanced T1W

images, which could result in the oversight of important data.

However, our study included an independent validation cohort,

reducing the likelihood of overfitting. Finally, patients who did not

receive lymphadenectomy were classified as negative for LNM,

potentially creating bias, even though the surgeons made efforts

to evaluate lymph node status during the procedure.

In conclusion, we developed and validated an MRI radiomics

nomogram model by combining age, APsag, TAR and the radscore.

Owing to its good diagnostic performance, this nomogram can

effectively distinguish between low-risk and non-low-risk groups,

suggesting potential clinical usefulness for surgical management in

patients with EC. However, more studies are necessary to validate its

performance in this domain, ideally through a prospective trial format.
FIGURE 5

Calibration curve and decision curve analysis (DCA) plots of the nomogram. (A-C) Calibration curves of the nomogram in the training cohort (A), the
test cohort (B), and the independent validation cohort (C–F) DCA plots. The vertical axis represents the net benefit, while the horizontal axis
represents the threshold probability. The gray line represents the assumption that all patients are categorized as having nonlow-risk EC. The black
line represents the assumption that none of the patients are considered to have nonlow-risk EC. The green line represents the output of the clinical
model, the blue line represents the radiomic score, and the red line represents the output of the nomogram in the training (D), test (E), and
independent validation cohorts (F).
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