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Background: Esophageal squamous cell carcinoma (ESCC), the most common

form of esophageal cancer, is associated with high incidence and mortality rates,

representing a major public health challenge. Although previous research has

suggested a link between coagulation dysfunction and cancer progression, the

precise role of coagulation-related genes in ESCC remains poorly understood.

Methods: To investigate this, we integrated various multi-omics datasets,

including mRNA expression data from TCGA and GEO, single-cell RNA

sequencing data, as well as DNA mutation and methylation profiles. By

applying machine learning algorithms, we identified coagulation-related genes

in ESCC and developed a predictive model with clinical relevance. Further

analyses were performed to assess the biological functions, prognostic

significance, clinical implications, immune interactions, and drug sensitivity

associated with these genes.

Results: In this study, we identified seven coagulation feature genes—RAP1B,

SRC, CFHR4, PLA2G4A, ORAI1, RINT1, and SPTB—in ESCC. A prognostic model

based on these genes effectively stratified patients and demonstrated robust

predictive value for clinical outcomes. Further analysis revealed distinct

differences in immune function, drug sensitivity, and disease-related pathways

between high- and low-risk groups. Among these genes, RINT1 emerged as a key

factor, with pan-cancer analysis highlighting its potential relevance across

multiple tumor types. We used immunohistochemistry, qRT-PCR, and Western
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blot to validate its differential expression in ESCC, highlighting its potential as a

therapeutic target.

Conclusion: Our findings emphasize the significance of coagulation-related

genes in ESCC progression and their involvement in critical biological and

immune processes. The proposed prognostic model provides a valuable tool

for risk assessment. Additionally, the identification of RINT1 provides new insights

as a potential prognostic biomarker and candidate for future therapeutic

investigation in ESCC patients.
KEYWORDS

esophageal squamous cell carcinoma, coagulation, machine learning, RINT1, genomic
instability, prognosis
1 Introduction

Esophageal cancer (EC) is a major global health concern,

ranking as the seventh leading cause of cancer-related mortality

and the eleventh most common malignancy worldwide. In 2022,

approximately 445,000 individuals worldwide succumbed to EC,

with 511,000 new cases reported, underscoring its substantial

disease burden (1). Although the global incidence of esophageal

cancer has declined, a significant number of patients continue to be

diagnosed at advanced stages, limiting treatment options and

reducing survival rates (2). Despite advances in surgical

techniques and adjuvant therapies, esophageal cancer remains

associated with high rates of recurrence, metastasis, and drug

resistance, which significantly complicate patient management

(3). Notably, esophageal squamous cell carcinoma (ESCC)

accounts for nearly 80% of all esophageal cancer cases,

particularly in low-income regions, where it poses a critical public

health challenge (4). Addressing these issues requires a deeper

understanding of ESCC pathogenesis and the exploration of

innovative therapeutic strategies.

Dysregulation of coagulation is increasingly recognized as a key

factor in cancer progression, contributing to both thrombotic and

hemorrhagic complications in affected patients. Studies indicate

that hypercoagulability-related venous thromboembolism (VTE)

accounts for approximately 20% of all VTE cases in oncology

patients (5, 6), and cancer-associated thrombosis (CAT) was

historically considered the second leading cause of cancer-related

mortality (7). Moreover, due to coagulation abnormalities and

direct tumor invasion, advanced malignancies such as lung and

gastric cancers frequently present with hemorrhagic symptoms (8,

9), Similar hemostatic challenges have been observed in ESCC,

highlighting the need for further investigation into the interplay

between coagulation dysfunction and tumor biology (10). Research

indicates that coagulation pathways play crucial roles in cancer

progression. Thrombotic complications may indicate occult cancers

(11), and the activation of the coagulation cascade plays a key role in

this process. Specifically, tumor cells promote the manufacture or
02
secretion of different chemicals to affect platelet function, hence

encouraging tumor cell proliferation and metastasis (12). High

expression of tissue factor (TF) and thrombin intensifies the

hypercoagulable state, drug resistance, and metastasis of cancer

through specific pathways, often correlating with poor prognosis

(13, 14). Fibrinogen, as the end product of the cascade, not only

promotes tumor cell migration but also shields tumor cells from

immune surveillance (15). Furthermore, coagulation pathways are

involved in tumor inflammation and immune responses.

Proinflammatory factors released by platelets not only recruit and

activate leukocytes but also exacerbate the pathogenesis of diseases

such as cancer (16). Coagulation proteases enhance cancer immune

evasion by driving specific pathways, thereby supporting tumor

growth and development (17). According to pan-cancer research,

coagulation pathways are closely related to the expression of

immunological checkpoints and the tumor microenvironment

(18). Consequently, there is great research value in coagulation-

related genes for tumor diagnosis and treatment.

The use of bioinformatics in cancer research has greatly

progressed in recent years, with new methods offering vital

assistance (19). Large volumes of genomic, transcriptomic,

epigenomic, and proteomic data have been produced by high-

throughput sequencing technology and computational biology

techniques. Through comprehensive analysis of multi-omics data,

researchers can identify unique molecular features, enabling

personalized treatment plans (20, 21). The development of many

cancer therapies is closely linked to bioinformatics, such as the

successful use of immune checkpoint inhibitors in cancer

immunotherapy, which benefits from in-depth analysis of the

immune microenvironment (IME) (22, 23). As artificial

intelligence advances, various neural network and machine

learning algorithms are being employed to integrate multi-omics

data (24), revealing the complex molecular mechanisms of cancer.

Algorithms such as elastic net and random forest are utilized for

feature selection and model construction, demonstrating significant

value in early cancer diagnosis, personalized therapy, prognosis

assessment, and the development of novel treatments (25). These
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bioinformatics techniques enhance the quality of life and survival

rates of cancer patients by aiding in the development of novel

treatments and clinical translation (26). Genomic instability is a

central phenomenon in cancer biology, underpinning tumor

initiation, progression, drug resistance, and treatment (27).

Investigating genomic instability not only uncovers fundamental

mechanisms of tumorigenesis but also provides a critical foundation

for prognostic evaluation, predicting treatment sensitivity, and

identifying potential therapeutic targets. Bioinformatics

approaches are increasingly crucial in assessing the role of key

genes in genomic instability (28).

Previous research has demonstrated the unique roles and

prognostic value of several coagulation biomarkers (e.g., PLT, MPV,

fibrinogen, thrombin time, thrombin receptor, and tissue factor) in

ESCC (29–31). However, the potential regulatory role of coagulation-

related genes in ESCC remains unexplored. Further investigation into

the relationship between these genes and ESCC is essential to identify

novel biomarkers for diagnosis and treatment, providing new support

for personalized therapy. In order to thoroughly examine the

functions of coagulation-related genes in ESCC, we combined

mRNA expression levels, single-cell RNA sequencing, DNA

mutations, and methylation data. Using a combination of machine

learning algorithms, we identified coagulation feature genes in ESCC

and build a prognostic model based on these findings to predict

personalized treatment outcomes for ESCC patients. Through in vitro

experiments and pan-cancer research, we investigated the function of

the important coagulation gene RINT1 and further evaluated the

significance of coagulation feature genes in ESCC using this model.
2 Materials and methods

2.1 Data collection and preliminary
processing

Gene expression and clinical data for ESCC patients were

obtained from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) and the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/) databases. Specifically, 94 ESCC

samples were obtained from the TCGA-ESCA cohort, and 60 and

119 ESCC samples were acquired from two GEO datasets (GSE53622

and GSE53624). These datasets were subjected to batch effect

correction using the “combat” approach, which produced a gene

expression dataset that included 273 tumor samples. Mutation and

copy number variation data were obtained from the TCGA database.

Coagulation-related gene data were sourced from the GSEA website

(www.gsea-msigdb.org) and the KEGG website (https://

www.kegg.jp). Using “coagulation” as the keyword, we reviewed

the search results and selected the biological pathways most closely

related to the coagulation cascade; a total of 10 coagulation-related

pathways were identified and included. Ultimately, 480 coagulation-

related genes were extracted. Supplementary Table S1 provides

information on the genes and pathways.
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2.2 Genomic variation and survival analysis

TCGA sample visualization and genomic mutation analysis

were performed using the “maftools” software. CNV analysis was

performed to investigate DNA segment amplifications or deletions,

which are important in various diseases, including cancer. TCGA-

derived CNV data were analyzed with R. Kaplan-Meier survival

analysis and univariate Cox regression were applied to examine the

survival effects of coagulation-related genes and identify significant

genes for further study.
2.3 Consensus clustering analysis of
coagulation-related genes and ESCC
samples

Using survival data from ESCC samples and the expression

data of 27 coagulation-related genes with prognostic significance

found by univariate Cox regression analysis, we used the

“ConsensusClusterPlus” program to conduct consistency clustering

analysis. The “Partitioning Around Medoids (PAM)” method was

employed with a sampling rate of 0.8 for each iteration, and 100

iterations were performed to ensure stable clustering results (32).

The final analysis identified two clusters for subsequent analysis.
2.4 Gene set variation analysis, functional
enrichment analysis, and immune
microenvironment analysis

Various methods were employed to analyze the functional roles

of coagulation-related genes under different conditions. Gene Set

Variation Analysis (GSVA), an unsupervised approach, assessed the

enrichment levels of coagulation-related gene sets across samples

(33). Gene Set Enrichment Analysis (GSEA), a supervised method,

determined the significant enrichment of predefined gene sets

between different phenotypes, further comparing enrichment

under different conditions using GSEA. Single-sample Gene Set

Enrichment Analysis (ssGSEA) was used to generate immune cell

scores for each sample, allowing for differential analysis of immune

cell populations (34). The CIBERSORT (Cell-type Identification by

Estimating Relative Subsets of RNA Transcripts) algorithm

analyzed immune cell infiltration in the ESCC microenvironment.

These methods collectively provided a comprehensive

characterization of the IME. The “estimate” package analyzed the

ESCC microenvironment to determine relative abundances of

different cell types, elucidating mechanisms underlying tumor

development and treatment responses. GO and KEGG

enrichment analyses elucidated the functions and pathway

associations of the coagulation gene set, revealing biological

processes and mechanisms relevant to coagulation genes in ESCC

and their potential value in research.
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2.5 Establishment of machine learning and
clinical prognosis models

The samples were divided into training (137 ESCC samples)

and testing (136 ESCC samples) groups using a 50% split ratio (“p =

0.5”), with the process repeated 1000 times. We utilized 101

combinations of machine learning algorithms for prognostic

feature selection. These algorithms were sourced from a

professional online platform (http://www.sxdyc.com/). After

systematic screening, 97 algorithms were selected for further

analysis, and their respective C-index values were calculated.

Genes included in the model with the highest average C-index

were subsequently chosen for downstream analysis. The RSF

algorithm demonstrated the highest C-index among all models. It

was implemented using 1000 trees, with a nodesize parameter of 5,

and variable importance was evaluated for each feature. Multi-

factor Cox regression analysis employed the “both” method to

further screen feature genes, obtaining risk coefficients for each.

Subsequently, the “predict” function calculated sample risk scores

using the formula:

Riskscore =  h0 (t)*exp(b1X1 + b2X2 +⋯+bnXn)

Where h0 (t) represents the baseline hazard function indicating

the basic probability of an event occurring without other

influencing factors, and b1, b2, …, bn, are the risk coefficients

obtained from model fitting, X1, X2,… Xn represent the expression

levels of corresponding coagulation feature genes. Seven

coagulation feature genes and their respective risk coefficients

were ultimately identified.
2.6 Model evaluation and drug sensitivity
analysis

The prognostic value of the established model was evaluated

using a number of R packages, such as the “survival,” “timeROC,”

and “rms” packages, which evaluated survival prediction by plotting

survival curves, receiver operating characteristic (ROC) curves, and

calculating the area under the ROC curve (AUC); single-factor and

multi-factor Cox regression analyses were used to assess the

association between risk scores, clinical features, and prognosis

(35). Various plots, such as nomogram, calibration curves, and

decision curves, were generated using data from these packages.

Additionally, the “oncoPredict” package was used to determine the

sensitivity of various risk score groups to chemotherapy drugs

commonly used in cancer treatment. This analysis provided

potential pharmaceutical support for personalized therapy in

ESCC (36).
2.7 single-cell analysis

Single-cell data from the GSE160269 and GSE173950 cohorts

were analyzed using the Tumor Immune Single-cell Hub 2

(TISCH2, http://tisch.comp-genomics.org/), allowing for a
Frontiers in Oncology 04
preliminary exploration of the potential roles of coagulation-

related genes in esophageal cancer.

To gain deeper insights and perform a more refined analysis, we

selected single-cell data from three ESCC tumor samples and

adjacent normal tissues of patients from the GSE196756 dataset.

Data analysis was performed using Seurat (version 5.1.0) (37). To

ensure data quality, we applied the following criteria: nCount_RNA

≥ 1000, nFeature_RNA ≥ 200 and ≤ 10,000, mitochondrial gene

percentage ≤ 25%, and ribosomal gene percentage > 3%. After

removing batch effects using the Harmony method, we performed

LogNormalize standardization and identified the top 2000 highly

variable genes for subsequent analysis. Dimensionality reduction

was performed using PCA, followed by clustering with the

“FindClusters” function. Based on the clustering visualization, we

selected a resolution of 0.8, identifying 21 distinct clusters.

Subgroup clustering was conducted using classical ESCC

marker genes.

We performed differential expression analysis using data from

the GSE53622 and GSE53624 datasets, to distinguish the gene

expression profiles of tumor tissues from those of normal tissues.

The top 50 significantly upregulated genes in tumor tissues were

defined as the gene set for calculating the malignancy score, while

the top 50 significantly downregulated genes were used to compute

the non-malignancy score. We used the UCell package’s

“AddModuleScore_UCell” function to calculate malignancy and

non-malignancy scores for each cell. Finally, epithelial cells with

high malignancy scores and low non-malignancy scores were

identified as malignant epithelial cells. We identified genes

associated with epithelial-mesenchymal transition (EMT) from

existing literature, including VIM, SNAI1, MMP9, AREG,

SERPINH1, and FAT1, and used the “AddModuleScore_UCell”

method to calculate EMT and coagulation scores, comparing the

trends in their correlation. We also performed pseudotime analysis

on malignant epithelial cells using the “monocle2” tool. We further

analyzed the immune cell subpopulations in ESCC based on

classical marker genes and used the “singleR” method to

distinguish T/NK cell subpopulations. Additionally, we examined

the expression of key coagulation genes in immune cells.
2.8 Pan-cancer analysis

To identify key coagulation genes, we established a protein-

protein interaction (PPI) network via the STRING database

(https://cn.string-db.org/) (38). The resulting analysis was

imported into Cytoscape for further exploration, where significant

genes were filtered, and the “psych” package was utilized to study

gene correlations. An online analysis platform (http://

www.sxdyc.com/) was used to do a pan-cancer analysis of the

coagulation gene RINT1, which provided RINT1 expression data

and immune infiltration analysis from TCGA, GTEx, and other

databases. This platform offers professional analysis and

visualizations of immune-related data. For integrated gene set

cancer analysis, we utilized the GSCA website (https://

guolab.wchscu.cn/GSCA), which includes pan-cancer CNV and
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methylation data. This made it possible for us to investigate the

connections among various cancer types between gene expression,

DNA methylation levels, and gene mutations.
2.9 Transcription factor and RBP analysis

We used the KnockTF 2.0 database (http://www.licpathway.net/

KnockTF/index.php) to analyze potential transcription factors of

key coagulation genes (39). To explore potential RNA-binding

proteins (RBPs) of key coagulation genes, we utilized the

ENCORI database (https://rnasysu.com/encori/). These analyses

provide insights into the potential role of coagulation key genes

in post-transcriptional regulation (40).
2.10 Cell lines and reagents

Human ESCC cell lines KYSE-30, KYSE-150, and normal

esophageal epithelial cells HET-1A were purchased from EallBio.

Polyclonal antibodies against RINT1 and GAPDH were purchased

from Proteintech. HRP-conjugated goat anti-rabbit IgG and HRP-

conjugated goat anti-mouse IgG were obtained from NCM Biotech.

The Cell Total RNA Isolation Kit, All-in-One RT SuperMix, and SYBR

Master Mix used for PCR experiments were acquired from Vazyme.
2.11 Cell culture conditions

The cell lines were grown in RPMI 1640 medium containing

10% fetal bovine serum and incubated at 37°C with 5% CO2 in a

humidified incubator.
2.12 Immunohistochemistry

Patients from Soochow University’s First Affiliated Hospital

provided tissue samples for ESCC. All patients underwent surgical

treatment and were diagnosed with ESCC via postoperative pathology.

Tumor and adjacent non-tumorous esophageal tissues, confirmed by

pathological examination, were collected as paired samples; the normal

tissues served as positive controls in the immunohistochemical

analysis. Tissue sections were dewaxed in xylene, rehydrated through

a graded ethanol series, and washed with water. Antigen retrieval was

carried out by heating the sections in sodium citrate buffer, followed by

natural cooling. To prevent nonspecific binding, sections were blocked

with 3% hydrogen peroxide at room temperature. Primary antibodies

(1:200 dilution) were incubated overnight at 4°C, followed by

secondary antibody incubation (1:200 dilution) at room temperature

for 1 hour. DAB staining and hematoxylin counterstaining were used

for protein visualization. After washing, sections were mounted and

examined under a microscope for imaging.
2.13 qRT-PCR

Using a R RNA extraction kit and the manufacturer’s

instructions, total RNA was extracted from the three cell lines. A
Frontiers in Oncology 05
cDNA synthesis reagent was then used to reverse-transcribe the

RNA into cDNA. The 2 − DDCt technique was used to quantify

relative gene expression, and each sample was examined three times

to ensure accurate findings. The primers listed below were

employed for quantitative real-time PCR (qRT-PCR): RINT1

forward: GGCTGGGTAGTGAGTGTGTC, RINT1 reverse:

A CTTTCAGAGCAGCACGGG , GAPDH f o r w a r d :

G C A C C G T C A A G G C T G A G A A C , G A P D H

reverse: TGGTGAAGACGCCAGTGGA.
2.14 Western blot

RIPA buffer enhanced with PMSF and phosphatase inhibitors

was used to lyse the cells. After separation by SDS-PAGE, the

proteins were transferred to PVDF membranes through

electroblotting. To block nonspecific binding, membranes were

incubated with 5% skim milk at room temperature for 1 hour.

The target protein was detected by incubating the membranes

overnight at 4°C with primary antibodies (1:2000 dilution).

Following this, secondary antibodies (1:2000 dilution) were

applied at room temperature for 1–2 hours. Protein bands were

visualized using ECL chemiluminescence and analyzed with a

chemiluminescent imaging system. Band intensity was quantified

with ImageJ software, and GAPDH served as the internal control.

Each experiment was performed in triplicate.
2.15 Statistical analysis

Statistical analysis was performed using R software (version

4.3.3). For differential analysis, the Wilcoxon test was used for data

that did not follow a normal distribution, while the independent

sample t-test was applied to normally distributed data. Spearman

and Pearson correlation analyses were conducted to examine the

relationship between gene expression and clinical features. In

survival analysis, Kaplan-Meier survival curves, along with

univariate and multivariate Cox regression, were employed to

explore the association between genes and patient prognosis.

Model evaluation was carried out using the “survival,”

“timeROC,” and “rms” packages in R, generating survival curves,

ROC curves, nomograms, calibration plots, and decision curves.

Statistical significance was set at a p-value < 0.05.
3 Results

3.1 Mutational landscape and prognostic
significance of coagulation-related genes
in ESCC

We retrieved comprehensive genomic mutation data for ESCC

from the TCGA database and selected mutation data specific to

coagulation-related genes for further analysis. The results revealed

that, compared to the comprehensive genomic dataset, coagulation-
frontiersin.org
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related genes exhibited a lower mutation frequency in ESCC, with

missense mutations being the predominant type (Figure 1A,

Supplementary Figure S1A). Additionally, coagulation-related

genes exhibited a high frequency of copy number variations

(CNVs), with amplifications and deletions occurring at similar

rates (Figure 1B, Supplementary Figure S1B). Higher CNV

frequencies are generally associated with genomic instability,

suggesting that tumor cells may gain advantages in processes such

as proliferation, adaptation, and immune evasion. Thus,

coagulation-related genes may contribute to ESCC development

through these mechanisms.

To further investigate the potential roles of coagulation-related

genes in esophageal cancer, we analyzed single-cell datasets from

different pathological subtypes: GSE160269 (esophageal squamous

ce l l carc inoma, ESCC) and GSE173950 (esophagea l

adenocarcinoma, EAC). The analysis revealed that fibroblasts,

endothelial cells, and myofibroblasts exhibited higher enrichment

scores in coagulation-related pathways (Figure 1C, Supplementary

Figure S1C). This finding suggests that coagulation-related genes

may regulate the functions of these cell types, influencing processes

such as angiogenesis, matrix remodeling, and immune modulation,

thereby contributing to the regulation of the esophageal cancer

microenvironment. Therefore, coagulation-related genes may play a

critical role in the initiation and progression of esophageal cancer.

Based on these observations, we conducted a more in-depth

investigation of the roles of coagulation-related genes in ESCC.

We collected ESCC data from the TCGA and GEO databases,

including TCGA-ESCA (94 samples), GSE53622 (60 samples), and

GSE53624 (119 samples). After batch effect correction, we

combined these datasets into one containing 273 ESCC samples,

all of which had survival information and expression data for 31,366

genes. We conducted a prognostic analysis of coagulation-related

genes using univariate Cox regression and Kaplan-Meier survival

analysis on this integrated dataset, with statistical significance

defined as p < 0.05. A total of 27 coagulation-related genes were

identified as significantly associated with prognosis. Forest plots

and prognostic network diagrams illustrated the prognostic value of

these genes (Figures 1D, E). These analyses suggest that

coagulation-related genes are crucial in ESCC prognosis and may

impact clinical outcomes through specific mechanisms.
3.2 Identification of ESCC subtypes based
on prognostic coagulation-related genes

To gain deeper insight into the expression patterns and

prognostic impact of coagulation-related genes in ESCC, we

analyzed the expression profiles of 27 genes previously identified

as prognostically significant. Using the “ConsensusClusterPlus”

package in R, we applied consensus clustering to ESCC samples,

which led to the identification of two distinct molecular subtypes

(Figure 2A, Supplementary Figure S1D). The separation between

these subtypes was further supported by principal component

analysis (PCA), where the clustering pattern appeared to be well-

defined (Figure 2B).
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Next, we explored the clinical implications of these subtypes.

Survival analysis suggested that patients classified as Subtype A

tended to have a more favorable prognosis compared to those in

Subtype B (Figure 2C). We also compiled clinical data, including

age, sex, T stage, and N stage, and visualized these parameters in a

heatmap (Figure 2D). Notably, patients in Subtype B were, on

average, older and exhibited a higher prevalence of advanced T and

N stages, suggesting a potential association between disease

progression and subtype classification.

Taken together, these findings indicate that ESCC can be

categorized into two molecularly distinct subtypes based on

coagulation-related gene expression. While the precise biological

implications of these differences require further investigation, our

results suggest that coagulation-related genes may play an

important role in disease stratification and prognosis prediction

in ESCC.
3.3 Differential expression and function
roles of coagulation-related genes in ESCC
subtypes

To better understand the potential role of coagulation-related

genes in ESCC progression, we examined differential gene

expression patterns and performed functional enrichment

analyses for the newly defined ESCC subtypes. Using GSVA, we

found that subtype B was highly enriched in pathways related to

immune function and tumor progression, including systemic lupus

erythematosus pathogenesis, focal adhesion, JAK-STAT signaling,

phosphoinositide signaling, and Wnt signaling (Figure 2E). The

prominence of these pathways suggests that coagulation-related

genes in subtype B could be involved in modulating immune

responses, inflammatory processes, and key signaling cascades

that drive tumor development. However, further investigation is

needed to clarify the precise molecular mechanisms underlying

these associations.

Further GSEA analysis (Figure 2F) revealed a significant

enrichment of subtype B in pathways related to systemic lupus

erythematosus and focal adhesion, potentially reflecting underlying

immune dysregulation and metastatic behavior. Notably, these

pathways have been implicated in immune evasion and tumor

progression, suggesting that subtype B may exhibit a more

aggressive phenotype. While this observation may partly explain its

poor prognosis, further research is required to substantiate these

findings. Additionally, whether these molecular characteristics

influence responsiveness to immunotherapy or targeted treatments

remains an open question and warrants further investigation.

GSVA and GSEA analyses revealed that coagulation-related

genes in subtype B are crucial for immune regulation, suggesting a

need for further exploration of the relationship between coagulation

genes and immune modulation. Immune cell differential analysis

using ssGSEA (Figure 2G) revealed significantly higher expression

of immature B cells, NK cells, and regulatory T cells in Subtype B,

while Subtype A showed higher expression of gd T cells, immature

dendritic cells, NKT cells, Th1 cells, and Th2 cells.
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We also performed differential analysis of the ESCC dataset using

the “limma” package in R, stratified by the two subtypes, and identified

300 differentially expressed genes with |logFC| > 1 and adj.P.Val <

0.05. Visualization through a volcano plot revealed distinct expression
Frontiers in Oncology 07
patterns (Supplementary Figure S1E). Subsequent GO and KEGG

analyses indicated their involvement in epidermal and keratinocyte

differentiation pathways (GO analysis) and significant enrichment in

inflammation, immune regulation, and signal transduction processes
FIGURE 1

Functional landscape of coagulation-related genes in ESCC. (A) Oncoplot of somatic mutations in coagulation-related genes in the TCGA-ESCA
cohort for ESCC.(B) Dumbbell plot of the top 30 coagulation-related genes with CNV alterations in ESCC. (C) Enrichment Scores of the Coagulation
Pathway Across Different Cell Types in the GSE160269 Dataset Using GSEA. (D) Twenty-seven coagulation-related genes exhibiting significant
prognostic capability in univariate Cox regression analysis. (E) Prognostic network of coagulation-related genes with significant prognostic impact.
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(KEGG analysis)(Supplementary Figures S2A, B). These findings align

with existing research and deepen our understanding of functional and

expression differences in clot-related genes in ESCC.

In conclusion, these analyses highlight potential differences in

the function and expression of coagulation-related genes in ESCC,

providing critical insights for further exploration of their roles in

this disease.
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3.4 Identification of coagulation feature
genes and construction of a clinical
prognostic model using integrated
machine learning algorithms

Building on prior analyses indicating the potential prognostic

value of coagulation-related genes in ESCC, The ESCC samples
FIGURE 2

Prognostic analysis of coagulation-related genes in ESCC. (A) Two identified subtypes from consensus clustering(B) PCA analysis of the identified
subtypes. (C) Kaplan–Meier analysis of the two subtypes. (D) Heatmap showing the relationship between the two subtypes, gene expression, and
clinical features. (E) Heatmap of GSVA analysis for the two subtypes. (F) Significant pathway map from GSEA analysis of subtype B. (G) Box plot
showing immune cell differences between the two subtypes based on ssGSEA analysis. ** : p-value < 0.01; *** : p-value < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1573279
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2025.1573279
underwent gene selection utilizing 101 machine learning algorithms

after being split into training and testing groups at random in a 1:1

ratio. The results (Figure 3A) showed that the RSF algorithm

exhibited the highest average c-index (0.723) and successfully

identified nine significant coagulation-related genes. To further

evaluate the independent prognostic impact of each gene,

calculate their risk coefficients, and mitigate model overfitting, we

applied multivariate Cox regression analysis to quantify and assess

the prognostic relevance of the genes selected by Random Survival

Forest (RSF). Ultimately, we identified seven coagulation feature

genes and their corresponding risk coefficients: CFHR4 (-0.15489),

RINT1 (-0.37298), SPTB (-0.77620), PLA2G4A (-0.18017), SRC

(0.34724), ORAI1 (-0.31232), and RAP1B (0.45536). Figure 3B

shows a risk coefficient plot with the risk coefficients for each

gene. The results indicated that worse clinical outcomes in ESCC

were linked to higher expression of RAP1B and SRC, while high

expression of CFHR4, PLA2G4A, ORAI1, RINT1, and SPTB

correlated with better clinical outcomes. We also developed a

prognostic model for ESCC and calculated the risk score for each

sample based on coagulation feature genes. Based on the median

risk score, we separated the samples into high-risk and low-risk

groups for additional study.

We plotted survival curves and receiver operating characteristic

(ROC) curves using the prognostic model that was created. The

model performed well in both the training and testing groups, as

well as throughout the full cohort, according to the result. The

survival curve including all patients showed that the high-risk group

had a significantly worse prognosis compared to the low-risk group

(Figure 3C), and the survival curves of the training and testing

groups also showed a consistent trend (Supplementary Figure S2C).

The ROC curve and area under the curve (AUC) showed that the 3-

year and 5-year AUC values for the cohort were both greater than

0.7, with the AUC improving over time (Figure 3D, Supplementary

Figure S2D). we constructed a risk curve for the prognostic model,

which revealed that as the risk score increased, the mortality rate

also progressively rose (Figure 3E, Supplementary Figure S2E).

In summary, we successfully identified coagulation feature

genes and developed a prognostic model, which exhibited good

predictive performance. A higher risk score was associated with

poorer clinical outcomes. This coagulation-related gene-based

prognostic model offers a novel research perspective for

ESCC treatment.
3.5 Clinical characteristics and immune
microenvironment analysis of the
coagulation feature gene based prognostic
model

Using the ESCC coagulation gene-related prognostic model and

patient data classified into high and low-risk groups, we performed an

additional analysis incorporating clinical information. First, a forest
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plot of prognostic factors was created using both univariate and

multivariate Cox regression, and independent prognostic analysis was

carried out using the “survival” software. The findings showed that

age, N stage, and risk score were independent predictors of ESCC

(Figure 3F, Supplementary Figure S3A), while gender and T stage did

not show statistical significance. Based on clinical staging, samples

were then divided into low-stage (Stage I–II) and high-stage (Stage

III–IV) groups. Using the “limma” program, a differential analysis of

risk score among these groups was carried out. The findings suggest

that higher clinical stages are generally associated with higher risk

scores (Figure 3G). Additionally, our research indicated that subtype

B exhibited a significantly higher risk score compared to other

subtypes (Supplementary Figure S3B) and a poorer prognosis,

which supports the predictive capacity of the prognostic model.

To further assess the predictive ability of the prognostic model,

we developed a nomogram using the available clinical data

(Figure 4A). This nomogram, which incorporates patient gender,

age, T stage, N stage, and risk score, offers a visual estimation of 1-,

3-, and 5-year survival probabilities. The cumulative risk curve

(Supplementary Figure S3C) showed that, over time, high-risk

patients in the nomogram had a higher prognostic risk. We

plotted calibration curves for 1-, 3-, and 5-year survival in order

to verify the nomogram’s prediction accuracy. The results suggest

good predictive performance, with the calibration curves

approaching the diagonal, which is indicative of better model

accuracy (Figure 4B). To evaluate the model’s sensitivity and

specificity, decision curves (DCA) were plotted at various

intervals. The outcomes suggest that the model’s performance

improved over time (Figure 4C, Supplementary Figure S3D).

These analyses provide clinicians with an intuitive tool to better

understand the clinical utility of the predictive model, facilitating its

application in real-world treatment settings.

Furthermore, we applied the prognostic model and risk

stratification to conduct an IME analysis, aiming to explore the

complex effects of coagulation-related genes on ESCC patients.

First, the Cibersort algorithm examined the differences in

immune infiltration between high- and low-risk groups. The

findings revealed variations between natural killer cells (NK cells)

and activated mast cells (Supplementary Figure S3E). Moreover, a

gene-risk score association heatmap showed that a number of

immune cell types, such as resting and active NK cells, activated

mast cells, follicular helper T cells, and plasma cells, showed a

substantial correlation with risk score (Figure 4D). Among these,

the expression of the majority of immune cells significantly

associated with risk scores, with the exception of activated NK

cells, exhibited a negative correlation. Furthermore, the relationship

between risk scores and the ESCC microenvironment was assessed

using the Estimate algorithm, and the findings indicated that there

is a substantial positive link between stromal and immune scores

and the tumor microenvironment in high-risk patients, which often

comprises a larger number of immune cells and stromal cell

components (Figure 4E).
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3.6 single-cell analysis of coagulation
feature genes in ESCC

We conducted a detailed analysis using single-cell sequencing

data from GSE196756. After quality control, we identified five

major cell types: endothelial cells, epithelial cells, fibroblasts,
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pericytes, and immune cells (Figure 5A, Supplementary Figure

S4A). Epithelial and immune cells were more abundant in ESCC

tissues, indicating tumor microenvironment remodeling

(Figure 5B). Since ESCC originates from epithelial cells, we

focused on epithelial subpopulations, performed clustering, and

calculated malignancy scores using differential genes from the
FIGURE 3

Machine learning algorithms identifying coagulation-related genes and establishing prediction models. (A) C-index ranking plot from analysis using
101 machine learning algorithms. (B) Risk coefficient plot of 7 coagulation feature genes. (C) Survival analysis of high-risk and low-risk patient groups
in the entire cohort. (D) ROC curves and corresponding AUC values analyzed for patients stratified into high- and low-risk groups in the entire
cohort at 1, 3, and 5 years. (E) Risk curves for high-risk and low-risk patient groups in the entire cohort. (F) Multivariate Cox regression analysis of risk
scores with age, gender, T stage, and N stage. (G) Relationship between risk scores and clinical staging of ESCC.
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GSE53622 and GSE53624 datasets. This classified epithelial cells

into malignant and non-malignant groups, with malignant cells

being the majority (Figure 5C, Supplementary Figure S4B).

Upon further analysis of malignant epithelial cells, we identified

eight distinct subpopulations, designated as G0 through G7

(Figure 5D). To investigate their characteristics, we calculated
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epithelial–mesenchymal transition (EMT) scores using a

previously reported ESCC-specific EMT gene set, and derived

coagulation scores based on the expression of key coagulation-

related genes. Notably, the G0 cluster exhibited the highest levels of

both EMT and coagulation scores (Figure 5E). We then assessed

gene expression patterns across subpopulations, and heatmap
FIGURE 4

Clinical feature analysis and immune microenvironment analysis of prognostic models. (A) The nomogram constructed based on gender, age, T
stage, N stage, and risk grouping. (B) Calibration curve of the column chart. (C) Decision curve analysis (DCA) at 5 years. (D) Heatmap showing the
correlation between risk scores and immune cells. (E) Analysis of microenvironment differences in high and low-risk group patients. ** : p-value <
0.01; *** : p-value < 0.001.
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analysis revealed that G0 cells showed the highest expression levels

of coagulation-related genes (Figure 5F). These findings suggest a

potential association between coagulation-related pathways and the

EMT process in ESCC.

To investigate functional characteristics, we compared G0 and

G1 subpopulations through differential gene analysis and GO

enrichment. Upregulated genes in G0 cells were enriched in

immune response and cell proliferation pathways, possibly linked

to immune escape or tumor growth in ESCC (Figure 5G).

Downregulated pathways involved cytoskeleton regulation and
Frontiers in Oncology 12
keratinocyte differentiation, which may impact tumor cell

migration and differentiation. In pseudotime analysis, G0 cells

were located at the end of the trajectory (Figure 5H and

Supplementary Figure S4C), suggesting a more advanced, invasive

tumor stage.

Lastly, we analyzed immune cells by identifying six

subpopulations and found that T cells were predominant

(Figures 6A, B, Supplementary Figure S4D). Coagulation gene

expression analysis revealed high expression of RAP1B and

ORAI1 in various immune cell types (Figure 6C).
FIGURE 5

Single-cell analysis of ESCC. (A) t-SNE plot showing the five cell types after clustering. (B) t-SNE plot of cells from different sample sources. (C) t-
SNE plot of epithelial cell clustering based on malignant score. (D) After extracting malignant epithelial cells, they were further divided into eight
subgroups. (E) EMT and coagulation scores of different malignant epithelial cell subgroups. (F) Expression of coagulation feature genes in malignant
epithelial cell subgroups. (G) Enriched classical pathways in G0 cells based on differentially expressed genes across subgroups. (H) Pseudotime
analysis of malignant epithelial cell subgroups.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1573279
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deng et al. 10.3389/fonc.2025.1573279
3.7 Drug sensitivity analysis of coagulation
feature genes

We used the “oncoPredict” program to do a medication

sensitivity study in order to investigate possible treatment options

for ESCC patients. We discovered notable variations in medication

responses between high-risk and low-risk groups based on the
Frontiers in Oncology 13
model categories (Figure 6D). The high-risk group was more

sensitive to irinotecan and camptothecin, whereas the low-risk

group was more sensitive to afatinib, erlotinib, and gefitinib.

Some of these drugs are already in clinical use and have

demonstrated good efficacy, while others require further

validation. Our findings provide valuable insights for identifying

potential drugs for ESCC treatment in clinical practice.
FIGURE 6

Coagulation feature genes analysis in ESCC immune cell subgroups and drug sensitivity. (A) Classification of 14 immune cell subgroups based on
immune cell marker genes. (B) t-SNE plot showing six immune cell types after clustering, with cells from different sample sources included.
(C) Violin plot showing the expression of coagulation feature genes across different immune cell types. (D) Prediction of IC50 values for various
anticancer drugs based on risk scores.
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3.8 Identification of the key coagulation
gene RINT1 and pan-cancer analysis

The top 20 differentially enriched pathways in high- and low-

risk groups were investigated in order to more accurately assess the

connection between risk stratification and GSVA scores in ESCC.

The findings showed that there were notable variations between the

two groups in a number of pathways, with the high-risk group

exhibiting reduced enrichment in meiosis, rRNA processing, and

rRNA methylation (Figure 7A). To identify key genes associated

with coagulation, we extracted relevant genes from the top five

enriched GSVA pathways and subsequently identified eight key

genes through protein-protein interaction (PPI) network analysis

(Figure 7B). Gene correlation analysis revealed strong associations

between ORAI1 and RINT1 with genes in these key pathways

(Figure 7C), suggesting that they may play a central role in

coagulation feature gene networks.

ORAI1, a critical calcium ion channel protein, regulates

intracellular calcium balance and various cellular functions. Prior

research has demonstrated the involvement of ORAI1 in the

development of ESCC, potentially influencing tumor proliferation

and metastasis. As a coagulation-related gene, ORAI1 holds

significant biological relevance in cancer progression. RINT1,

which encodes a protein involved in cell cycle regulation and

DNA damage repair, has been studied in the context of

pancreatic and breast cancers (41, 42). However, its role in ESCC

remains underexplored. Therefore, RINT1 was chosen as a crucial

coagulation gene for additional research in this work, with plans to

explore its possible processes in ESCC.

To comprehensively assess RINT1’s role in various cancers, we

conducted a pan-cancer analysis. Using data from the TCGA and

GTEx databases, we examined RINT1 expression across multiple

cancer types. Boxplots indicated significant expression differences

of RINT1 in most cancer types(Figure 7D). Further analysis

revealed that RINT1 expression and gene copy number variation

(CNV) were positively correlated, but that DNA methylation levels

were negatively correlated (Figure 7E). This positive correlation

suggests that increased CNV may lead to upregulation of RINT1

expression, promoting cancer cell proliferation and growth.

Conversely, DNA methylation is typically associated with gene

silencing, and its negative correlation with RINT1 expression

suggests that lower methylation levels in cancer samples may

enhance RINT1 gene expression.

Using the CIBERSORT program, we also conducted a pan-

cancer immune infiltration investigation of RINT1. According to

the findings (Figure 7F) RINT1 expression is strongly correlated

with immune cell types in a number of malignancies, such as head

and neck squamous cell carcinoma, lung cancer, gastric cancer,

renal cell carcinoma, and glioblastoma. These results imply that

RINT1 may affect the initiation and progression of cancer by

modifying immune responses in the tumor microenvironment.

Overall, our findings provide further evidence of the possible

function of the coagulation gene RINT1 in various cancers, offering

a theoretical basis for future research into its specific mechanisms in

cancer development and progression.
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3.9 Analyzing the multi-layered regulatory
network of RINT1 and its in vitro
expression validation in ESCC

We examined RINT1’s interaction with immunological

checkpoint inhibition (ICB) molecules in order to learn more

about its function in tumor growth and the immune milieu.

RINT1 expression and other immunological checkpoint molecules

were shown to be significantly correlated (Figure 8A). Specifically,

low expression of immunological checkpoints such as PD-L1

(CD274), PD-L2 (PDCD1LG2), and CTLA-4 (CTLA4) was

negatively correlated with high expression of RINT1. This implies

that RINT1 may regulate immune checkpoint expression,

impacting tumor immune evasion strategies and being a crucial

component of the tumor IME.

Transcription factors are essential for the regulation of gene

expression. Figure 8B shows possible upstream transcription factors

of RINT1; alterations in transcription factors can result in aberrant

expression of tumor-related genes, which further promotes tumor

cell migration, metastasis, and proliferation; RNA-binding proteins

(RBPs) are important for post-transcriptional regulation of gene

expression; RINT1 may interact with different RBPs, including

DDX3X, CTCF, and ELAVL1 (Figure 8C), which regulate post-

transcriptional modifications of tumor-related genes and impact

tumor cell growth, invasiveness, and immune evasion.

The role of RINT1 in tumor progression has been preliminarily

confirmed through the analyses above. To further examine its

expression and function in ESCC, we compared RINT1 levels in

ESCC t i s s u e s and ad j a c en t no rma l t i s s u e s u s i n g

immunohistochemistry. According to the results, ESCC tissues had

significantly higher RINT1 expression. (Figures 8D, E). We then

performed qRT-PCR in ESCC cell lines (KYSE-30 and KYSE-150)

and normal esophageal epithelial cells (HET-1A). The qRT-PCR

results indicated significantly higher RINT1 expression in the ESCC

cell lines compared to the normal cells (Figure 8F). Western blot

analysis confirmed this finding, showing a substantial increase in

RINT1 protein expression in the ESCC cell lines (Figure 8G). Overall,

the elevated expression of RINT1 in ESCC suggests its potential

involvement in tumorigenesis and progression, highlighting RINT1

as a possible biomarker for the diagnosis and treatment of ESCC.
4 Discussion

Numerous studies have examined the strong correlation

between coagulation malfunction and tumor progression (43),

and CAT and a hypercoagulable condition have been found to be

potential contributors to the development of certain malignancies.

Multiple genes participate in ESCC, a multifactorial disease

impacted by intricate interactions between genetic and

environmental variables (44, 45). Multiple studies have

demonstrated the critical roles that different coagulation function

markers play in the development of ESCC, pointing to a possible

connection between coagulation function and the initiation and

progression of ESCC (46).
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Genes are fundamental units carrying genetic information

within organisms, encoding proteins that determine both external

traits and internal metabolic processes (47). Genes involved in the

coagulation pathway regulate coagulation function, yet previous

studies have not extensively explored the genetic aspects of the

connection between coagulation and ESCC. Our research

innovatively explored the mechanisms and potential significance
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of coagulation-related genes in ESCC using bioinformatics

methods. We comprehensively analyzed the biological functions,

prognostic value, clinical relevance, immune implications, tumor

microenvironment interactions, and drug sensitivity of these genes,

demonstrating their pivotal role in ESCC through multi-omics data.

In recent years, machine learning methods have increasingly

contributed to cancer research by identifying genes relevant to
FIGURE 7

Pan-cancer analysis of RINT1. (A) GSVA analysis heatmap for patients in high and low-risk groups. (B) Protein-protein interaction (PPI) network of
genes from the top 5 significantly enriched pathways identified by GSVA. (C) Correlation heatmap showing the relationship between coagulation-
related genes and the 8 genes most significantly correlated based on PPI. (D) Differential analysis of RINT1 expression between tumor and normal
patients in TCGA and GTEx databases. (E) Correlation of CNV and DNA methylation with RINT1 expression across different cancers. (F) Immune
infiltration analysis of RINT1 in pan-cancer studies.
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disease mechanisms (48). We employed a variety of machine learning

techniques and compared their average c-index, revealing that the RSF

method achieved the highest performance. RSF, a robust algorithm for

survival analysis, effectively handles missing data and identifies critical

features associated with survival time, demonstrating significant
Frontiers in Oncology 16
practical utility in real-world applications (49). We used RSF-selected

genes in multivariate Cox regression analysis to find feature genes that

were highly correlated with patient survival. RAP1B, SRC, CFHR4,

PLA2G4A, ORAI1, RINT1, and SPTB are the seven coagulation-

related genes that were discovered using this method.
FIGURE 8

Functional identification of RINT1 and in vitro validation of its expression levels. (A) Differential expression of immune checkpoints between high
and low RINT1 expression groups. (B) Analysis of RINT1-associated transcription factors. (C) Analysis of RINT1-associated RNA binding proteins.
(D) Immunohistochemical analysis demonstrated a significant upregulation of RINT1 expression in ESCC tissues. (E) Quantitative analysis of RINT1
immunohistochemistry results. (F) qRT-PCR results confirmed the differential expression levels of RINT1 between normal esophageal cell lines
(HET-1A) and ESCC cell lines (KYSE-3O and KYSE-150). (G) Western blot analysis further validated the high expression of RINT1 in ESCC cell lines.
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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In our study, we established a prognostic model aimed at

predicting the clinical outcomes of ESCC patients, drawing upon

the expression of coagulation feature genes. This model was verified

by various kinds of methods, proving its high predictive power. This

suggests the potential application of the model in personalized

treatment for ESCC. Additionally, we explored the mechanisms

underlying these coagulation feature genes in ESCC. The results

indicate that these genes regulate tumor immune evasion and

progression by affecting key biological processes such as immune

cell infiltration, tumor microenvironment, meiosis, rRNA

processing, and DNA methylation. Notably, while activated NK

cell expression was markedly increased in high-risk patients, other

important immune cells such as plasma cells, follicular helper T

cells (Tfh), and activated mast cells were inhibited. Tumor cell

immune evasion may be facilitated by this inhibition. Furthermore,

higher stromal, immune, and ESTIMATE scores were associated

with high-risk patients, suggesting a tumor microenvironment that

is both more complex and heterogeneous. These findings may

reflect the genetic instability inherent in tumor cells, which could

foster both cancer progression and resistance to treatment (50).

To further understand the complex cellular landscape of the

ESCC microenvironment, we employed single-cell sequencing data

to conduct a thorough investigation of cellular heterogeneity. Our

analysis revealed that epithelial cells derived from ESCC tissues had

significantly higher malignancy scores and could be further

subdivided into multiple functional subpopulations. Among these,

the G0 subpopulation not only exhibited the highest EMT score but

also showed high expression of key coagulation genes, suggesting a

potential synergistic relationship between the activation of

coagulation pathways and the EMT process. This finding further

supports the idea that coagulation contributes to tumor progression

and enhanced invasiveness. Immune cell analysis indicated that T

cells predominated in the tumor microenvironment, with

coagulation-related genes such as RAP1B and ORAI1 showing

high expression across various immune cell types. This implies

that by altering immune cell functions, coagulation-related genes

may also have an impact on the ESCC IME.

Our study identifies RINT1 as a key coagulation-related gene

with potential implications in ESCC. Previous studies have shown

that RINT1 is localized to the Golgi apparatus, centrosome, and

endoplasmic reticulum, and is involved in maintaining mitotic

stability. In heterozygous RINT1-deficient mice, approximately

81% spontaneously developed multiple tumors, suggesting its

potential tumor-suppressive role (51). However, RINT1 has also

demonstrated oncogenic properties. For instance, in glioblastoma

(GBM), overexpression of RINT1 promotes cellular transformation

and tumor formation (52); in pancreatic ductal adenocarcinoma

(PDAC), RINT1 contributes to tumor progression by regulating

DNA repair, cell cycle, ER-Golgi homeostasis, SUMOylation, and

apoptosis (41). These findings indicate that RINT1 exhibits

functional heterogeneity across different tumor types. In our

study, high RINT1 expression was associated with better

prognosis in the prognostic model, yet it was significantly

upregulated in ESCC tissues compared to normal controls,

suggesting its involvement in tumor development. Further
Frontiers in Oncology 17
immune analysis revealed that RINT1 expression was negatively

correlated with immune checkpoint molecules PD-L1 and CTLA-4,

which are typically linked to immune suppression and tumor

immune evasion (53). RINT1 expression also showed a positive

correlation with immune-activating cell subsets such as T follicular

helper cells and memory B cells, implying a potential association

between RINT1 overexpression and enhanced antitumor immunity.

These findings suggest that RINT1 may not serve as a purely

oncogenic or tumor-suppressive factor in ESCC, and its

functional role may be more complex. Collectively, RINT1 may

exert multifaceted, context-dependent functions in ESCC by

influenc i n g bo th t umor b i o l o g y and th e immune

microenvironment. Future studies integrating functional assays,

cell models, and clinical subgroup analyses are warranted to

elucidate its molecular mechanisms and therapeutic potential.

This study provides valuable insights into the role of

coagulation-related genes in ESCC and the development of a

prognostic model, however, some inevitable limitations remain.

First, The biological functions and clinical relevance of these genes

have been analyzed, but the molecular mechanisms regulating

coagulation activity in ESCC remain unclear. A deeper

exploration of these mechanisms could help clarify how

coagulation influences tumor progression and reveal potential

therapeutic opportunities. Second, The prognostic model has

demonstrated good predictive potential, yet its reliability needs to

be tested on larger, multi-center clinical datasets to confirm its

broader applicability. Furthermore, The connection between

coagulation-related genes and tumor immune regulation also

requires more detailed study. These genes may have a more

complex role in shaping the tumor microenvironment than

current findings suggest. Additional experimental validation and

expanded clinical analyses are essential to evaluate their potential

value as therapeutic targets. Overall, this study lays a foundation for

future research on coagulation mechanisms in ESCC and holds

promise for advancing early diagnosis, risk stratification, and

personalized treatment strategies.
5 Conclusion

Our study offers a comprehensive analysis of the expression

patterns of coagulation-related genes in ESCC, highlighting their

potential involvement in tumor progression. Through our

investigation, we identified coagulation feature genes and

established a prognostic model based on these markers,

demonstrating its clinical reliability. Further examination suggests

that these genes may influence tumor development by modulating

the TME, immune responses, and various biological pathways. The

identification of RINT1 as a potential prognostic biomarker and

candidate for future therapeutic investigation is a notable finding

that warrants deeper exploration in subsequent studies. While

additional experiments and clinical validation are certainly

necessary to confirm these findings, our results seem to provide

valuable insights into the role of coagulation-related genes in ESCC.

These discoveries provide a foundation for future development of
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more personalized and targeted treatment strategies, which may

ultimately improve clinical outcomes and prognosis for

ESCC patients.
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