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Purpose: To improve clinical decision-making, we developed a predictive model

to identify metastatic colorectal cancer (mCRC) patients who might benefit from

primary tumor resection (PTR).

Patients and Methods: We extracted clinical data of stage IV CRC patients

between 2010 and 2019 from the Surveillance, Epidemiology, and End Results

database. Propensity score matching (PSM) was used to balance confounding

factors by categorizing patients into surgery and non-surgery groups. To identify

independent predictors of cancer-specific survival (CSS), we used multivariate

Cox regression analysis. We further sorted patients who underwent surgery into

benefit and non-benefit groups based on the median CSS of the non-surgery

group; subsequently, we split the groups into training and test sets at a ratio of

6:4. To construct predictive models, we used the Boruta selection method to

further filter variables, focusing on whether patients benefited from the surgery,

based on key predictive factors.

Results: We identified 23,649 mCRC patients, of whom 80.97% (19,148)

underwent PTR. After PSM, compared to no surgical intervention, surgical

intervention was independently associated with an extended median CSS

[median: 22 vs. 12 months; HR: 2.323, P < 0.001]. Among the nine machine

learningmodels, the Categorical Boosting model performed the best but was still

slightly inferior to traditional logistic regression. The traditional logistic regression

model showed good discriminative ability in both the training (area under the

curve [AUC]: 0.727 [0.699-0.756]) and test (AUC: 0.741 [0.706-0.776]) sets.

Conclusion: We achieved a predictive model which could identify optimal

candidates for PTR among mCRC patients with high accuracy.
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1 Introduction

Globally, colorectal cancer (CRC) ranks third in the frequency

of digestive system malignancies (1). In approximately 20% of cases,

distant metastases are present at the time of initial diagnosis (2, 3),

resulting in a 5-year survival rate of <14%, which is further reduced

in rectal cancer patients. Current treatments for metastatic CRC

(mCRC) focus on improving both cancer-specific survival (CSS)

and overall survival (OS), leading to the widespread utilization of

systemic and palliative interventions (4). The National

Comprehensive Cancer Network guidelines suggest primary

tumor resection (PTR) as a surgical option for stage IV CRC

patients (5). PTR, with chemotherapy, improves OS and CSS in

certain patient populations (6). One study demonstrated a median

OS of 18.3 months in patients that received PTR with

chemotherapy, compared to 8.4 months for those who underwent

chemotherapy alone (7). Despite notable advancements in the

efficacy of chemotherapies, approximately 70% of patients choose

PTR (8, 9). Nevertheless, determining treatment strategies for

unresectable stage IV CRC depends on the expertise,

discernment, and individual preferences of the attending clinician.

Our knowledge about which patients derive the greatest benefit

from surgery remains incomplete. Hence, a predictive model of

effectively recognizing potential candidates for PTR is

urgently needed.

Recently, notable advancements in machine learning

algorithms in medicine have been made, emphasizing oncological

applications (10). Nevertheless, the efficacies of these machine-

learning models depend on the availability of substantial datasets

for training, which is challenging in certain medical settings.

Additionally, the opaque nature of these models can impede the

comprehension of decision-making mechanisms by medical

practitioners and patients. Therefore, using machine learning to

address specific clinical issues is not always optimal. Traditional

logistic regression models remain viable alternatives (11), providing

clear and interpretable visual representations that enhance

comprehensibility regarding outcomes (12, 13).

Herein, we constructed a predictive model employing data from

SEER database to identify candidates suitable for PTR among

mCRC patients. Additionally, the predictive performance of

traditional logistic regression and machine learning models

are compared.
2 Methods

2.1 Research participants

We extracted data from CRC patients between 2004 and 2019

using the SEER*Stat software (version 8.4.2), with tumor site codes

ranging from C18.0, C18.2-C18.9, C19.9, and C20.9. Patients with

histologically confirmed CRC according to the 7th edition of AJCC

TNM classification were included. The exclusion criteria were more

than one primary tumor and missing or incomplete data regarding

grade, TNM stage, treatment information, or survival time.
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2.2 Balancing the dataset and feature
selection

The patients were classified into surgery and non-surgery

cohorts depending on the conduct of PTR. To balance baseline

characteristics between the two groups, propensity score matching

(PSM) was performed using a logistic regression model and a 1:1

matching ratio with a caliper value of 0.01, based on the nearest

neighbor matching method.

Cancer-specific survival (CSS), overall survival (OS) and

survival time were retrieved from the Surveillance, Epidemiology,

and End Results (SEER) database. In this study, the median follow-

up duration was 65 months, indicating that the study population

had a relatively adequate overall follow-up period. The starting

point for calculating survival time was defined as the date of

diagnosis of mCRC. CSS was defined as the time from diagnosis

to cancer-related death, and OS as the time from diagnosis to all-

causes death. Kaplan-Meier analysis was used to estimate the

median survival times and 95% confidence intervals (CIs); log-

rank tests were used to compare variations in CSS and OS between

the groups. Multivariate Cox proportional hazards regression

identified independent prognostic factors for CSS, with statistical

significance set at P<0.05. The study employed the Fine-Gray sub

distribution hazard model to perform competing risk analysis,

aiming to accurately evaluate the impact of PTR on the risk of

colorectal cancer–specific mortality. In this model, cancer-specific

death was defined as the primary event, while non-cancer-related

death—including deaths potentially associated with surgical

complications—was treated as a competing event. Cumulative

incidence functions (CIFs) were calculated and plotted to

visualize the time-dependent probability of event occurrence

across different groups. Based on the hypothesis that patients who

benefit from PTR have an extended median CSS than those without

surgery, patients who underwent surgery were further categorized

into benefit and non-benefit groups. Additionally, patients were

split into training and test sets in a 6:4 ratio (random seed number

125) in the surgery group; factors independently affecting CSS and

available preoperatively in the multivariate Cox analysis were

further identified using the Boruta method (100 iterations) (14).
2.3 Model building and evaluation

The features selected in the above steps were introduced

sequentially into nine machine learning algorithms—Naive Bayes,

Light Gradient Boosting Machine, Gradient Boosting Trees,

Support Vector Machine, Adaptive Boosting, Support Vector

Machine, Categorical Boosting (CatBoost) model, logistic

regression, eXtreme Gradient Boosting, Random Forest—and a

traditional logistic regression model. Model and hyperparameter

optimizations were performed on the training set, with the test set

used for performance comparison to avoid overfitting;

bootstrapping methods were used for internal validation. The

model’s overall evaluation metrics included the area under the

curve (AUC) (15, 16), accuracy, precision, recall, and F1 score;
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through calibration and decision curves, the model fit and clinical

utility were compared.

Regarding the traditional logistic model, initial validation was

followed by risk score calculation using the MedCalc software

(version 22.1.0.0). The Jouden index was used to identify the

optimal risk score threshold, allowing risk stratification for all

subjects. Kaplan-Meier survival analysis was performed to

evaluate any significant differences in prognosis between different

risk groups.
2.4 Feature importance and model
interpretability analysis

Model evaluation metrics were analyzed to identify the best-

performing machine-learning model. Feature importance analysis

was performed to identify and quantify the influence of each feature

on prediction outcomes. Shapley Additive Explanations were

employed to rigorously evaluate the predictive effectiveness of the

models (17).
2.5 Statistical analysis

As the continuous variables did not follow a normal distribution,

intergroup comparisons were conducted using rank-sum tests, and

the results were presented as medians and interquartile ranges.

Categorical variables were examined with the c2 test (Fisher’s exact

test was applied when anticipated counts were <5). All statistical

analyses were performed using R version 4.2.1.
3 Results

3.1 Baseline characteristics before and
after PSM

Of the 608,951 CRC cases between 2004 and 2019 in the SEER

database, 23,649 stage IV cases met the inclusion criteria

(Supplementary Figure S1); Among these, 19,148 (80.97%)

underwent PTR. After PSM, 2,558 pairs were included in the

survival analysis, achieving a statistical balance across all baseline

characteristics (P>0.05) (Table 1). Before PSM, many variables had

standardized mean differences exceeding the traditional threshold

of 0.1; PSM effectively reduced potential selection bias

(Supplementary Figure S2A). The details of the matched variables

are shown in Supplementary Figure S2B.
3.2 PTR as an independent predictor of
survival in stage IV CRC

Patients undergoing PTR exhibited extended OS and CSS

(Supplementary Figure S3). The median CSS for the surgery
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cohort was 22 months (95% CI, 8-41) compared with that of 12

months (95% CI, 4-21) for the non-surgery cohort (Supplementary

Table S1). In the surgery and non-surgery groups, the 1-year CSS

rates were 68.64% and 50.77% respectively, and the 3-year CSS rates

were 16.01% and 10.11%, respectively. Multivariable Cox regression

further confirmed (Table 2) that PTR was independently correlated

with better OS (hazard ratio [HR]=2.29, 95% CI, 2.15-2.45,

P<0.001) and CSS (HR=2.32, 95% CI, 2.17-2.48, P<0.001).

However, in the competing risk analysis (Supplementary Figure

S4), the CIF curves for cancer-specific mortality were nearly

overlapping between the surgery and non-surgery groups, with no

statistically significant difference (P=0.633). This indicates that,

when accounting for non-cancer-related deaths as competing

events, PTR did not significantly improve cancer-specific survival.

Additionally, the incidence of non-cancer-related death was slightly

higher in the surgery group, although not statistically significant

(P=0.925). This may suggest a potential risk of surgery-related

complications in a subset of patients. These findings further

emphasize that PTR should not be routinely applied to all

patients with stage IV disease. Instead, it is essential to identify

individuals who are most likely to derive true benefit from surgical

intervention. Additionally, chemotherapy, age, tumor location, race,

marital status, TNM stage, histology and surgery at distant sites

were independent factors affecting survival, whereas sex and

radiotherapy had no significant impact.
3.3 Variable feature selection

The surgery group was split into training and test sets to ensure a

baseline characteristic balance between the groups (Supplementary

Table S2). The Boruta method was used to select variables, including

age, race, histology, Grade, T stage, M stage, chemotherapy, and

surgery at distant sites (Figures 1A–C; Supplementary Table S3).

When excluding race, no significant changes in the AUC values of the

training and test sets were observed; thus, the residual variables were s

chosen as per the Boruta algorithm. Figure 1A shows the variable

importance ranking.
3.4 Comparison of predictive performance
between traditional logistic regression and
nine machine learning models

Supplementary Table S4 presents the predictive accuracies and

performances of the nine machine learning algorithms. The

CatBoost model achieved the highest accuracy, MC, F1 score, and

recall rate of 0.747, 0.398, 0.824, and 0.885, respectively. Traditional

logistic regression had better predictive accuracy and performance

(Figure 2A), reaching AUC values of 0.725 (95% CI: 0.695-0.753)

and 0.741 (95% CI: 0.706-0.776) respectively, and exhibited better

consistency (Figure 2B). Decision curve analysis (DCA) (Figure 2C)

indicated higher benefits regarding patient decision-making for the

traditional logistic regression model.
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TABLE 1 Characteristics for study population by study groups before and after PSM.

Variable
names

Before PSM After PSM

Surgery to
primary site
(n=19148),n%

Non-surgery to
primary site
(n=4501), n% P value

Surgery to
primary site
(n=2558), n%

Non-surgery to
primary site
(n=2558), n% P value

Age 62 (52-72) 62 (53-72) 0.03 62 (53-71) 61 (52-72) 0.54

Gender

Male 9916 (51.79) 2660 (59.10) <0.01 1475 (57.66) 1495 (58.44) 0.59

Female 9232 (48.21) 1841 (40.90) 1083 (42.34) 1063 (41.56)

Marriage

Married 10152 (53.02) 2216 (49.23) <0.01 1325 (51.80) 1325 (51.80) 1

Never
married/other

8996 (46.98) 2285 (50.77) 1233 (48.20) 1233 (48.20)

Race

White 14534 (75.90) 3433 (76.27) 0.8 1955 (76.43) 1949 (76.19) 0.97

Black 2602 (13.59) 610 (13.55) 335 (13.10) 341 (13.33)

Other 2012 (10.51) 458 (10.18) 268 (10.48) 268 (10.48)

Site

Right-hemicolon 9295 (48.54) 1115 (24.77) <0.01 648 (25.33) 684 (26.74) 0.43

Left-hemicolon 6209 (32.43) 928 (20.62) 573 (22.40) 579 (22.63)

Rectum 3644 (19.03) 2458 (54.61) 1337 (52.27) 1295 (50.63)

Histologic

Adenomas
and
adenocarcinomas

16446 (85.89) 4127 (91.69) <0.01 2346 (91.71) 2335 (91.28) 0.64

Cystic, mucinous
and serous
neoplasms

2449 (12.79) 206 (4.58) 159 (6.22) 160 (6.25)

Other 253 (1.32) 168 (3.73) 53 (2.07) 63 (2.46)

Grade

I 1127 (5.89) 319 (7.09) <0.01 180 (7.04) 180 (7.04) 0.42

II 12365 (64.58) 3069 (68.18) 1802 (70.45) 1754 (68.57)

III 4593 (23.99) 1021 (22.68) 521 (20.37) 559 (21.85)

IV 1063 (5.55) 92 (2.04) 55 (2.15) 65 (2.54)

T

T1 326 (1.70) 1653 (36.73) <0.01 292 (11.42) 332 (12.98) 0.44

T2 508 (2.65) 170 (3.78) 118 (4.61) 116 (4.53)

T3 9744 (50.89) 1483 (32.95) 1267 (49.53) 1228 (48.01)

T4a 5215 (27.24) 167 (3.71) 151 (5.90) 163 (6.37)

T4b 3355 (17.52) 1028 (22.84) 730 (28.54) 719 (28.11)

N

N0 3612 (18.86) 2478 (55.05) <0.01 1129 (44.14) 1126 (44.02) 0.94

N1 6428 (33.57) 1781 (39.57) 1198 (46.83) 1200 (46.91)

(Continued)
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3.5 Evaluation and rational analysis of the
predictive nomogram

By integrating seven diagnosis-related predictive indices, we

constructed an optimized nomogram to predict candidates suitable

for PTR among stage IV CRC patients (Figure 3). The total score for

a patient was determined by finding the scores associated with each

predictive index for the patient values on the row and summing

them to the “Points” row, which was mapped to the “Diagnostic

Possibility” line to estimate the patient’s diagnostic probability; the

predicted scores are detailed in the Supplementary File.

3.5.1 Discrimination
The receiver operating characteristic (ROC) curves for the

training and test sets yielded AUC values of 0.727 (95% CI:

0.699-0.756) and 0.741 (95% CI: 0.706-0.776) respectively,

demonstrating consistent predictive capabilities and good

performance for unknown data (Figures 4A, B). The ROC curves

and CIs trained with bootstrapping (500 times) for the training and

test sets can be found in Supplementary Figure S3.

3.5.2 Calibration
The calibration curves for the training (Figure 4C) and test sets

(Figure 4D) showed a good model fit, which was corroborated by
Frontiers in Oncology 05
the Hosmer-Lemeshow goodness-of-fit test, with a c²=5.334,
P=0.721 for the training set and c²=13.861, P=0.085 for the test set.

3.5.3 Clinical utility
DCA for both populations showed that the nomogram had

higher benefits within the threshold probability ranges 22%-84%

and 25%-83.5% (Figures 4E, F) for predicting PTR. When using this

predictive model for risk stratification in 1000 patients, the

converging trends of the two curves provided an intuitive tool for

clinical decision-making, identifying the optimal high-risk

threshold at a specific cost-benefit ratio (Supplementary Figures

S5E, S5F).
3.5.4 Rational analysis
In both populations, the AUC values and optimal threshold

probabilities based on nomogram predictions were significantly

better than those of single variables (Supplementary Figure S6).

Supplementary Table S5 presents the statistical analyses of

performance metrics for the model. Moreover, the nomogram

score for the benefit group exceeded that of the non-benefit group

across both the training (Supplementary Figure S7A) and test sets

(Supplementary Figure S7B), showing significant statistical

differences. Subsequent logistic regression based on the

nomogram score (Supplementary Figure S7C) showed increasing
TABLE 1 Continued

Variable
names

Before PSM After PSM

Surgery to
primary site
(n=19148),n%

Non-surgery to
primary site
(n=4501), n% P value

Surgery to
primary site
(n=2558), n%

Non-surgery to
primary site
(n=2558), n% P value

N

N1c 672 (3.51) 46 (1.02) 48 (1.88) 41 (1.60)

N2a 3366 (17.58) 86 (1.91) 82 (3.21) 84 (3.28)

N2b 5070 (26.48) 110 (2.44) 101 (3.95) 107 (4.18)

M

M1a 11634 (60.76) 2126 (47.23) <0.01 1356 (53.01) 1343 (52.50) 0.74

M1b 7514 (39.24) 2375 (52.77) 1202 (46.99) 1215 (47.50)

Radiation

Yes 1926 (10.06) 1042 (23.15) <0.01 645 (25.22) 628 (24.55) 0.6

None/unknown 17222 (89.94) 3459 (76.85) 1913 (74.78) 1930 (75.45)

Chemotherapy

Yes 13753 (71.82) 3261 (72.45) 0.41 1904 (74.43) 1894 (74.04) 0.77

None/unknown 5395 (28.18) 1240 (27.55) 654 (25.57) 664 (25.96)

Surgery other sites

Yes 5806 (30.32) 257 (5.71) <0.01 224 (8.76) 236 (9.23) 0.59

None/unknown 13342 (69.68) 4244 (94.29) 2334 (91.24) 2322 (90.77)
fro
Includes colorectal cancer cases from the SEER database spanning 2004 to 2019, providing the number of cases and column percentages for each variable.
PSM, propensity-score matching.
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TABLE 2 Multivariate cox analysis for OS and CSS among PSM population.

Variable names
OS CSS

HR (95%CI) P value HR (95%CI) P value

Age 1.015 (1.012-1.017) 0 1.015 (1.012-1.017) 0

Marriage

married Reference Reference

never married/other 1.182 (1.109-1.260) 0 1.175 (1.100-1.256) 0

Race

White Reference Reference

Black 1.129 (1.029-1.239) 0.01 1.140 (1.035-1.256) 0.008

Other 0.926 (0.834-1.028) 0.15 0.947 (0.848-1.057) 0.333

Site

Right-hemicolon Reference Reference

Left-hemicolon 0.903 (0.825-0.988) 0.027 0.907 (0.826-0.996) 0.041

Rectum 0.811 (0.743-0.884) 0 0.816 (0.746-0.894) 0

Histologic

Adenomas and adenocarcinomas Reference Reference

Cystic, mucinous and serous neoplasms 0.860 (0.752-0.984) 0.029 0.862 (0.749-0.993) 0.039

Other 1.162 (0.943-1.433) 0.159 1.144 (0.919-1.425) 0.228

Grade

I Reference Reference

II 1.437 (1.253-1.646) 0 1.485 (1.286-1.715) 0

III 2.191 (1.893-2.537) 0 2.274 (1.949-2.654) 0

IV 2.557 (2.032-3.218) 0 2.657 (2.092-3.375) 0

T

T1 Reference Reference

T2 0.799 (0.670-0.954) 0.013 0.823 (0.684-0.991) 0.040

T3 0.810 (0.729-0.899) 0 0.817 (0.732-0.912) 0

T4a 1.001 (0.856-1.170) 0.994 1.008 (0.857-1.187) 0.922

T4b 0.994 (0.892-1.109) 0.919 1.006 (0.898-1.127) 0.917

N

N0 Reference Reference

N1 1.099 (1.025-1.179) 0.008 1.097 (1.020-1.180) 0.012

N1c 1.194 (0.924-1.541) 0.175 1.197 (0.921-1.555) 0.180

N2a 1.006 (0.838-1.207) 0.948 1.020 (0.847-1.230) 0.833

N2b 1.318 (1.124-1.546) 0.001 1.338 (1.136-1.574) 0

M

M1a Reference Reference

M1b 1.451 (1.359-1.550) 0 1.484 (1.386-1.589) 0

Radiation

Yes Reference Reference

None/unknown 1.076 (0.988-1.172) 0.093 1.089 (0.996-1.191) 0.061

Chemotherapy

Yes Reference Reference

None/unknown 2.658 (2.462-2.870) 0 2.698 (2.491-2.921) 0

(Continued)
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TABLE 2 Continued

Variable names
OS CSS

HR (95%CI) P value HR (95%CI) P value

Surgery other sites

Yes Reference Reference

None/unknown 1.290 (1.145-1.453) 0 1.289 (1.138-1.460) 0

Surgery

Yes Reference Reference

No 2.296 (2.151-2.451) 0 2.323 (2.171-2.486) 0
F
rontiers in Oncology
 07
PSM, propensity score matching; OS, overall survival; CSS, cancer specific survival; HR, hazard ratio.
FIGURE 1

Boruta Feature Selection Method for Variable Importance and Multifactorial Logistic Regression Analysis. This figure comprehensively presents the
results of feature selection and multifactorial logistic regression analysis, evaluating the contribution and predictive power of variables within the
model. (A) Variable Importance Plot: Displays the importance of variables in Boruta feature selection. (B) Variable Feature Detail Selection Plot:
Illustrates the variability in importance of each variable across 100 classifier runs. (C) Multifactorial Logistic Regression Forest Plot: Based on variables
selected by the Boruta method, this plot shows the effect size and statistical significance of each variable in a multifactorial logistic regression
model. Abbreviation: Histologic II, Cystic, mucinous and serous neoplasms; Histologic III, other.
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FIGURE 2

Evaluation of Predictive Performance of models in the test set queue. (A) Receiver Operating Characteristic (ROC) curves for various models,
illustrating the trade-off between sensitivity and 1-specificity; (B) Calibration curves comparing the predicted probabilities and observed outcomes
across different models: (C) Decision Curve Analysis (DCA) illustrating the net benefit of each model at different threshold probabilities. AdaBoost,
Adaptive Boosting; CatBoost, Categorical Boosting; GBDT, Gradient Boosting Trees; LightGBM, Light Gradient Boosting Machine; SVM, Support
vector machine; XGBoost, eXtreme Gradient Boosting.
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odds ratios from the first to the fourth quartiles, all of which were

statistically significant (P < 0.001).
3.6 Clinical application of the nomogram

Kaplan-Meier analysis accurately distinguished between the

different groups regarding survival prognosis across the training

and test sets (Figure 5). CSS was markedly higher in the benefit

group than in the non-benefit (HR=0.329, 95% CI: 0.268-0.405,

P<0.001) and the non-surgery (HR=0.449, 95% CI: 0.408-0.495,

P<0.001) groups within the test set. Additionally, the CSS of the

non-surgery group was markedly elevated than that of the non-

benefit group (HR = 0.733, 95% CI: 0.604-0.889, P=0.002),

indicating that the nomogram effectively identified patients who

could benefit from PTR. However, some patients may be better

suited for personalized nonsurgical treatment or palliative care.
3.7 Feature importance and model
interpretability analysis

A feature importance analysis of the CatBoost machine learning

model is shown in Supplementary Figure S6A. The SHAP summary

plot (Supplementary Figure S8B) provides a visual representation of

the predictive contributions of individual variables in the model.

Similarly, a dual-coordinate line plot (Supplementary Figure S8C)
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revealed how each feature influenced the model’s predictive

outcomes, with each feature’s SHAP value displayed along a

line segment.

Moreover, the age distribution of mCRC patients exhibited

certain characteristics; the clinical manifestations and prognoses

may be closely associated with age (Supplementary Figure S8D).

Younger patients often possess stronger physiological reserves and

recovery capabilities, and studies have suggested that younger

patients may exhibit more aggressive disease progression. In

contrast, older patients may be affected by their treatment choices

and the prognosis may be influenced by comorbidities or poor

overall health.
4 Discussion

Our findings support the initial hypothesis by evaluating the

predictive capabilities of a model for selecting candidates for

primary tumor surgery in mCRC. The positive outcomes

highlight the efficacy of PTR for mCRC. The traditional logistic

model exhibited superior performance compared with machine

learning models, providing clinicians with a reliable tool to

estimate the potential benefits of surgery for patients.

Stage IV CRC patients are typically managed with systemic,

palliative, or end-of-life care, and local treatments, including PTR,

are avoided (5). However, considerable heterogeneity among

mCRC patients, including variations in age, histological subtypes,
FIGURE 3

Nomogram for Predicting Optimal Candidates for Primary Tumor Resection. Chemotherapy: ‘Chemotherapy0’ indicates patients who received
chemotherapy; ‘Chemotherapy1’ refers to patients whose chemotherapy status is unknown or not administered. Grade: Tumor grades are
categorized as Grade1 (Grade I), Grade2 (Grade II), Grade3 (Grade III), and Grade4 (Grade IV). Histologic Type: ‘Histologic1’ represents adenomas and
adenocarcinomas; ‘Histologic2’ encompasses cystic, mucinous, and serous neoplasms; ‘Histologic3’ includes other types. Surgery at Other Sites:
‘Surgery other sites0’ denotes patients who received therapy at sites other than the primary tumor location; ‘Surgery other sites1’ indicates status
unknown or not administered. Metastasis: ‘M0’ corresponds to M1a; ‘M1’ corresponds to M1b, categorizing the extent of metastatic spread.
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and chemotherapy protocols, can affect prognosis (18). Some

studies have questioned the benefits of PTR for mCRC patients.

A Japanese randomized controlled trial demonstrated no notable

difference in overall survival between the surgery and non-surgery

cohorts (median OS of 25.9 vs. 26.4 months, P<0.05), suggesting

that PTR might not improve survival in CRC patients (19).

However, Lam-Boer et al. (20) and Doah et al. (21)used PSM to

reduce selection bias and reported benefits of PTR for advanced

CRC. Furthermore, studies indicate that 7-22% of patients without

an initial PTR require emergency surgeries (22–24). Wang et al.

observed that PTR improved quality-of-life as well as reduced the

risk of severe problems including bleeding and perforation (25).

Consistent with previous reports, our study demonstrated that

PTR was associated with improved survival in patients with stage IV

mCRC, as indicated by the Cox regression analysis (20, 26, 27).

However, after applying the competing risk model, PTR did not

significantly improve CSS when non-cancer-related death was

considered as a competing event. Notably, some patients who

underwent surgery did not reach a median CSS of 12 months,

suggesting that surgical intervention may not benefit all individuals.

These findings highlight the limitations of current surgical
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recommendations and underscore the need for more selective

patient stratification. For patients unlikely to benefit from PTR,

non-surgical management or palliative care strategies should be

considered as alternative approaches.

Surgical intervention may improve survival due to selection bias;

however, this is not the sole factor. Herein, chemotherapy and age

were key predictors of surgical benefits. Previous studies have

observed that stage IV CRC patients receiving both PTR and

chemotherapy had a median OS of 23 months than those receiving

only chemotherapy (13 months), sorely surgery (6 months), or

without intervention (2 months) (28). In some studies, the age

varied from 60 to 75 years, with no significant differences across

treatment groups. Our data (Supplementary Figure S9A) suggests

that PTR with systemic chemotherapy provides greater benefits than

PTR alone. Additionally, younger patients benefited more from PTR

(Supplementary Figure S9B), underscoring the importance of

individual characteristics in surgical decision-making. This finding

suggests that healthier patients with longer life expectancies are more

likely to choose aggressive treatments, including surgery.

The 2018 TNM staging system for mCRC was updated to

classify metastases as M1a, M1b, and M1c. Some M1c cases were
FIGURE 4

Performance Evaluation of the Nomogram in Predicting Optimal Candidates. (A, B) show the ROC curves for the training set and the validation set.
(C, D) depict the calibration curves for the training and validation sets (E, F) illustrate the DCA for the training and validation sets. DCA, decision
curve analysis; ROC, receiver operating characteristic.
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not distinguishable in the SEER database; therefore, staging was

redefined using the 7th edition of the AJCC system to ensure sample

representativeness. This staging strategy may affect prognostic

interpretation following PTR in mCRC patients. Research

indicates that complete removal of the primary neoplasm and
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metastatic masses through PTR can prolong survival and quality-

of-life in M1b cases. However, M1c cases with more widespread

disease distribution may experience limited treatment effectiveness

and survival (29, 30). Combining M1b and M1c stages may

complicate the assessment of the metastatic burden on prognosis.

Accurate determination of the M1c stage in clinical practice

requires expensive imaging studies. Despite our model not

differentiating between M1b and M1c, it still exhibited strong

predictive capabilities.

In the surgical benefit prediction model developed in this study,

patients with stage III/IV disease and T4 tumors exhibited a lower

probability of deriving benefit from PTR, as reflected by lower odds

ratios. This finding aligns with the intrinsic relationship between

tumor biology and surgical feasibility. T4 tumors are typically

characterized by aggressive local invasion and a higher likelihood

of involving adjacent organs or structures, which complicates

surgical resection and reduces the likelihood of achieving curative

outcomes. Similarly, stage III/IV disease indicates more extensive

regional or distant metastasis, suggesting a higher degree of

systemic tumor progression. In such patients, even if PTR is

technically feasible, the overall survival benefit may be limited

and could be accompanied by an increased risk of postoperative

complications. Therefore, the decision for surgical intervention

should not rely solely on anatomical resectability but must also

incorporate a thorough evaluation of tumor biology and

progression patterns. The findings from our prediction model

underscore this principle, highlighting the central role of tumor

biology in guiding surgical decision-making.

Although this study is based on the SEER database, which

provides a large sample size and high data completeness for model

development, several inherent structural limitations may affect the

interpretation of our results. First, the SEER database does not

systematically record the specific sites of distant metastases (e.g.,

liver or lung) or the number of metastatic lesions. This limitation

prevents us from distinguishing oligometastatic disease from widely

metastatic cases. In clinical practice, such distinctions are critical for

surgical decision-making, particularly when assessing the suitability

of PTR in patients with mCRC. Second, patient performance status

data, such as Eastern Cooperative Oncology Group (ECOG) scores

or Karnofsky Performance Status (KPS), are not available in SEER.

As a result, we could not directly evaluate physical condition or

surgical tolerance in our model, which may introduce risk

stratification bias. Although we used propensity score matching to

balance available covariates such as age and comorbidities, the lack

of functional status indicators remains a limitation to the model’s

generalizability. In addition, SEER does not capture information on

disease recurrence or postoperative complications. This prevents a

comprehensive assessment of long-term recurrence risks and non-

cancer-related postoperative mortality, potentially leading to an

underestimation of long-term outcomes. Although SEER ensures

high survival data accuracy through linkage to sources such as the

National Death Index, follow-up time may still vary across patients.

To address this, we used the reverse Kaplan-Meier method to

estimate the median follow-up time, which was 65 months. This
FIGURE 5

Kaplan-Meier survival curves for patients with metastatic colorectal
cancer. (A) training set; (B) validation set; (C) full dataset.
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indicates an overall adequate follow-up period. However, right-

censoring bias may still occur in long-term survivors due to

unobserved late events. These limitations—particularly the

absence of data on metastasis burden and performance status—

may reduce the accuracy and clinical applicability of the predictive

model in guiding PTR decisions for stage IV disease. The lack of

treatment-specific variables also limits our understanding of how

PTR and systemic therapy interact to affect outcomes. Future

studies should consider integrating multicenter clinical datasets or

real-world electronic health records (EHRs). Such data sources can

provide a more comprehensive set of preoperative variables,

including metastatic load, functional status, and postoperative

complications. This would help improve the accuracy, clinical

relevance, and decision-support capability of predictive models

for mCRC.
5 Conclusion

We present an approach to identify suitable candidates for

surgical intervent ion among stage IV CRC patients .

Notwithstanding the widespread adoption of machine learning,

traditional logistic regression models still demonstrate competitive

predictive capabilities. Our findings revealed that PTR can

positively impact mCRC patients. However, this is limited to

specific patient groups, and the extent of the benefits is influenced

by the features of primary tumor. Specifically, younger patients and

those with cystic/mucinous and serous tumors, Grade II, T2 stage,

M1a stage, undergoing chemotherapy, and surgery at distant sites

are likely to benefit more from PTR.
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SUPPLEMENTARY FIGURE 1

F lowchar t o f research popula t ion se lect ion and pred ic t ion

model construction.

SUPPLEMENTARY FIGURE 2

Evaluation of Dataset Balance and Variable Matching Before and After PSM.
(A) The improvement in dataset balance after PSM. The y-axis quantifies the

SMD, with values closer to zero after PSM demonstrating better balance.
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(B) Differences in variables before and after matching. Abbreviation: PSM,

propensity score matching; SMD, standard mean difference.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier plot of mCRC patients according to treatment. Abbreviation:
mCRC, metastatic colorectal cancer; SEER, Surveillance, Epidemiology and

End Results; PSM, propensity score matching; CSS, cancer specific survival;
OS, overall survival; HR, hazard ratio.

SUPPLEMENTARY FIGURE 4

Cumulative incidence functions for cancer-specific and non-cancer-specific

death in patients with mCRC, stratified by surgical treatment. The figure
displays cumulative incidence functions (CIFs) derived from the Fine-Gray

competing risk model, comparing patients with mCRC who underwent PTR
versus those who did not. Cancer-specific death (event type 1) and non-

cancer-related death (event type 2) are shown separately for the PTR group

(group 1) and the non-PTR group (group 0).Lines labeled “0 1” and “1 1”
represent cancer-specific mortality in the non-PTR and PTR groups,

respectively. Lines labeled “0 2” and “1 2” represent non-cancer mortality in
the respective groups. The curves indicate similar cancer-specific mortality

across both groups, with slightly higher non-cancer mortality observed in the
PTR group.

SUPPLEMENTARY FIGURE 5

Clinical Impact and ROC Curves for Risk Prediction. Training (A) and test

(B) set ROC curves, each based on 500 bootstrap samples to assess the
stability and robustness of the model's performance. (C) illustrates the

variability and confidence intervals of the model in the training set, while

(D) depicts the same for the test set. Clinical impact curves plot the
percentage of individuals classified as high risk and those who actually
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experience the event across various high-risk thresholds in the training

(E) and test (F) sets. ROC: receiver operating matching.

SUPPLEMENTARY FIGURE 6

Assessment of Model Validity Using ROC and DCA Curves for Training and
Test Sets. This analysis provides a comparative view of how each variable

contributes to the prediction accuracy and clinical decision-making.

SUPPLEMENTARY FIGURE 7

Assessment of Validity Based on Nomoscore. The effectiveness of the
Nomoscore in distinguishing between the low score and high score in the

training (A) and test (B) sets. (C) The odds ratios increase with higher
Nomoscore quartiles, indicating a greater likelihood of the outcome as the

score increases. all significantly higher than the reference group,
demonstrating a strong positive association between the Nomoscore and

the observed outcome.

SUPPLEMENTARY FIGURE 8

SHAP Analysis Visualizations for a CatBoost Machine Learning Model. (A) This
bar chart ranks the features by their importance based on the average

magnitude of SHAP values. (B) Showing the spectrum from negative to
positive contributions. (C) SHAP HeatWave Plot shows the SHAP values

across all data points over time, illustrating the influence of features Age,

Grade, and Histologic type on model predictions. (D) This scatter plot maps
the SHAP values against Age, demonstrating how the influence of age varies

across different SHAP values. Abbreviation: CatBoost, Categorical Boosting;
SHAP, shapley additive explanations.

SUPPLEMENTARY FIGURE 9

Distribution of Age and Chemotherapy by Benefit Status. The age is lower in

the surgery benefit group (A), and patients who receive chemotherapy are
more likely to benefit from surgery (B).
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