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Background: Lymph node metastases (LNM) in laryngeal squamous cell

carcinoma (LSCC) has been associated with lower survival, but current imaging

methods, such as computed tomography (CT), have limited capabilities to

identify them. Both conventional radiomics, involving data analysis of high-

throughput quantitative features extracted from medical images, as well as

deep learning networks, improved LNM diagnostic accuracy in LSCC, but the

combination of both approaches has not been fully examined. In this study, we

aimed to improve LNM identification in LSCC patients by developing a predictive

nomogram, combining deep learning radiomics and clinical imaging features

from CT images.

Methods: A retrospective analysis of 235 LSCC patients, divided into training

(164) and validation (71) sets, was conducted. Radiomics features were extracted

from CT images, and 7 machine learning algorithms were used to develop 7

radiomics models, which were combined with deep learning features extracted

from the ResNet50 deep learning network to form deep learning radiomics (DLR)

models. The optimal DLR model was combined with significant clinical imaging

features from CT scans to develop the predictive nomogram for LNM in LSCC.

Results: The nomogram, under receiver operating characteristic (ROC) curve

analyses, yielded areas under the curve (AUC) values of, respectively, 0.934 and

0.864 for training and validation sets, significantly higher than clinical imaging

features (0.832 and 0.817), conventional radiomics (0.861 and 0.818), and DLR

(0.913 and 0.864), indicating that it was significantly more accurate in predicting

LNM in LSCC patients. Additionally, decision curve analysis found that the

nomogram had significantly higher clinical utility than the other 3 models.

Conclusion: The predictive nomogram, combining clinical imaging and DLR

features, is able to accurately identify LNM in LSCC patients, providing valuable

information for non-invasive LN staging and personalized treatment approaches.
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1 Introduction

Laryngeal cancer is one of the most common malignant tumors

of the head and neck, of which laryngeal squamous cell carcinoma

(LSCC) accounts for ~85-95% (1, 2). Its incidence in China is

currently on the rise, with high mortality rates (3, 4). The presence

of cervical lymph node metastases (LNM) in LSCC have been

associated with decreased overall survival, and recurrence in

regional LNs is a major cause behind LSCC treatment failures (5).

As a result, accurate preoperative identification of LN statuses could

aid in developing effective treatments for LSCC, as well as more

precise patient prognostications. Currently, to detect primary

tumors and regional LNM, a number of traditional non-invasive

imaging methods, such as computed tomography (CT), magnetic

resonance imaging (MRI), and positron emission tomography-CT,

are widely used, but their ability to distinguish between metastatic

and non-metastatic LNs are limited (6, 7). However, the application

of radiomics, which involves data analysis of high-throughput

quantitative features extracted from traditional medical images, is

able to improve LNM diagnostic accuracy, in turn increasing the

reliability of LSCC patient prognoses; this has led to it becoming

increasingly important in cancer research (8, 9).

Wider applications of traditional radiomics, though, are still

hindered by being relatively time-consuming, as well as their results

being subjective in nature. This has consequently led to the

development of “deep learning radiomics (DLR)”, an innovative

method that is able to conduct end-to-end learning, as well as

automatically discover specific predictive indices to improve the

accuracy of prediction models (10, 11). Multiple studies have either

used traditional radiomics or deep learning alone to predict LNM in

LSCC (12–14), but few studies have been carried out to investigate

the ability of DLR to predict LNM in LSCC. In this study, we aim to

fill in this gap by investigating whether a DLR model, based on

preoperative CT images, combined with other clinical imaging

features, could accurately predict pre-surgical LN statuses for

LSCC patients. We found that a combination of the clinical

imaging features of LNM being reported in CT scans, as well as

whether the primary LSCC tumor was located in the glottis or

super-glottis, with the DLR model, using the XGBoost machine

learning algorithm for radiomics, and the ResNet50 deep learning

network, could serve as the basis for a predictive nomogram. The

nomogram was significantly more accurate for predicting LNM in

LSCC versus either clinical imaging features, conventional

radiomics, or DLR alone, thereby providing a tool for guiding

LSCC treatment.
2 Materials and methods

2.1 Patient recruitment, inclusion and
exclusion criteria

This study was a retrospective analysis of 235 patients, obtained

after inclusion and exclusion criteria were applied, with

pathologically confirmed LSCC, who underwent radical open
Frontiers in Oncology 02
surgery and neck LN dissection at the First Hospital of Shanxi

Medical University, between January 2018-June 2024. Inclusion

criteria were as follows: 1) Having pathologically confirmed LSCC,

both non- (cN0) and metastatic (cN+), 2) LN statuses confirmed by

neck LN dissection, or 3) Neck-enhanced CT performed <2 weeks

pre-surgery, while exclusion criteria were: 1) Pre-operative

treatment history, including radiotherapy or neoadjuvant

chemotherapy, 2) Poor segmentation of tumor images, or 3)

Incomplete clinical or imaging data. cN+ patients that were

included in this study were diagnosed based on the imaging

criteria defined by van den Brekel et al. (15); briefly, cN+ was

present if at least 1 of the following conditions were met: 1) Short-

axis LN diameter >1 cm, 2) ≥2 borderline LN, which was defined as

having short-axis diameters >0.8 cm, in common drainage regions,

or 3) Peripheral rim enhancement of LN. If any of those 3

conditions were not met, the patient was defined as having cN0.

Figure 1 shows the flow-chart of the overal l patient

recruitment process.
2.2 CT scanning and obtaining images

All patients underwent preoperative CT scanning, using multi-

slice CT (GE 64-slice 128-slice Light Speed spiral CT, USA). Each

patient was scanned, in a supine position, from the base of the skull

to the lower edge of the sternoclavicular joint; they breathed quietly

and had no swallowing. CT imaging parameters were: tube voltage

120 kV, tube current was automatically controlled, and image

matrix 512×512, yielding CT “slice” thicknesses of 0.625 mm.

During the CT scan, 1.5 ml/kg of intravenous contrast agent

(UltraVision, 370 mg I/mL) was injected into the antecubital vein,

at a rate of 3.0 mL/s, via an automatic power injector; this yielded a

venous phase enhanced image 60–65 s after contrast agent injection.

The resulting neck enhanced CT image (DICOM format) was then

exported using the Picture Archiving and Communication System

of the First Hospital of Shanxi Medical University.
2.3 Tumor image segmentation and
quantitative feature extraction for
radiomics

To achieve clear visualization of head and neck tissues, CT

images were standardized, with window width at 350, level at 50,

and Hounsfield unit values between -125–225. These images were

then resampled to a voxel size of 1×1×1 mm with the bilinear

interpolation method, and the tumor boundary was outlined

independently by 2 experienced radiologists, using 3D-Slicer

software (v5.6.1). The 2 radiologists (Dr. A and B) also referred

to images obtained from trans-nasal fiberoptic examination of the

larynx to assist in defining the tumor boundary and region of

interest (ROI), as shown in Supplementary Figure 1. Intra-inter-

class correlation coefficient (ICC) was used, based on based on

Berenguer et al. (16), to evaluate the reproducibility of radiomics

features extracted from tumor ROIs drawn by Dr. A and B. The ROI
frontiersin.org
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was confirmed by a 3rd physician (Dr. C) with >10 years of

experience in diagnosing head and neck diseases. More

specifically, to evaluate the stability and reproducibility of the

obtained radiomics features, as well as ensure inter-observational

repeatability, tumor images from 30 patients were selected, and

ROIs re-drawn 1 month later for feature extraction, by Dr. C. The

overall study workflow is shown in Supplementary Figure 2.

Radiomics features were extracted using the PyRadiomics

package, and 1403 were extracted, including first-order, shape-

based, and textural features. For deep learning feature extraction,

the image containing the largest tumor ROI was cropped and

resized to a standardized size of 256×256 pixels, using a linear

interpolation method. Considering the relatively small size of the

cropped and resized image, data augmentation methods were then

used, including random horizontal and vertical flipping, as well as

cropping to a size of 224×224 pixels. The ResNet50 network was

pre-trained using the ImageNet dataset, followed by transfer

learning being performed on the training set. The parameters

used in ResNet50 were iteratively updated via backpropagation,

using a cross-entropy loss function; this function was computed

between output probabilities and pathological labels. A 1×10−4

learning rate was set, and the Adam optimizer was utilized for

parameter updates. To mitigate overfitting, a batch size of 64 was

used, with L2 regularization and early stopping strategies being

implemented. Additionally, data imputed into ResNet50 from pre-

processed images were normalized using the default ImageNet

mean-subtraction method. Model parameters were also fine-

tuned, based on pre-trained model parameters derived from the
Frontiers in Oncology 03
training data. After training, the penultimate average pooling layer

was used as the deep learning feature, for a total of 2048 deep

learning features.
2.4 Feature screening and model building
for predicting LNM in LSCC

All extracted features were normalized using Z-score, and their

statistical significances were evaluated using Students t-test; only

features with p<0.05 were retained. The correlation of those retained

features with high repeatability was evaluated based on Spearman

correlation coefficients, in which if any 2 features had correlation

coefficients>0.9, 1 of those 2 features was retained. Afterwards, the

optimal radiomics features were identified using the least absolute

selection and shrinkage operator (LASSO) regression analysis, with

10-fold cross-validation (Supplementary Figures 3A, B). Radiomics

features were fused with deep learning features using the early fusion

method; the optimal deep learning features were screened out using

the same methods as that of radiomics, namely Z-score, Students t-

test, Spearman correlation coefficients, and LASSO with 10-fold cross-

validation (Supplementary Figure 3C). Conventional radiomics and

DLR models were built, using logistic regression (LR), support vector

machine (SVM), random forest (RF), ExtraTrees, XGBoost, light

gradient boosting machine (GBM), and feedforward neural network

multilayer perceptron (MLP) machine learning algorithms. The

optimal hyperparameter combinations for those algorithms were

identified by the Grid Search method.
FIGURE 1

Flow chart of overall patient recruitment.
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To construct the predictive nomogram model for LNM in LSCC,

the most optimal radiomics model was combined with the most

statistically significant clinical risk factors, which were identified by

uni- and multivariate logistic regression analyses. The predictive

accuracy of this model, along with that of clinical risk factors alone,

radiomics, and DLR, were evaluated using receiver operating

characteristic (ROC) curve analysis, followed by decision curve

analyses (DCA) to examine the extent of their clinical utility.
2.5 Statistical analysis

The analyses were performed using Python (version 3.7.12) and

Statsmodels (version 0.13.2). The development of our machine

learning models utilized the Scikit-learn (version 1.0.2) interface.

Deep learning training was conducted on an NVIDIA 4090 GPU,

with MONAI 0.8.1 and PyTorch 1.8.1 frameworks.

Clinical imaging characteristics were confirmed to have either

non- or normal distributions with the Shapiro-Wilk test, and

continuous variables were analyzed with either Students t test, if

they had a normal distribution, or Mann-Whitney U test, if they did

not. Categorical variables were analyzed using the c² test. P<0.05
was considered statistically significant.
3 Results

3.1 The clinical imaging characteristics
model is predictive for LNM in LSCC

The 235 patients were randomly divided in a 7:3 ratio into

training (164) and validation (71) sets. No significant differences in

the clinical imaging characteristics of age, gender, the presence of
Frontiers in Oncology 04
LSCC metastases in CT scans, primary tumor location being in the

glottis or supra-glottis, as well as whether LSCC was at stages T1–2

or 3-4, were present between the 2 sets (Table 1).

The 235 patients were also divided into 2 groups, based on local

LN statuses, in which those with positive LN (94 patients) were

significantly more likely to also have LNM, and their tumors were

more often located in the supra-glottis. By contrast, patients with

negative LN were less likely to have LNM, but were more likely to be

located in the glottis (Table 2). No significant differences were found

for other clinical imaging characteristics (Table 2).

The associations between different clinical imaging

characteristics with the absence or presence of LNM was then

examined by uni- and multi-variate logistic regression analyses, in

which it was found that CT reports of LNM, as well as primary

tumor location, were significantly associated with actual LNM

occurrence for LSCC (Table 3). Therefore, CT reports of LNM, as

well as whether the primary tumor was in the glottis or supra-

glottis, were incorporated into the “clinical imaging features

model”, which was found under ROC curve analyses to be highly

predictive for LNM in LSCC, with areas under the curve (AUC) of

0.832 (95% CI 0.775-0.889) and 0.817 (95% CI 0.727-0.908), for

respectively, the training and validation sets.
3.2 XGBoost DLR model was more highly
predictive for LNM compared to other
conventional and DLR models

Based on conventional radiomics and deep learning radiomics

analyses, a total of 15 radiomics, and 12 DLR features, were selected.

For both types of features, 7 models each were constructed, based on

the machine learning algorithms of LR, SVM, RF, ExtraTrees,

XGBoost, light GBM, and MLP. We found that under ROC curve
TABLE 1 Clinical imaging characteristics of laryngeal squamous cell carcinoma (LSCC) patients.

Characteristics Training set (n=164) Validation set (N=71) c2/t-value p-value

Age (years) 63.45 ± 8.970 62.45 ± 9.085 0.777 0.438

Gender 0.133 0.716

Male 133 59

Female 31 12

Computed Tomography (CT) feature 0.521 0.470

Metastasis 73 28

No Metastasis 91 43

Primary tumor location 0.255 0.614

Glottis 59 28

Supra-glottis 105 43

T stage 0.571 0.450

T1-2 54 27

T3-4 110 44
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analyses, the XGBoost model, for both conventional radiomics and

DLR, was the most strongly accurate for predicting LNM among

LSCC patients. Indeed, AUC values for the XGBoost conventional

radiomics model were respectively, 0.861 (95% CI 0.807-0.915) and

0.818 (95%CI 0.717-0.918) for training (Figure 2A) and validation sets

(Figure 2B), the highest out of the 7 models. Similarly, AUC values for

the XGBoost DLRmodel were 0.913 (95% CI 0.872-0.954) for training

(Figure 2C, Table 4) and 0.832 (95% CI 0.735-0.929) for the validation

set (Figure 2D, Table 4). Therefore, compared to conventional

radiomics, DLR was more accurate for predicting LNM in LSCC,

with XGBoost DLR being the most optimal.
3.3 Nomogram model combining clinical
imaging characteristics and XGBoost DLR
was the most optimal for predicting LNM
in LSCC

After examining clinical features, conventional radiomics, and

DLR models, we established the predictive nomogram by

combining the clinical features model with the XGBoost DLR

model (Figure 3). The nomogram, compared to the other 3
Frontiers in Oncology 05
models, had the highest AUC values in ROC curve analysis, at,

respectively, 0.934 (95% CI 0.900-0.968) for training, and 0.864

(95% CI 0.780-0.949) for the validation sets (Table 5, Figures 4A, B).

Furthermore, the nomogram had the greatest clinical utility under

DCA analysis, for both training (Figure 4C) and validation sets

(Figure 4D), being significantly greater than assuming that all LSCC

had LNM, or none did.
4 Discussion

In this study, we constructed a predictive nomogram for LNM

in LSCC patients, which combined DLR features extracted from

preoperative enhanced CT images with LNM-associated clinical

imaging features from CT images, as well as whether the primary

tumor was in the glottis or supra-glottis. This model was

significantly more accurate than either clinical imaging features,

conventional radiomics, or DLR models alone. Additionally,

combining deep learning features with conventional radiomics in

the DLR model significantly increased its accuracy versus that of

conventional radiomics. Therefore, the nomogram was able to

accurately predict LNM in LSCC, based on pre-operative CT
TABLE 2 Comparison of clinical imaging features based on different lymph node (LN) statuses.

Characteristics Positive LN (n=94) Negative LN (n=141) c2/t-value p-value

Age (years) 62.53 ± 9.558 63.55 ± 8.613 0.852 0.395

Gender 0.171 0.679

Male 78 114

Female 16 27

CT Feature 59.178 <0.001

Metastasis 69 32

No Metastasis 25 109

Primary tumor location 63.075 <0.001

Glottis 6 81

Supra-Glottis 88 60

T stage 3.215 0.073

T1-2 26 55

T3-4 68 86
TABLE 3 Uni- and multi-variate analyses between LN metastases (LNM) versus non-LNM groups for clinical imaging characteristics, expressed as odds
ratio (OR) (95% confidence interval [CI]).

Characteristics Univariate analysis OR (95% CI) p-value Multivariate analysis OR (95% CI) p-value

Age 0.987 (0.959-1.017) 0.394

Gender 1.155 (0.584-2.284) 0.680

CT Feature 9.401 (5.140-17.196) <0.001 0.210 (0.108-0.408) <0.001

Primary Tumor Location 19.800 (8.116-48.303) <0.001 0.092 (0.036-0.235) <0.001

T Stage 1.673 (0.951-2.942) 0.074
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scans, potentially serving as a valuable tool for identifying

appropriate surgical strategies and improving patient outcomes.

Current approaches to evaluate LNM statuses in LSCC patients

are traditional imaging methods, such as ultrasound and CT, but they

have limited capabilities for examining LN<10 mm and

distinguishing infected from metastatic LN. Nevertheless, some

previous studies have shown that risk factors for LNM in LSCC

include primary tumor location and size, the latter represented as the

T-value in the TNM staging system, along with tumor differentiation

extents and spread in preoperative CT reports (17, 18). Indeed, our

study confirmed that primary tumor sites and preoperative CT

reports of LNM were significant LNM risk factors. However, risk

factors solely identified by clinical imaging are disfavored as

indicators for conducting radical surgery, as they could result in

excessive LN dissection and postoperative complications (19). As a

result, radiomics became an attractive alternative for predicting LNM

in LSCC, thus providing more accurate LSCC diagnoses and

prognoses that could aid in devising effective treatment strategies

(8, 9). In fact, their predictive capabilities for LNM in LSCC have
Frontiers in Oncology 06
already been demonstrated by Zhao et al. (12), who devised a

radiomics-based predictive nomogram for LNM in LSCC, by

extracting radiomics features from laryngeal cancer CT images,

followed by combining them with CT-reported LN statuses and

independent clinical risk factors. Similarly, Zhang et al. was able to

predict LNM in head and neck SCC with their nomogram, which was

developed by combining iodine-based radiomics imaging features,

histological grading, and LN status reported in CT (20). All these

nomograms thus demonstrate that radiomics-based models,

involving imaging features extracted from primary lesions, are

highly accurate for predicting LNM. This was in accordance with

the results from this study, in which imaging features from both

conventional and DLR machine learning algorithms were highly

accurate for predicting LNM in LSCC.

However, it should be noted that obtaining tumor imaging

features, whether derived from radiomics or the CT images directly,

requires manually delineating the tumor areas, which is a time-

consuming task with substantial subjectivity. Furthermore,

manually identifying imaging features are restricted by human
RE 2FIGU

Receiver operating characteristic (ROC) curve analyses, conducted on the training set, for accurately predicting lymph node metastasis (LNM) in
laryngeal squamous cell carcinoma (LSCC) patients. (A) ROC curves in training set for 7 conventional radiomics models, based on the machine
learning algorithms of logistic regression (LR), support vector machine (SVM), random forest (RF), ExtraTrees, XGBoost, light gradient boosting
machine (GBM), and feed-forward neural network multilayer perceptron (MLP), (B) ROC curves in validation for 7 conventional radiomics models,
based on the machine learning algorithms of logistic regression (LR), support vector machine (SVM), random forest (RF), ExtraTrees, XGBoost, light
gradient boosting machine (GBM), and feed-forward neural network multilayer perceptron (MLP), (C) ROC curves in training set for 7 deep learning
radiomics (DLR) models, comprising of LR, SVM, RF, ExtraTrees, XGBoost, Light GBM, and MLP radiomics models combined with deep learning
features, (D) ROC curves in validation set for 7 deep learning radiomics (DLR) models, comprising of LR, SVM, RF, ExtraTrees, XGBoost, Light GBM,
and MLP radiomics models combined with deep learning features.
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limitations in distinguishing fine image features, thereby posing

significant difficulties for developing imaging-based predictive

models. Such difficulties, though, could be mitigated by deep

learning methods, which are able to extract high-level features

from images in a data-driven manner (21, 22). Deep learning

requires images to be pre-processed into sections containing the
Frontiers in Oncology 07
largest cross-section of the tumor, which can be automated, while

conventional radiomics requires manually delineating the tumor

regions (23, 24). Indeed, for deep learning feature extraction, a fixed

size bounding box, covering the entire tumor region, is used, which

is able to provide information from both within and the

surrounding vicinity of the tumor (25). The combination of this
FIGURE 3

Predictive nomogram for LNM in LSCC patients, obtained by combining the clinical features of LNM being reported from computed tomography
(CT) images, as well as whether the primary LSCC tumor is located in the glottis or supra-glottis, with XGBoost DLR features.
TABLE 4 Receiver operating characteristic curve (ROC) analyses of 7 deep learning radiomics (DLR) models for training and validation sets.

Model Accuracy AUC (95% CI) Sensitivity Specificity PPV NPV

Training dataset

SVM 0.829 0.89 (0.8407-0.9399) 0.866 0.804 0.753 0.897

ExtraTrees 0.787 0.892 (0.8458-0.9388) 0.851 0.742 0.695 0.878

XGBoost 0.823 0.913 (0.8721-0.9544) 0.821 0.825 0.764 0.87

Light GBM 0.805 0.878 (0.8271-0.9279) 0.866 0.763 0.716 0.892

MLP 0.799 0.876 (0.8253-0.9276) 0.821 0.784 0.724 0.864

LR 0.823 0.90 (0.8548-0.9454) 0.881 0.784 0.737 0.905

RF 0.841 0.894 (0.8453-0.9419) 0.881 0.814 0.766 0.908

Validation dataset

SVM 0.704 0.776 (0.6659-0.8863) 0.778 0.659 0.583 0.829

ExtraTrees 0.718 0.829 (0.7347-0.9235) 0.926 0.591 0.581 0.929

XGBoost 0.746 0.832 (0.7351-0.9290) 0.815 0.705 0.629 0.861

Light GBM 0.789 0.815 (0.7120-0.9184) 0.704 0.841 0.731 0.822

MLP 0.789 0.859 (0.7743-0.9446) 0.741 0.818 0.714 0.837

LR 0.69 0.783 (0.6729-0.8927) 0.778 0.636 0.568 0.824

RF 0.69 0.79 (0.6846-0.8945) 0.852 0.591 0.561 0.867
AUC, area under the curve; SVM, support vector machine; GBM, gradient boosting machine; MLP, multilayer perceptron; LR, logistic regression; RF, random forest; PPV, positive predictive
value; NPV, negative predictive value.
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information with conventional radiomics features has been found

in previous studies to improve the accuracy of the resulting DLR

models (10, 20). However, few studies have examined whether such

a combination could also accurately predict LNM in LSCC, which

we addressed in this study. We incorporated both conventional

radiomics and deep learning features into different machine-
Frontiers in Oncology 08
learning models. The most accurate machine-learning model was

then combined with clinical imaging features to form a predictive

nomogram. This nomogram was highly accurate for predicting

LNM in LSCC under ROC, as well as having greater clinical utility

under DCA than clinical features, conventional radiomics, or DLR

features alone. In fact, the addition of deep learning features to
FIGURE 4

Comparing the accuracy and clinical utility of clinical features, conventional radiomics, DLR, and nomogram models for predicting LNM in LSCC
patients. ROC curves for the 4 models on (A) training and (B) validation sets. Decision curve analysis (DCA) of the 4 models for (C) training and
(D) validation sets.
TABLE 5 ROC curve analyses for clinical imaging features, conventional radiomics, DLR and nomogram models, among training and validation sets.

Model Accuracy AUC (95% CI) Sensitivity Specificity PPV NPV

Training dataset

Clinical Imaging Features 0.768 0.832 (0.7753-0.8890) 0.716 0.804 0.716 0.804

Conventional Radiomics 0.774 0.861(0.8065-0.9154) 0.642 0.866 0.768 0.778

Deep Learning Radiomics 0.823 0.914 (0.8721-0.9544) 0.821 0.825 0.764 0.87

Nomogram 0.817 0.934 (0.9004-0.9680) 0.985 0.701 0.695 0.986

Validation dataset

Clinical Imaging Features 0.732 0.817 (0.7270-0.9077) 0.667 0.773 0.643 0.791

Conventional Radiomics 0.775 0.818 (0.7172-0.9183) 0.593 0.886 0.762 0.78

Deep Learning Radiomics 0.746 0.832 (0.7351-0.9290) 0.815 0.705 0.629 0.861

Nomogram 0.803 0.864 (0.7795-0.9494) 0.926 0.727 0.676 0.941
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improve predictive accuracy was supported by findings from Wang

et al., who observed that combining 2D and 3D deep learning

features, along with radiomics and clinical characteristics, was more

accurate for identifying occult LNM in LSCC than any of those

features alone (26). Additionally, Liao et al. found that a deep-

learning-based model was more accurate for predicting LSCC

survival than TNM staging (27). Therefore, DLR incorporation

in to nomograms could fur ther improve the i r LNM

prognostication accuracies.

There are a number of limitations in this study, one of which is its

retrospective nature, which, along with the small sample size of 235

patients, particularly with the training set, could result in an

“overfitting” of the predictive nomogram, rendering it less accurate

in identifying LNM. Therefore, future studies, with larger sample sizes

andmultiple centers, as well as scale- or meta-learning approaches, are

needed to verify the predictive capabilities of the nomogram. Another

limitation is that our study focused more on the characteristics of the

primary tumor, and less on LN, which is due to positive LNM not

being consistently visible under CT examination, making it difficult to

match with LN biopsy results, especially if multiple LN are involved.

Additionally, tumor segmentation was performed manually, which is

dependent on the experience of the individual radiologist, leading to

the nomogram results being too subjective for clinical applications.

Consequently, to increase the nomogram reliability, future

investigations should apply automatic segmentation methods and

focus on LN results, which could provide more objective predictive

assessments for LNM in LSCC.
5 Conclusion

In summary, we developed a predictive nomogram for LNM in

LSCC, based on DLR features extracted from pre-operative CT,

combined with the following clinical imaging features: LNM being

present in CT images and whether the primary tumor was in the

glottis or supra-glottis. This nomogram, compared to clinical

imaging features, conventional radiomics, or DLR alone, was

significantly more accurate for predicting LNM occurrence in

LSCC patients, thereby providing an efficient, non-invasive

method for preoperatively predicting LNM, which could greatly

assist in devising individualized treatment strategies for LSCC.
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