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Purpose: Accurate differentiation between glioma recurrence and radiation

necrosis is critical for the management of patients suspected of glioma

recurrence following radiation therapy. This study aims to develop a deep

learning-based methodology for automated discrimination between glioma

recurrence and radiation necrosis using routine magnetic resonance imaging

(MRI) scans.

Method: We retrospectively investigated 234 patients who underwent

radiotherapy after glioma resection and presented with suspected recurrent

lesions during follow-up MRI examinations. Routine 3D-MRI scans, including

T1-weighted, T2-weighted, and contrast-enhanced T1 (T1ce) sequences, were

acquired for each patient. Among the analyzed cases, 192 (82.1%) were

pathologically confirmed as glioma recurrence, while 42 (17.9%) were

diagnosed as radiation necrosis. Various Convolutional Neural Network (CNN)

models were employed to learn radiological features indicative of glioma

recurrence and radiation necrosis from the MRI scans. Performance evaluation

metrics, such as sensitivity, specificity, accuracy, and area under the curve (AUC),

were used to assess the models’ performance.

Result: Among the evaluated CNN models, ResNet10 demonstrated the highest

sensitivity (0.78), specificity (0.94), accuracy (0.91), and an AUC value of 0.83.

Additionally, the MresNet model achieved the highest specificity (0.980) but

exhibited a relatively lower sensitivity (0.56). Another evaluated CNN model,

Vgg16, showed a sensitivity of 0.56, specificity of 0.94, accuracy of 0.88, and an

AUC value of 0.70.
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Conclusion: The proposed ResNet10 CNN model demonstrates promising

performance on routine MRI scans, rendering it highly applicable in clinical

settings. These findings contribute to enhancing the diagnostic accuracy for

distinguishing between glioma recurrence and radiation necrosis using

routine MRI.
KEYWORDS

glioma recurrence, radiation necrosis, convolutional neural network, magnetic
resonance imaging, deep learning
Introduction

Glioma, the most prevalent primary malignant brain tumor, is

associated with a poor prognosis, particularly for high-grade

gliomas (1, 2). Even after undergoing standard treatment, which

includes surgical resection followed by radiotherapy and

temozolomide chemotherapy, patients with glioblastoma

multiforme (GBM) typically have a median survival of only 14.6

months (3). Radiation therapy has been shown to extend survival by

up to 12 months (4). However, a notable complication following

glioma treatment is brain radiation necrosis, which occurs in 3%-

24% of patients within 2 years post-radiation therapy (5).

Interestingly, radiation necrosis often coincides with the peak

period of glioma recurrence (6). The clinical manifestations of

radiation necrosis, such as the reappearance of initial symptoms,

worsening neurological dysfunction, and progressive enhancement

lesions with brain edema on radiographic images, closely mimic

those of recurrent glioma (7). As a result, distinguishing between

radiation necrosis and glioma recurrence based solely on routine

magnetic resonance imaging (MRI) scans presents significant

challenges (8). Accurate differentiation between these two

conditions is critical for determining appropriate treatment

strategies, as misdiagnosis can lead to severe consequences.

Therefore, there is an urgent need to develop a reliable and user-

friendly method for identifying radiation necrosis and tumor

recurrence in glioma patients.

Recent studies have highlighted the utility of various advanced

imaging techniques, such as perfusion-weighted imaging (PWI) (9),
AUC, Area Under the

toma; PWI, Perfusion-

copy; DWI, Diffusion-

d Tomography; ROIs,

C, Receiver Operating

radient-weighted Class

ume; Cho/Cr, Choline/

Tomography; H1-MRS,

ylaspartic Acid; ATRX,

AIR, Fluid Attenuated
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magnetic resonance spectroscopy (MRS) (10), diffusion-weighted

imaging (DWI) (11), and positron emission tomography (PET) (12,

13), in differentiating radiation necrosis from glioma recurrence.

These studies have identified several handcrafted radiomic features

based on image intensity, shape, and volume characteristics

associated with both conditions (14). However, the manual

selection of these features may introduce bias, and manual

segmentation of regions of interest (ROIs) is labor-intensive and

time-consuming.

In previous studies, we observed promising results by

integrating deep features into the radiomics model. However,

most of these studies primarily focused on leveraging image

information from single-modality MRI (15, 16). Additionally,

deep neural network (DNN) models have been employed to

enhance the classification of glioma recurrence versus necrosis,

but they are limited by reliance on 2D routine MRI sequences and

training on small, imbalanced datasets, which may lead to bias,

overfitting, or undertraining. Gao et al. (17) introduced a novel

DNNmodel for differentiating glioma recurrence from necrosis, yet

it was constrained by a small dataset size and an imperfect patient

cohort selection process. Santiago Cepeda et al. (18) developed a

deep learning-based model (RH-GlioSeg-nnU-Net) for evaluating

postoperative segmentation and resection of glioblastoma.

Although this model demonstrated good performance across

multiple datasets, it depends on manual or semi-automatic

annotation, which may introduce certain biases. Moreover, some

prior studies have reported on the application of deep learning

models in glioma segmentation, finding that despite their strong

performance, these models still face challenges in achieving precise

segmentation in complex post-treatment backgrounds, particularly

when handling post-treatment changes and the natural blurring of

tumor boundaries (arXiv:2405.18368) (19–21).

In recent years, Convolutional Neural Networks (CNNs) have

gained significant attention in the field of medical image

classification and have achieved remarkable results (22, 23).

CNNs are designed to mimic the mechanism of visual perception

in organisms, resulting in state-of-the-art performance in visual

analysis tasks and superior modeling capabilities.

Therefore, in this study, we propose a novel radiomics-based

model for distinguishing between radiation necrosis and glioma
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recurrence. Our research leverages multimodal 3D routine MRI

images and employs a 3D CNN architecture for experimentation.

Notably, our study includes the largest cohort of cases compared to

previous studies involving 3D imaging. Consequently, the proposed

method demonstrates promising potential as a reliable clinical tool

for accurately differentiating between glioma necrosis

and recurrence.
Methods

Patient data and imaging protocol

This study included consecutive patients with glioma

recurrence or radiation necrosis admitted to Beijing Tiantan

Hospital, Capital Medical University, from January 2012 to

December 2022. All procedures involving human participants

were conducted in accordance with the ethical standards of the
Frontiers in Oncology 03
institutional and national research committees, as well as the 1964

Helsinki Declaration and its subsequent amendments or

comparable ethical standards. The Institutional Review Board

(IRB) of Beijing Tiantan Hospital, Capital Medical University,

approved this study. Given the retrospective nature of the study,

the IRB waived the requirement for informed consent. The

inclusion criteria for participants are illustrated in Figure 1. All

patients enrolled in this study had a confirmed pathological

diagnosis of either glioma recurrence or radiation necrosis, a

history of radiotherapy, a prior glioma diagnosis, and available

conventional MRI sequence data. Patients without pathological

examination results, missing conventional MRI sequence data,

primary glioma diagnosis, or no history of radiation therapy

were excluded.

Ultimately, a total of 234 cases were screened and included in

the analysis. Among these, 192 cases were diagnosed with glioma

recurrence, while 42 cases were diagnosed with radiation necrosis.

The distribution of the collected data is summarized in Table 1.
FIGURE 1

The selection process for the patient cohorts in this study. Patients with a confirmed pathological diagnosis, a history of radiotherapy, previous
glioma diagnosis, and conventional MRI sequence data were enrolled while the patients without pathological examination results or missing
conventional MRI sequence data were excluded, as well as patients with primary glioma or no history of radiation therapy.
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Continuous data were analyzed using t-tests, and categorical

data between groups were compared using chi-square tests. A p-

value < 0.05 was considered to indicate statistical significance.

MRI Acquisition: All subjects underwent MRI before surgery at

the Center for Neuroimaging using a 3 Tesla MR scanner (imaging

systems are detailed in Table 2) with a standard 8-channel head coil.

The MRI acquisition protocol included the following sequences:

anatomical 2D T1-weighted, T2-weighted, FLAIR, and contrast-

enhanced T1-weighted imaging (T1ce). T1-weighted structural

images were acquired with the following parameters: repetition

time (TR) = 1900 ms; echo time (TE) = 8.6 ms; flip angle (FA) = 15°.

T2-weighted structural images were acquired with the following

parameters: repetition time (TR) = 4600 ms; echo time (TE) = 111.0

ms; flip angle (FA) = 12°. FLAIR images were acquired with the

following parameters: repetition time (TR) = 8000 ms; echo time

(TE) = 90 ms; inversion time (TI) = 2500 ms; flip angle (FA) = 10°.
Frontiers in Oncology 04
Contrast-enhanced T1-weighted images (T1ce) were acquired 5

minutes after intravenous injection of a paramagnetic gadolinium-

based contrast agent (Gadolinium Diethylenetriamine Pentaacetic

Acid, Gd-DTPA) at a dose of 0.2 ml/kg. The acquisition parameters

for T1ce were identical to those used for the T1-weighted sequence.

Each case’s data required a surgical diagnosis, wherein tumor or

necrotic tissue was obtained during the operation, and an accurate

label was assigned following histopathological analysis. One of the

challenges addressed in this study was to develop a deep learning

model capable of achieving high classification performance for

practical medical diagnosis despite the presence of imbalanced

datasets. In this study, the dataset was split into a training set and

a test set in a ratio of 3.03:1.
Histopathological diagnosis

The diagnosis of glioma recurrence and radiation necrosis was

pathologically confirmed by the Department of Neuropathology at

the Beijing Neurosurgical Institute. Fresh paraffin-embedded

suspicious lesions were sectioned into 5-mm slices and stained

with hematoxylin and eosin (H&E). If the original H&E-stained

slides were of poor quality, new tissue blocks were prepared and

restained. All available slices were blindly re-evaluated and

reclassified by two experienced neuropathologists with over 10

years of experience in the field. For the diagnosis of radiation

necrosis, only necrotic components were identified microscopically

in the specimen, with no tumor tissue present. In contrast, the

definition of tumor recurrence was the presence of glioma cells,

regardless of whether necrotic components were observed.

Although a mixture of tumor and necrosis is commonly

encountered in clinical practice, our classification system can

assist neurosurgeons in selecting the most appropriate treatment

strategy. Patients diagnosed with tumor recurrence require surgical

intervention, whereas those diagnosed with radiation necrosis

generally do not require surgery.
Data preprocessing

During on-site sampling, some scans may contain noise or have

a varying number of slices. To standardize the data, we

implemented the following data preprocessing pipeline: 1) Two-

dimensional Dicom data corresponding to T1, T1ce, T2, and FLAIR
TABLE 1 Demographic and clinical data of the patient cohorts enrolled
in this study.

Characteristic Training
set

Test
set

Total P value

Simple size 176 58 234

Age in years 46.55 46.98 46.87 0.797

Gender 0.290

Male 102 29 131

Female 74 29 103

Diagnosis of
primary lesion

0.759

Glioma (grade 2) 65 20 85

Glioma (grade 3) 37 12 49

Glioma (grade 4) 67 23 90

Unknow 7 3 10

Diagnosis of
recurrent lesion

0.199

Glioma (grade 2) 4 4 8

Glioma (grade 3) 42 9 51

Glioma (grade 4) 97 36 133

Necrosis 33 9 42
TABLE 2 The imaging data acquired from the different magnetic resonance imaging systems.

Image system Slice thickness, (mm) Slice spacing, (mm) Matrix size Field of view, (mm)

Philips Medical Systems 5.0 6.0 272×179 100

SIEMENS 5.0 6.5 320×256 100

GE MEDICAL SYSTEMS 5.5 6.5 288×192 80

Philips 5.0 6.0 240×240 100
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image sequences were stacked along the z-axis to convert them into

three-dimensional Nii format data. If a scan contained fewer than

32 slices for conversion, that case was excluded; 2) Nii data of

different modalities were classified based on the modality

information in the Dicom files; 3) Modal registration was

prioritized in the order of T1 contrast enhancement (T1ce) > T1

> T2 > FLAIR; 4) A skull removal procedure was executed; 5) Multi-

modal data were normalized in terms of size and pixel values. We

applied the commonly used min-max normalization method for

this purpose. In this method, the original pixel value is linearly

transformed into the range [0, 1], and the formula is, x0 = x−xmin
xmax−xmin

where x is the normalized value, x0 is the normalized value, xmax and

xmin are the maximum and minimum values of the

sample respectively.

It is worth noting that this study leveraged 3DMRI data and did

not require additional lesion labeling by physicians, thereby

significantly reducing their workload and enhancing the wide

applicability of the method.

Overall, the T1 sequence primarily captures anatomical

structures, the T2 sequence provides information on water

content and lesion characteristics, the FLAIR sequence highlights

the peritumoral region and reveals areas of edema, while the T1CE

sequence further delineates intra-tumoral conditions and aids in

differentiating between tumors and non-neoplastic lesions.

Consequently, this study utilized multi-modal data as input to

enable the network to learn richer visual features and achieve

improved classification performance.
Frontiers in Oncology 05
Network and visualization

In recent years, Convolutional Neural Networks (CNNs) have

been widely applied to medical image classification and have

achieved remarkable performance. These CNNs take 2D or 3D

medical images as input and progressively transform low-level

image features into high-level semantic representations through a

series of convolutional and pooling layers. Subsequently, a fully

connected layer is utilized to perform the final classification task,

thereby generating the diagnostic outcome. During supervised

learning, the network’s predicted classification results (radiation

necrosis vs. tumor recurrence) are compared with the ground truth

via loss computation. The resulting loss is then backpropagated to

guide the network’s parameter updates in the direction of

minimizing the loss. Through multiple iterations, the model

learns to identify critical features that distinguish tumor

recurrence from radiation necrosis, features that often remain

imperceptible to the human eye (see Figure 2).

To achieve two primary objectives—enhancing the network’s

ability to learn visual features and reducing the workload of

physicians—this paper proposes a multi-modal 3D CNN

classification framework. We concatenate the four image

sequences (T1, T2, T1ce, and FLAIR) along the channel

dimension to construct a multi-modal 3D MRI sequence as input

for our classification framework. The backbone of this framework

can be adapted from any 2D convolutional neural network

architecture. Specifically, we replace all 2D convolutional layers
FIGURE 2

Overview of the proposed approach. The Pipeline of the CNN network was trained using 3D MRI sequences, abstracting low-level image features
into high-level semantic features through cascaded layers of convolution and pooling. A fully connected layer is employed to perform the final
classification task, yielding the diagnosis outcome. During supervised learning, the network’s classification results (radiation necrosis/tumor
recurrence) are measured against the ground truth using loss calculation.
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with 3D convolutional layers and reconfigure parameters such as

kernel size, padding, and stride to accommodate 3D processing.

After this modification, the classification network can accept 3D

inputs and performing classification tasks. We conducted

experimental evaluations using common convolutional neural

network architectures, including ResNet10, ResNet50, VGG11,

VGG16, and DenseNet121. Additionally, we compared the

performance of different backbone structures under various input

combination strategies. In all experiments, we set the learning rate

to 1e-5, batch size to 2, and the number of epochs to 300.

Finally, the classification performance of the network is

evaluated using several metrics, including accuracy, sensitivity,

specificity, and the area under the receiver operating

characteristic curve (AUC).

To further validate the classification performance of our model,

we utilized Gradient-weighted Class Activation Mapping (Grad-

CAM) to visualize the gradients of the last convolutional layer in the

DenseNet121 backbone within our multi-modal 3D CNN

classification framework.

Besides, the model’s discrimination relies on multi-modal MRI

features, including: heterogeneous enhancement on T1ce, where

irregular enhancement with perilesional edema is characteristic of

recurrence, whereas necrosis often exhibits uniform ring

enhancement; and peritumoral edema patterns on T2/FLAIR,

where infiltrative edema is indicative of recurrence, while focal

edema is more typical of necrosis. These findings are consistent with

the experience and judgment criteria of radiologists.
Evaluation metric

Four metrics—accuracy, specificity, sensitivity, and AUC—were

utilized in this study to evaluate the model’s performance. Accuracy

reflects the proportion of correctly predicted cases out of all cases,

providing a comprehensive measure of the model’s overall

performance. Due to the relatively small proportion of necrotic

cases in the dataset and the critical importance of effectively

differentiating necrotic cases, recurrence was defined as the

negative class, while necrosis was defined as the positive class.

Given the binary classification task of distinguishing glioma

recurrence from necrosis, the model’s output consisted of the

probabilities of each case being classified as recurrence or

necrosis. These two probabilities summed to 1. The final

prediction was determined based on the higher probability: if a

case had a higher probability of recurrence, it was predicted as

negative; conversely, if a case had a higher probability of necrosis, it

was predicted as positive. Specificity refers to the proportion of

correctly predicted negative cases (recurrence) out of all actual

negative cases, while sensitivity refers to the proportion of correctly

predicted positive cases (necrosis) out of all actual positive cases.

Generally, predicting positive cases (necrosis) is more challenging

due to their lower prevalence, and errors in predicting positive cases

can have more severe consequences. Therefore, achieving higher

sensitivity is desirable for the model. AUC, defined as the area under

the Receiver Operating Characteristic (ROC) curve, serves as an
Frontiers in Oncology 06
evaluation metric for binary classification models. It represents the

probability that the model ranks a randomly chosen positive case

higher than a randomly chosen negative case. Higher AUC values

indicate better model performance.
Results

Classification

Demographic characteristics are presented in Table 1, with a

balanced distribution observed between the Training set and Test

set (all P values > 0.05). Table 3 provides a comprehensive

performance analysis of different CNN models using single-modal

3D MRI sequences for classification. The T1 and T2 sequences

demonstrate the highest accuracy, while the T1ce sequence exhibits

the highest sensitivity. This can be attributed to the T1 sequence’s

ability to capture detailed intracranial structural information and

the T2 sequence’s strong correlation with water content, which aids

in effective lesion characterization. Additionally, the T1ce sequence

highlights valuable lesion features critical for distinguishing glioma

recurrence from necrosis. Among the evaluated models, ResNet10

and ResNet50 achieved the highest accuracy of 0.91 (95% CI: 0.84–

0.99) when using the T2 sequence as input. DenseNet121 and

VGG16 achieved the highest accuracy of 0.88 (95% CI: 0.80–0.96)

when employing the T1 or T1ce sequence as input. Notably, the

diagnostic accuracy for negative cases (Recurrence) exceeded 90%

across all three modal sequences, whereas the accuracy for positive

cases (Necrosis) remained below 67%. This imbalance is likely due

to the dataset distribution, underscoring the importance of

enhancing model sensitivity for accurate identification of

positive cases.

Table 4 presents the classification performance of a multi-

modal 3D CNN model, which integrates fusion of 3D MRI

sequences from all three modalities as input. Among the

evaluated models, ResNet10 achieved the highest scores in terms

of accuracy, sensitivity, specificity, and AUC, with respective values

of 0.91 (95% CI: 0.84–0.99), 0.78 (95% CI: 0.40–0.96), 0.94 (95% CI:

0.82–0.98), and 0.83 (95% CI: 0.73–0.93) (ROC area shown in

Figure 3). ResNet10 demonstrates an improvement in accuracy of

0.01 over DenseNet121 and ResNet50, and 0.03 over VGG11 and

VGG16. Additionally, it achieves an AUC improvement of 0.03

over DenseNet121, 0.05 over ResNet50, 0.04 over VGG11, and 0.13

over VGG16. Notably, ResNet50, VGG16, and ResNet10 achieve

the highest specificity score of 0.94 (95% CI: 0.82–0.98).

We performed one-sample t-tests to evaluate the statistical

significance of the predictive performance of each model when

using the combined input of T1, T1ce, and T2 modalities, with the

aim of determining whether the prediction probabilities were

significantly higher than random guessing (0.5). As shown in

Table 5, the statistical analysis results indicate that all models

achieved p-values less than 0.05, accompanied by large absolute t-

values. During testing, the proportion of the necrotic class was

higher than that of the recurrent class. Therefore, we additionally

reported independent p-values for each class, demonstrating that
frontiersin.org
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our model’s performance remained statistically superior to random

guessing at the individual class level (Table 6). This finding provides

robust statistical evidence that the proposed model in this study

demonstrates significantly superior predictive performance

compared to random chance in the classification task.

The fusion of multi-modal MRI sequences improved the feature

learning and classification performance of the CNN model, as

shown in Tables 3-4. By leveraging the anatomical structures

captured by the T1 sequence, the lesion features highlighted by

the T2 sequence, and the intra-tumoral characteristics revealed by

the T1ce sequence, the model gains access to a richer and more

multi-dimensional set of visual features. This integration ultimately

enhances the model’s ability to classify and distinguish between

different types of lesions more accurately and effectively.
Frontiers in Oncology 07
Visualization

The visualization of the last convolutional layer in the

DenseNet121 backbone is presented in Figure 4. Grad-CAM

highlights the areas of highest network attention, with red

indicating the highest attention and gradually transitioning to

green, which indicates reduced attention.

Since our input was a 3D structure, we generated visualizations for

each 2D slice. Notably, for recurrence cases, the network consistently

focused on the central region of the tumor lesion, suggesting that it

accurately captured and evaluated relevant features in that area.

Similarly, in the case of necrotic lesions, the network’s attention was

predominantly concentrated around and in close proximity to the

center of the lesion. These observed attention areas in our visualizations
TABLE 3 Performance comparison of CNN-based models using single modal 3D MRI sequence as input.

Models Scans Acc(95%CI) Sens (95%CI) Speci (95%CI) AUC (95%CI)

resnet10

t1 0.90 (0.82-0.97) 0.44 (0.15-0.77) 0.98 (0.88-0.99) 0.72 (0.60-0.83)

t1ce 0.88(0.80-0.96) 0.56 (0.23-0.85) 0.94 (0.82-0.98) 0.70 (0.58-0.82)

t2 0.91 (0.84-0.99) 0.44 (0.15-0.77) 1.0 (0.91-1.0) 0.70 (0.59-0.82)

densenet121

t1 0.88 (0.80-0.96) 0.67 (0.31-0.91) 0.92 (0.80-0.97) 0.79(0.68-0.89)

t1ce 0.88 (0.80-0.96) 0.67 (0.31-0.91) 0.92 (0.80-0.98) 0.76 (0.65-0.87)

t2 0.86 (0.77-0.95) 0.44 (0.15-0.77) 0.94 (0.82-0.98) 0.74 (0.63-0.85)

resnet50

t1 0.88 (0.80-0.96) 0.33 (0.090-0.69) 0.98 (0.88-0.99) 0.75 (0.69-0.86)

t1ce 0.90 (0.82-0.97) 0.56 (0.23-0.85) 0.96 (0.85-0.99) 0.69 (0.58-0.81)

t2 0.91 (0.84-0.99) 0.44 (0.15-0.77) 1.0 (0.91-1.0) 0.78 (0.67-0.88)

vgg11

t1 0.90 (0.82-0.97) 0.33 (0.090-0.69) 1.0 (0.91-1.0) 0.71 (0.60-0.82)

t1ce 0.90 (0.82-0.97) 0.33 (0.090-0.69) 1.0 (0.91-1.0) 0.69 (0.58-0.81)

t2 0.90 (0.82-0.97) 0.33 (0.090-0.69) 1.0 (0.91-1.0) 0.64 (0.51-0.76)

mresnet

t1 0.90 (0.82-0.97) 0.56 (0.23-0.85) 0.96 (0.85-0.99) 0.78 (0.67-0.89)

t1ce 0.90 (0.82-0.97) 0.44 (0.15-0.77) 0.98 (0.88-0.99) 0.85 (0.76-0.94)

t2 0.91 (0.84-0.99) 0.56 (0.23-0.85) 0.98 (0.88-0.99) 0.75 (0.63-0.86)

vgg16

t1 0.88 (0.80-0.96) 0.33 (0.090-0.69) 0.98 (0.88-0.99) 0.70 (0.58-0.82)

t1ce 0.88 (0.80-0.96) 0.56 (0.23-0.85) 0.94 (0.82-0.98) 0.78 (0.68-0.89)

t2 0.85 (0.75-0.94) 0.44 (0.15-0.77) 0.92 (0.80-0.97) 0.75 (0.64-0.86)
Acc, Accuracy; Sens, Sensitivity; Speci, Specificity; AUC, Area Under the Receiver Operating Characteristic Curve.
TABLE 4 Performance comparison of CNN-based models using multi-modal 3D MRI sequence as input.

Models scans Acc (95%CI) Sens (95%CI) Speci (95%CI) AUC (95%CI)

resnet10 t1, t1ce, t2 0.91 (0.84-0.99) 0.78 (0.40-0.96) 0.94 (0.82-0.98) 0.83 (0.73-0.93)

densenet121 0.90 (0.82-0.98) 0.78 (0.40-0.96) 0.92 (0.80-0.97) 0.80 (0.70-0.90)

resnet50 0.90 (0.82-0.98) 0.67 (0.31-0.91) 0.94 (0.82-0.98) 0.78 (0.67-0.89)

vgg11 0.88 (0.80-0.96) 0.67 (0.31-0.91) 0.92 (0.80-0.97) 0.79 (0.68-0.89)

mresnet 0.91 (0.84-0.99) 0.56 (0.23-0.85) 0.98 (0.88-0.99) 0.73(0.62-0.84)

vgg16 0.88 (0.80-0.96) 0.56 (0.23-0.85) 0.94 (0.82-0.98) 0.70 (0.59-0.82)
Acc, Accuracy; Sens, Sensitivity; Speci, Specificity; AUC, Area Under the Receiver Operating Characteristic Curve.
The bolded values and models signify that this particular model demonstrates the optimal performance and the greatest efficacy among all the models presented.
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provide evidence that the CNN model effectively diagnoses cases and

achieves high diagnostic accuracy by leveraging relevant features.

This visualization using Grad-CAMdemonstrates the ability of our

model to focus on important regions within the input data, providing

valuable insights into the decision-making process. Such visualizations

help validate the model’s classification performance and enhance

interpretability by highlighting the areas of highest network attention.
Case illustration

To illustrate the model’s workflow, we present two

representative cases (Figure 5). After pre-processing steps such as

skull stripping, multi-modal MRI images (T1, T2, T1ce, FLAIR)

were input into the model, which outputs a numerical value. A value
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between 0–0.5 indicates radiation necrosis, while a value between

0.5–1 suggests recurrent glioma. Case 1 (Histopathology-confirmed

recurrent glioma): A 52-year-old male with a history of GBM

exhibited a heterogeneously enhancing lesion on T1ce. The model

output a value of 0.92, and Grad-CAM highlighted the enhancing

area (Figures 5A, B). Case 2 (Histopathology-confirmed radiation

necrosis): A 45-year-old female presented with a ring-enhancing

lesion. The model output a value of 0.11, with attention focused on

the non-enhancing core (Figures 5C, D).
Discussion

In our study, we employed multi-modal 3D MRI sequences

from patients as input and conducted experiments using various
TABLE 5 The statistical analysis results of CNN-based models.

Models p-value t-value

resnet10 2.18*1e-7 8.33

densenet121 3.24*1e-6 5.15

resnet50 2.11*1e-6 6.37

vgg11 4.27*1e-5 5.88

mresnet 5.18*1e-7 7.04

vgg16 3.87*1e-5 4.72
TABLE 6 The independent p-values for each class.

Models Necrosis Glioma
Recurrence

resnet10 6.97*1e-7 0.0024

densenet121 7.86*1e-6 0.0091

resnet50 4.31*1e-6 0.0087

vgg11 2.67*1e-5 0.0103

mresnet 8.18*1e-7 0.0042

vgg16 2.77*1e-5 0.0117
FIGURE 3

The best performance of the CNN model (Resnet10, t1, t2, t1ce) on multi-modal MRI in the image-based classification task.
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commonly utilized convolutional neural networks, including

ResNet10, DenseNet121, MresNet, VGG16, ResNet50, and

VGG11. We compared the performance of different network

architectures with varying input combination modes. Although

prior studies have suggested that T1ce is the most informative

MRI sequence for identifying necrosis (5, 6, 24), our findings

demonstrated that when T1, T2, and T1ce modalities were fused

as input, ResNet10 achieved the highest accuracy score of 0.914,

which represents a remarkable achievement. Notably, when the
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three modalities were fused, ResNet10 also attained the highest

sensitivity score of 0.778. These results indicate that CNNs can

accurately identify radiation necrosis, even outperforming

experienced neurosurgeons.

The proposed method demonstrates substantial clinical

potential, as distinguishing glioma recurrence from radiation

necrosis remains a critical challenge in clinical neuro-oncology

(25). Misdiagnosing radiation necrosis as glioma recurrence may

lead to unnecessary surgeries, while misdiagnosing glioma
FIGURE 4

The visualization of the last convolutional layer in the DenseNet121 backbone of our multi-modal 3D CNN classification framework. To further
demonstrate the classification performance of the model, we visualized the last convolutional layer’s gradient of the CNN model. We use GradCam
algorithm (https://github.com/1Konny/gradcam_plus_plus-pytorch) visualization convolution level of output, its entropy diagram. Then we set the
transparency of the entropy map andmake it overlap with the original map, and the resulting effect is shown in the figure. The Grad-CAM highlighted the
areas of highest network attention, with red indicating the highest attention and gradually transitioning to green, indicating reduced attention.
FIGURE 5

Visualization of recurrent glioma and radiation necrosis cases. (A, C) display the magnetic resonance images (MRI) after pre-processing such as skull
removal used as model inputs for the recurrent glioma and radiation necrosis cases, respectively. (B, D) present the Grad-CAM visualizations for the
recurrent glioma and radiation necrosis cases, respectively.
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recurrence as radiation necrosis can delay effective treatment for

glioma. Currently, the differential diagnosis of radiation necrosis

and recurrent glioma relies on histopathologic analysis, which

requires biopsy or open surgery for tissue collection. The method

presented in this study enables accurate preoperative differentiation,

assisting neurosurgeons in avoiding unnecessary invasive

procedures and reducing risks for patients, as well as alleviating

the economic burden. By analyzing the radiological features learned

by the CNN models, our study provides valuable insights into the

imaging characteristics of recurrent glioma and radiation necrosis.

Consequently, these findings are likely to play a pivotal role in

establishing guidelines for the differential diagnosis of recurrent

lesions and in optimizing glioma follow-up strategies.

Compared with other deep learning methods, CNNs use 2D or

3D medical images as input, abstract low-level image features into

high-level semantic features via convolutional and pooling layers,

and accomplish the final classification task using fully connected

layers to generate diagnostic results. Moreover, CNNs can compute

loss based on ground truth, enabling backpropagation of loss and

supervision of network parameter updates to minimize losses,

thereby enhancing prediction accuracy. Importantly, the proposed

method eliminates the need for time-consuming manual lesion

delineation, which may introduce inter-reader variability.

Furthermore, the performance of the proposed method surpasses

that of previously reported methods (15, 16).

Recently, several studies have explored alternative models for

distinguishing between necrosis and tumor recurrence. For

instance, Gao et al. (17) proposed a novel deep neural network

(DNN) model that uses 2D images as input and achieved higher

performance, with the highest area under the curve (AUC) of 0.915.

However, this model has certain limitations. It excludes patients

who simultaneously suffer from both tumor recurrence and

necrosis, which is an important consideration in clinical practice.

Moreover, 2D images provide less information compared to 3D

images. Additionally, another study reported a volume-weighted

voxel-based multiparametric (MP) clustering method; however, the

image-based segmentation of clusters was found to be less

correlated with surgical specimens (26). Other existing techniques

for differentiating recurrent glioma from radiation necrosis include

perfusion-weighted imaging (PWI) (9), magnetic resonance

spectroscopy (MRS) (10, 27), diffusion-weighted imaging (DWI)

(11), and positron emission tomography (PET) (13, 28).

Nevertheless, none of these techniques have demonstrated

sufficiently high efficacy for routine clinical use. A meta-analysis

of PWI and MRS revealed that the average relative cerebral blood

volume (rCBV) in contrast-enhancing lesions was significantly

higher in tumor recurrence than in radiation injury, and the

average choline/creatinine (Cho/Cr) ratio was also significantly

higher in tumor recurrence than in tumor necrosis, potentially

improving the accuracy of differentiating between necrosis and

recurrent tumor (29). Another study utilizing single-photon

emission computed tomography (SPECT) and proton magnetic

resonance spectroscopy (H1-MRS) demonstrated sensitivities of

88.9% for SPECT and 66.1% for MRS (30). However, these
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parameters only correlate with specific biological features, such as

DWI with cell density and necrosis, CBV with vascular density, and

MRS with metabolite concentration (26). Both aforementioned

studies showed lower performance compared to the proposed

methods. Furthermore, these existing methods are often

expensive and not widely adopted in most Chinese clinical settings.

Previous studies on deep learning methods for this task share

common limitations, such as the absence of pathological analysis

and relatively small dataset sizes, which have impeded the clinical

resolution of the differential diagnosis between tumor recurrence

and necrosis (24). To the best of our knowledge, the dataset

(N=234) utilized in this study constitutes the largest cohort

among similar studies and incorporates pathologically confirmed

diagnoses as ground truth labels, thereby enhancing its reliability

for addressing this challenge.

However, the proposed method also has certain limitations. Our

study is a retrospective analysis rather than a prospective one.

Although our dataset is larger than most previous studies, it

remains relatively small compared to generic image datasets

commonly used in computer vision. Consequently, the confidence

intervals for specificity and sensitivity are relatively wide.

Furthermore, due to the retrospective nature of this study and the

neurosurgeon’s experience in distinguishing necrosis from tumor

recurrence, the CNN models were trained on an imbalanced

dataset. Despite our efforts to split all cases into training and test

sets (training:test = 3:1), the influence of the unbalanced data

distribution could not be fully mitigated. The current experiments

were conducted using a single-center dataset, and the model’s

generalizability requires further validation on multi-center

external cohorts. It would be beneficial to expand the sample size

by incorporating data from other centers, particularly cases of

radiation necrosis, to enhance and validate the proposed method.

Finally, imaging features specific to glioma subtypes and

molecular genetic features, such as ATRX and 1p/19q status (31),

as well as metabolomics indicators like phenylalanine, 2-glyceryl

phosphate, lysine, and N-acetylaspartic acid (NAA) (32), were not

included in this study. These aspects warrant investigation in future

research. Due to time and computational resource constraints,

direct comparisons with traditional radiomics approaches or

hybrid AI methods were not performed in this study. Future

work will involve benchmarking against baseline models to

comprehensively evaluate the superiority of our approach.

While Grad-CAM visualizations preliminarily revealed the

model’s focus on regions such as the tumor core and perinecrotic

areas, systematic comparisons between these regions and

radiologists’ diagnostic criteria (e.g., enhancing margins per

RANO criteria) were not conducted due to time constraints and

limited access to collaborative clinical expertise. Nevertheless, the

observed attention patterns align with known imaging biomarkers

of glioma recurrence and radiation necrosis. Our work provides a

novel perspective on end-to-end deep learning for glioma imaging

analysis. The preliminary results (high classification accuracy and

Grad-CAM localization consistency) suggest the potential clinical

utility of the proposed method.
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Conclusion

Our study demonstrated the effectiveness of multimodal 3D

MRI-based CNN models in distinguishing recurrent gliomas from

necrosis, outperforming other deep learning methods. The proposed

method, which does not rely on lesion segmentation or handcrafted

features, shows promising potential as a cost-effective and reliable

tool for differentiating radiation necrosis from recurrent tumors.

Given its high applicability in clinical settings, this deep learning

approach holds significant value in improving diagnostic accuracy

and enhancing patient outcomes. Further research and validation

using larger and more diverse datasets, incorporating molecular and

genetic features, will contribute to strengthening the robustness and

generalizability of the proposed method.
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