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Differentiation of early-stage
tumors from benign lesions
manifesting as pure ground-
glass nodule: a clinical prediction
study based on AI-derived
quantitative parameters
Shuxiang Chen*, Huijuan Zhang, Yifan Chen, Shuo Chen,
Wenfu Cao and Yongxiu Tong

Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian
Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
Objectives: Differentiating between benign and malignant pure ground-glass

nodule (pGGN) is of great clinical significance. The aim of our study was to

evaluate whether AI-derived quantitative parameters could predict benignity

versus early-stage tumors manifesting as pGGN.

Methods: A total of 1,538 patients with pGGN detected by chest CT at different

campuses of our hospital fromMay 2013 to December 2023 were retrospectively

analyzed. This included CT and clinical data, as well as AI-derived quantitative

parameters. All patients were randomly divided into a training group (n=893), an

internal validation group (n=382), and an external validation group (n=263).

Hazard factors for early-stage tumors were identified using univariate analysis

and multivariate logistic regression analysis. Independent risk factors were then

screened, and a prediction nomogram was constructed to maximize predictive

efficacy and clinical application value. The performance of the nomogram was

evaluated using ROC curves and calibration curves, while decision curve analysis

(DCA) was used to assess the net benefit prediction threshold.

Results: The final logistic model included nine independent predictors (age,

location, minimum CT value, standard deviation, kurtosis, compactness, energy,

costopleural distance, and volume) and was developed into a user-friendly

nomogram. The AUCs of the ROC curves in the training, internal validation,

and external validation cohorts were 0.696 (95% CI: 0.638–0.754), 0.627 (95% CI:

0.533–0.722), and 0.672 (95% CI: 0.543–0.801), respectively. The calibration plot

demonstrated a good correlation between observed and predicted values, and

the nomogram remained valid in the validation cohort. DCA showed that the

model’s predictive performance was acceptable, providing substantial net benefit

for clinical application.

Conclusions: The clinical prediction nomogram, based on AI-derived

quantitative parameters, visually displays an overall score to differentiate
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benign lesions from early-stage tumors manifesting as pGGN. This nomogram

may serve as a convenient screening tool for clinical use and provides a reference

for formulating individualized follow-up and treatment plans for patients

with pGGN.
KEYWORDS

lung, pure ground-glass nodule, identification, nomogram, CT, AI, quantitative
parameters, benignity
1 Introduction

With the increasing use of low-dose spiral CT and the clinical

implementation of artificial intelligence (AI)-based auxiliary

diagnostic systems (1, 2), an increasing number of asymptomatic

ground-glass nodule (GGN) are being detected during routine

physical examinations, even in non-smokers. Among these, pure

ground-glass nodule (pGGN) have garnered particular attention

due to their association with a spectrum of benign and malignant

diseases. Benign lesions can be monitored over an extended period,

while preinvasive lesions, such as atypical adenomatous hyperplasia

(AAH) and adenocarcinoma in situ (AIS), can be closely followed to

determine the optimal timing for limited resection. In contrast,

minimally invasive adenocarcinoma (MIA) and invasive

adenocarcinoma (IAC) necessitate immediate surgical

intervention. The prevalence of “indolent cancers” presenting as

pGGN is on the rise (3–7). The psychological and economic

burdens on individuals can significantly affect their quality of life.

Overdiagnosis and overtreatment are common risks that further

complicate the situation. Therefore, reducing the incidence of these

phenomena has become a focal point of screening research (8–10).

The management of pulmonary nodule poses a significant

clinical challenge due to their varied nature. Most benign lesions

either subside or remain stable over time, often requiring only

routine follow-up. Among malignant nodule, there exists a

spectrum of neoplastic lesions, ranging from AAH to AIS, MIA,

and IA. Early-stage tumors, such as AIS and MIA, have a 5-year

survival rate approaching 100% (11), Consequently, for these early-

stage lesions, initial observation followed by timely surgical

intervention is a reasonable approach. In contrast, IA requires

more aggressive management. Thus, accurately distinguishing the

nature of persistent pGGN holds significant clinical importance to

ensure rational responses from both patients and clinicians.

Traditional CT imaging features of benign and malignant lesions

often overlap, and the phenomena of “same disease, different

imaging signs” and “same sign, different diseases” occur

frequently, necessitating further investigation. Achieving an

accurate qualitative diagnosis and determining appropriate

clinical treatment strategies remain critical challenges for both

patients and clinicians. Various factors have been identified as

potential predictors for differentiating between benign and
02
malignant lung nodule. These include nodule size, spiculation,

lobulation, and other radiological features, as well as patient

characteristics such as age, smoking history, and family history of

lung cancer. These factors have been incorporated into nomograms

to calculate individualized risk scores for GGN nature (3–7).

Compared to solid nodule, GGN, particularly pGGN, exhibit

relatively indolent behavior. In most cases, patients with pGGN

demonstrate favorable survival rates and low recurrence. However,

predicting the presence of invasive components within pGGN

remains a significant challenge. Conventional CT features of

pGGN across different diseases are often similar, and there is a

lack of precise quantitative indicators. In recent years, radiomics has

made remarkable progress in identifying the degree of invasiveness

in pulmonary nodule. However, radiomics requires manual

delineation, which is time-consuming, labor-intensive, and prone

to inter- or intra-observer variability and manual measurement

errors (2, 12–14). As a highly efficient and promising automated

method, AI-based quantitative parameters may address these

shortcomings. AI can capture subtle differences that are difficult

to discern with the naked eye.

With the continuous advancement in the integration of

medicine and engineering, AI-assisted diagnostic systems for

pulmonary nodule have been widely adopted in clinical practice

(5, 6, 15). Leveraging 3D deep convolutional neural networks, AI

can accurately capture the complete 3D structural information of

pulmonary nodule, which vary in shape and size, and enable the

automatic extraction of nodule contours. These systems not only

automatically detect the location of pulmonary nodule but also

perform rapid quantitative analysis. Various three-dimensional

quantitative parameters of pulmonary nodule—such as average

CT value, 3D long diameter, maximum area, volume, surface

area, compactness, sphericity, and entropy—can reveal subtle

changes that are imperceptible to the human eye. These AI

systems offer higher sensitivity and repeatability, assisting doctors

in enhancing the accuracy of imaging diagnoses, reducing missed

diagnoses and misdiagnoses, and minimizing repetitive and labor-

intensive tasks (16).

AI is becoming increasingly integrated into all areas of medicine

and has gradually demonstrated its advantages in lung cancer

screening, segmentation, location identification, classification, and

diagnosis of lung nodule in clinical practice (8, 17–20). AI-derived
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quantitative parameters may provide additional information for

differentiating the nature of pGGN, aiding in the early screening,

diagnosis, and treatment of malignant pulmonary nodule, while also

helping to avoid overdiagnosis and overtreatment of benign lung

lesions (9, 21). Therefore, whether AI parameters, which are

automatic and convenient, can provide further valuable insights

remains an interesting question for further investigation. To the best

of our knowledge, no published studies have focused on using AI-

derived quantitative parameters to predict the nature of pGGN. In this

study, we aim to develop a clinical prediction nomogram based on AI-

derived quantitative parameters to differentiate between benign and

malignant pGGN. We hope to contribute valuable insights to the field

of pGGN management and assist healthcare providers in optimizing

patient care and treatment decisions.
2 Materials and methods

2.1 Patient data

Chest CT images and clinical data were retrospectively collected

from patients with GGN in different campus of hospital from May

2013 to December 2023, 1538 patients with pGGN were enrolled in

the study. including 562 males and 976 females, aged from 26 to 78

years, with an average age of 55 ± 12 years. There were 111 cases of

IA, 615 cases of MIA, 48 cases of AIS, 610 cases of AAH and 154

cases of benign diseases. The flow chart showed the enrollment of

patients (Figure 1).

The type of nodule is often inconsistent even among chest

radiologists, for consistency, the AI classification of ground glass

nodule was uniformly used as the standard in this study, and then

individually verified by two radiologists with more than 5 years of

experience, whowere blinded to the lesion results, analyzed and recorded

the lesion features, including lesion site, number, If there was a

disagreement, the decision was made by a third experienced radiologists.

Inclusion Criteria:
Fron
1. Complete CT images and clinical records were available

for analysis.

2. Patients had not undergone needle biopsy, surgery,

radiotherapy, or other related treatments prior to the

CT examination.
tiers in Oncology 03
3. The image format was required to be DICOM.

4. The nodule were identified as pGGN and the size ranged

from 3mm to 3cm.

5. For cases with multiple lesions, postoperative pathological

results could be correlated with CT images.

6. For pGGN confirmed as malignant by surgical or biopsy

pathology, or those that resolved after anti-inflammatory

treatment or follow-up, the diagnosis of malignant nodule

was based on pathological evidence. If pGGN resolved

during follow-up and were considered benign but lacked

pathological confirmation, patients were required to

undergo follow-up for more than two years.
2.2 CT image protocol

All patients were scanned at full inspiration while in the supine

position with their hands raised, using either the Somatom

Definition AS 128 or the Somatom go. Top scanner. All CT

examinations were performed from the apex to the base of the

lungs following standard clinical scanning protocols. The tube

voltage was set at 120 kV, and automatic tube current modulation

was applied. Thin-slice reconstructions were performed with a slice

thickness of 1.25 mm. Image post-processing adhered to

standardized protocols. Routine chest CT imaging included both

pulmonary and mediastinal window settings.
2.3 Image analysis

The chest CT images were automatically detected and

delineated using the Artificial Intelligence-Assisted Diagnosis

System (https://www.shukun.com/product/). This system

performed automatic segmentation and extracted quantitative

parameters, including mean CT value, maximum CT value,

minimum CT value, median CT value, standard deviation,

kurtosis, skewness, entropy, compactness, sphericity, energy,

surface area, maximum 3D diameter, costopleural distance, mass,

and volume. Pathological results, along with the following

demographic and clinical data, were also collected, such as sex,

age, and lesion location.
FIGURE 1

The flow chart showed the enrollment of patients.
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2.4 Statistical analysis

The dataset collected from one campuses of our hospital was

randomly divided into training and validation cohorts at a ratio of 7:3.

Cases collected from another hospital campuses served as an external

validation set. Continuous variables are presented as median

(interquartile range), and categorical variables are expressed as

absolute counts and percentages (%). In the univariate analysis, the

chi-square test or Fisher’s exact test was used to analyze categorical

variables, while the Student’s t-test or rank-sum test was applied for

continuous variables. In the training cohort, least absolute shrinkage

and selection operator (LASSO) logistic regression analysis was

performed for multivariate analysis to screen for independent risk

factors. Based on these results, a practical nomogram was developed to

differentiate benign from Early-Stage Tumor pGGN. The performance

of the nomogram was evaluated using the receiver operating

characteristic (ROC) curve, calibration curve, and decision curve

analysis (DCA). Statistical significance was defined as a two-sided p

value < 0.05. All statistical analyses were conducted using R software

(version 4.2.2) and MSTATA software (www.mstata.com).
3 Results

3.1 Patient characteristics

Univariate analyses were performed to compare indices between

different cohort (Table 1, Supplementary Table 1). The baseline

demographic and clinical characteristics of the study population were

analyzed across three cohorts: the training cohort, which included 893

individuals, the internal test cohort, comprising 382 participants, and the

external test cohort, consisting of 263 subjects. The distribution of sex

revealed that 63.9% of participants in the training cohort were female,

compared to 61.3% in the internal test cohort and 65.0% in the external

test cohort, with no significant differences (p = 0.559). Similarly, there were

no significant differences in median age across the cohorts (p = 0.802).

Regarding lesion location, the highest proportion of lesions was

observed in the left upper lobe (LUL) across all cohorts, followed by the

right upper lobe (RUL) and the left lower lobe (LLL), with varying

percentages among the cohorts. The mean CT value did not differ

significantly between the cohorts (p = 0.093). However, statistically

significant differences were observed for several other parameters,

including the maximum CT value, minimum CT value, median CT

value, standard deviation, skewness, kurtosis, entropy, compactness,

sphericity, and energy, with all p-values below 0.001. Additionally,

parameters such as surface area, maximum 3D diameter, costopleural

distance, mass, and volume also showed significant variations among

the cohorts (p-values below 0.001 or 0.017).
3.2 LASSO regression and hyperparameter
tuning

LASSO was employed to select the most predictive features while

addressing multicollinearity and overfitting. LASSO applies an L1
Frontiers in Oncology 04
penalty (absolute value of coefficients), which shrinks less important

feature coefficients to zero. Features with negligible contributions to the

prediction task are thus excluded. For example, Eliminated Features:

Sex_Male, Mean_ct_value, Maximum_ct_value, and Median_ct_value

had coefficients shrunk to zero (Table 2), indicating their minimal

discriminatory power in the model.

Retained Features: Age, Location_RUL, and Volume had non-zero

coefficients, reflecting their clinical relevance and statistical significance

(Table 2, Figure 2). For redundancy reduction, radiomic features often

exhibit high correlation (e.g., Mean_ct_value, Maximum_ct_value, and

Median_ct_value). LASSO automatically selects one representative

feature from correlated clusters, Only Minimum_ct_value was

retained from the CT value family, as it captured unique variance

not explained by other correlated features (Figure 2).

Hyperparameter Optimization, The hyperparameter l (lambda)

controls the strength of the L1 penalty and was optimized as follows:

Ten-fold cross-validation was performed on the training cohort

(N=893) to select l.The “one standard error (1-SE) rule”was applied to
choose the most parsimonious model within 1 SE of the minimum

mean squared error (MSE). The optimal l value (0.0067) balanced

model complexity and predictive accuracy (Figure 3). This l retained 9
out of 21 features, achieving sparsity without sacrificing discriminative

performance (AUC: 0.696 in training; Table 3). Finally, the features of

AI CT after screening were entered into a support vector machine

(SVM) classifier to establish a model that distinguished between benign

and malignant pGGN (Tables 2, 4, Figure 4). Further multivariate

logistic analyses were carried out in different cohorts.
3.3 Predictive model

The final logistic model included 9 independent predictors

(Age, Location, Minimum_ct_value, standard_deviation, Kurtosis,

Compactness, Energy, Costopleura.distance, and Volume) and

developed as a simple-to-use nomogram (Figure 5). The AUCs of

the model in different cohorts (Figure 6, Table 3).

The calibration plots of the nomogram in different cohorts

demonstrate a good correlation between the observed and predicted

Status (Figure 7). The results showed that the original nomogram was

still valid for use in the validation sets, and the calibration curve of this

model was relatively close to the ideal curve, which indicates that the

predicted results were consistent with the actual findings. A high-risk

threshold probability reflects the likelihood of substantial discrepancies

in the model’s predictions when clinicians encounter significant

challenges while using the nomogram for diagnostic and decision-

making purposes. This study demonstrates that the nomogram

provides notable net benefits for clinical application, as evidenced by

its DCA curve (Figure 8).
3.4 Clinical implications of misclassification

Detailing FP/FN cases and mitigation strategies (Table 5). Training

Cohort (N=893),False Positives (FP): 62 cases (6.9%), Primary Causes:

Benign inflammatory nodules with high radiomic similarity to
frontiersin.org
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TABLE 1 Patient demographics and baseline characteristics.

Characteristic

Cohort

p-value2Training Cohort,
N = 8931

Internal Test Cohort,
N = 3821

External Test Cohort,
N = 2631

Sex 0.559

Female 571 (63.9%) 234 (61.3%) 171 (65.0%)

Male 322 (36.1%) 148 (38.7%) 92 (35.0%)

Age 0.802

Median (IQR) 54 (47, 65) 55 (47, 65) 54 (48, 64)

Location 0.209

LLL 176 (19.7%) 74 (19.4%) 34 (12.9%)

LUL 302 (33.8%) 113 (29.6%) 96 (36.5%)

RLL 93 (10.4%) 43 (11.3%) 28 (10.6%)

RML 53 (5.9%) 32 (8.4%) 19 (7.2%)

RUL 269 (30.1%) 120 (31.4%) 86 (32.7%)

Mean_ct_value 0.093

Median (IQR) -654 (-716, -568) -643 (-711, -565) -639 (-698, -547)

Maximum_ct_value <0.001

Median (IQR) -254 (-423, 31) -220 (-390, -8) -132 (-311, 137)

Minimum_ct_value <0.001

Median (IQR) -922 (-979, -855) -926 (-984, -855) -945 (-1,004, -887)

Median_ct_value 0.148

Median (IQR) -668 (-724, -582) -656 (-718, -565) -654 (-711, -566)

Standard_deviation <0.001

Median (IQR) 124 (97, 159) 127 (101, 159) 138 (112, 173)

Skewness 0.204

Median (IQR) 0.40 (0.20, 0.80) 0.40 (0.20, 0.80) 0.50 (0.20, 0.90)

Kurtosis 0.013

Median (IQR) 0.10 (-0.30, 1.00) 0.20 (-0.30, 0.90) 0.40 (-0.20, 1.30)

Entropy <0.001

Median (IQR) 4.80 (4.10, 5.60) 4.80 (4.10, 5.70) 5.40 (4.75, 6.30)

Compactness 0.017

Median (IQR) 0.59 (0.53, 0.63) 0.59 (0.54, 0.64) 0.57 (0.53, 0.62)

Sphere 0.016

Median (IQR) 0.84 (0.81, 0.86) 0.84 (0.82, 0.86) 0.83 (0.81, 0.85)

Energy×107 <0.001

Median (IQR) 1.50 (0.91, 3.76) 1.51 (0.83, 3.68) 3.10 (1.60, 5.60)

Surface <0.001

Median (IQR) 20 (14, 35) 21 (15, 39) 30 (19, 57)

(Continued)
F
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malignancies (e.g. high Compactness, OR=7.58, p=0.217).Small

nodules (Volume < 30 mm³) misclassified due to partial volume

effects. False Negatives (FN): 33 cases (3.7%) Primary Causes: Early-

stage tumor with low standard_deviation (p=0.007) or atypical

Kurtosis (p=0.093).Subpleural nodules where Costopleura.distance

was overestimated. Sensitivity-Specificity Inverse Relationship: At 0.3

threshold, sensitivity improves (92.5%) but at the cost of higher FP

(41.7%).At 0.7 threshold, specificity rises (89.7%) but misses 35.9% of

true positives. Optimal Threshold Selection: For screening, we

recommend 0.3 threshold (minimize missed cases).For diagnostic

confirmation, 0.7 threshold reduces unnecessary procedures.
4 Discussion

In this study, we developed and validated a nomogram based on

AI-derived quantitative Parameters to differentiate benign lung
TABLE 1 Continued

Characteristic

Cohort

p-value2Training Cohort,
N = 8931

Internal Test Cohort,
N = 3821

External Test Cohort,
N = 2631

Maximum3Ddiameter <0.001

Median (IQR) 6.0 (5.0, 7.0) 6.0 (5.0, 8.0) 7.0 (5.0, 10.0)

Costopleura.distance 0.226

Median (IQR) 9 (5, 14) 9 (5, 15) 8 (5, 14)

Mass <0.001

Median (IQR) 28 (13, 63) 30 (14, 72) 56 (27, 140)

Volume <0.001

Median (IQR) 43 (22, 94) 47 (21, 112) 148 (76, 356)
f

1n (%).
2Pearson’s Chi-squared test; Kruskal-Wallis rank sum test.
TABLE 2 The coefficients of Lasso regression analysis.

variable Coefficient

(Intercept) 2.6715830164

Sex_Male 0.0000000000

Age -0.0329683761

Location_LUL 0.0000000000

Location_RLL 0.0000000000

Location_RML 0.0000000000

Location_RUL 0.4434778774

Mean_ct_value 0.0000000000

Maximum_ct_value 0.0000000000

Minimum_ct_value -0.0004195069

Median_ct_value 0.0000000000

standard_deviation 0.0031438836

Kurtosis -0.0622413126

Skewness 0.0000000000

Entropy 0.0000000000

Compactness 0.4447908252

sphere 0.0000000000

Energy.107 0.0127810360

Surface 0.0000000000

Maximum3Ddiameter 0.0000000000

Costopleura.distance 0.0239581236

Mass 0.0000000000

Volume -0.0005989829
FIGURE 2

LASSO coefficient profiles of the features. Lasso Regression
Coefficient Path Plot (l = 0.0067).
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lesions from early-stage tumors manifesting as pure ground-glass.

The primary predictors incorporated into the nomogram included

age, lesion location, minimum CT value, standard deviation,

kurtosis, compactness, energy, costopleural distance, and volume,

all of which were statistically significant in multivariate logistic

regression analysis. Similarly, Yang et al. (22) developed a risk

prediction model for pGGN invasiveness using meta-analysis-

derived features, further validating the utility of radiomics in this

context. In our study, we based on AI-derived quantitative

Parameters, which rarely reported in the previous literature.

Many literatures have reported that imaging signs of pulmonary

nodule, such as lobulation, spiculation, pleural indentation, vacuole

sign, and vascular convergence, are suggestive for differentiating

malignant lesions (23). However, these signs are less frequently

observed in pGGN, and their density is often faint, making it

challenging to accurately evaluate the benign or malignant nature

of pGGN. Additionally, there is considerable overlap in CT imaging

features between benign and malignant lesions. Conventional two-

dimensional CT feature analysis has certain limitations, including

empirical bias, subjectivity, and insufficient specificity, which

cannot be reasonably quantified or accurately assessed. The AI-

based quantitative parameters included in this study can help

address these limitations.

Our findings are consistent with the existing literature in many

respects (22, 24–26), The inclusion of parameters such as energy

and compactness in our model reflects their importance in
Frontiers in Oncology 07
capturing the heterogeneity and morphological complexity of

pGGNs, which are often associated with malignancy. For

instance, the maximum diameter, regular shape, mean CT value,

and lobulation have been previously identified as significant

predictors in prior research. However, our study uniquely

underscores the importance of quantitative features such as

Minimum_ct_value, standard_deviation, kurtosis, compactness

energy, costopleura distance, and volume, which are acquired
FIGURE 4

Histogram of the coefficients of the selected feature.
TABLE 3 AUC values and 95% confidence intervals for datasets.

Dataset AUC Value
AUC 95%

Confidence Interval

train_cohort 0.696 (0.638-0.754)

validation_cohort 0.627 (0.533-0.722)

external_cohort 0.672 (0.543-0.801)
AUC calculated using the model predictions; confidence intervals are estimated using
DeLong’s method.
TABLE 4 Results of multivariate logistic regression for training cohort.

Characteristic N Event N OR1 95% CI1
P-

value

Age 893 798 0.96 0.94, 0.98 <0.001

Location

LLL 176 148 — —

LUL 302 267 1.50 0.82, 2.73 0.189

RLL 93 84 1.15 0.49, 2.71 0.753

RML 53 48 1.41 0.49, 4.02 0.522

RUL 269 251 2.42 1.24, 4.72 0.010

Minimum_ct_value 893 798 1.00 1.00, 1.00 0.075

standard_deviation 893 798 1.01 1.00, 1.02 0.007

Kurtosis 893 798 0.89 0.78, 1.02 0.093

Compactness 893 798 7.58 0.30,
189.77

0.217

Energy×107 893 798 1.03 1.01, 1.05 0.010

Costopleura.distance 893 798 1.04 1.00, 1.07 0.024

Volume 893 798 1.00 1.00, 1.00 0.001
fro
1OR, Odds Ratio; CI, Confidence Interval.
FIGURE 3

Optimal feature selection of cross-validation. Lasso Regression
Cross-Validation Plot.(l = 0.0067).
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through AI. These features were not emphasized in earlier studies.

This discrepancy may be attributed to AI’s ability to extract more

quantitative information that is difficult for the human eye

to discern.

Asymptomatic pGGN in the lung often persist in clinical practice

and represent the most overlapping benign and malignant

pulmonary nodule. There is currently no consensus on the

management strategy, which often imposes a psychological burden

on patients. Clinical attention should focus on early screening,

accurate diagnosis, and appropriate treatment of malignant nodule,

while also reasonably controlling the frequency of follow-up to avoid
Frontiers in Oncology 08
overdiagnosis and overtreatment (27, 28).There are ongoing

controversies surrounding the management strategy for persistent

pGGN. Currently, clinical diagnosis and treatment strategies are

primarily based on the dynamic changes observed through manual

measurements on routine CT scans, as well as non-quantitative

features assessed visually (6, 29–31). While AI-derived metrics offer

advantages such as reflecting the natural growth of pGGN and

quantitatively capturing subtle changes that are difficult to identify
FIGURE 5

Nomogram of prediction model.
FIGURE 6

ROC curves of the nomogram.
FIGURE 7

Calibration curve of the nomogram prediction mode for the
training cohort.
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with the naked eye during follow-up, they are also helpful for

personalized management.

Our results are consistent with prior research demonstrating the

prognostic value of radiomic features in lung nodule assessment.

For example, our focus on pGGNs aligns with the growing

recognition of their unique clinical behavior, as discussed in

studies by Sun et al. (31) and Yang et al. (22). The moderate

AUC values in our study are comparable to those reported in

similar radiomic models, suggesting that while these tools are

promising, they are not yet definitive and should complement,

not replace, clinical judgment.

In addition, our study visually displays the overall scores of

benign and malignant pGGN patients using a nomogram. This

provides clinicians with a quantitative tool to predict benignity or

early-stage tumors manifesting as pGGN more accurately than

traditional methods, thereby aiding in better risk stratification.

Moreover, the early identification of high-risk individuals through

this nomogram can facilitate timely interventions, potentially

reducing morbidity and mortality.
5 Limitations and future directions

Our study has several limitations that should be acknowledged.

First, the current predictive accuracy of our models (with AUC values

of 0.696, 0.627, and 0.672) leaves room for improvement. These

results align with previous studies that have explored radiomic

features for pGGN characterization (31). Ensemble learning or

deep learning methodologies may could enhance classification

performance. Our next steps will systematically evaluate advanced

ensemble methods (e.g.Stacking or Boosting);Incorporate lightweight
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deep learning architectures (e.g.EfficientNet) to balance performance

and computational cost and optimize model generalizability through

expanded sample sizes. The moderate performance of our model

suggests that while radiomic features provide valuable insights,

further refinement—such as incorporating advanced machine

learning techniques or additional biomarkers—could enhance

predictive accuracy. The cohort consisted exclusively of patients

from China, which may limit its representativeness of the broader

global population. Expanding the sample size through multi-center

studies is a crucial direction for future research, as it will be essential

to validate the generalizability of our findings. The cases included in

this study comprised all cases with pathological results or follow-up

absorption, which introduced a degree of selection bias. Future

studies should adopt a prospective design and include all suspected

cases in advance, regardless of final diagnosis or follow-up, to avoid

retrospective bias. In addition, the number of benign cases was

relatively limited. Furthermore, there may be unmeasured

confounders that were not accounted for in our model.

Furthermore, incorporating novel predictors or biomarkers could

improve the predictive accuracy of the nomogram, highlighting the

need for further investigation.

In summary, our study presents a practical nomogram for

predicting malignancy in pGGNs, leveraging clinical and

radiomic features. While the model demonstrates moderate

performance, its integration into clinical practice could aid in risk

stratification and guide personalized follow-up strategies.
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