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Objective: Mucinous ovarian carcinomas (mOC) often harbor unique molecular

alterations differentiating them from other epithelial ovarian carcinoma subtypes.

We sought to characterize the somatic genomic mutation patterns in mOC and

elucidate their associations with oncologic outcomes.

Methods: All patients with mOC treated at a single institution between 2005–

2023 were identified, and those with validated tumor molecular profiling (TMP)

using next-generation sequencing of somatic variants were included.

Progression-free survival (PFS) and overall survival (OS) were calculated on a

Kaplan-Meier estimator. Multivariable analysis was performed using Cox

regression models.

Results: Forty patients were included in this retrospective cohort; 34 (85%) had at

least 1 genomic alteration on TMP, with a median of 3 mutations (range 0-30).

TP53 (68%) and KRAS (63%) were most frequently altered, and 21 patients (53%)

had tumors with TP53/KRAS co-mutations. Patients with TP53/KRAS co-

mutations were younger (median 27.9 vs 54.1 y, p=0.01) and were more likely

to have early-stage disease (86% vs 47%, p=0.02) than patients without these co-

mutations. On multivariable analysis, TP53/KRAS co-mutations were associated

with decreased PFS (adjusted hazard ratio [aHR] 4.02, 95% confidence interval

[CI] 1.46-12.5, p=0.01) and OS (aHR 21.4, 95% CI 4.28-156, p<0.001). On

subgroup analysis of stage I tumors (N=27), the presence of TP53/KRAS co-

mutations remained independently associated with worse OS (aHR 8.66, 95% CI

1.50-93.8, p=0.03).
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Conclusion: A substantial proportion of mOCs have concurrent TP53 and KRAS

alterations on TMP, and this may portend worse survival, even for patients with

early-stage disease. TMP could be a useful tool for prognostication and can be

considered for patients with mOC at the time of diagnosis.
KEYWORDS
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Introduction

Ovarian cancer is a leading cause of mortality in patients with

gynecologic malignancies and the second most common type of

gynecologic malignancy in the United States (1). Mucinous ovarian

carcinoma (mOC) is a rare subtype of epithelial ovarian carcinoma

that accounts for less than 5% of all ovarian cancer cases (2, 3).

Traditionally, the mainstay of treatment is surgery followed by

chemotherapy for patients with advanced-stage or higher-risk

disease. The 5-year overall survival of patients who present with

early-stage disease usually exceeds 80% but drastically decreases for

those with advanced-stage disease (3). When compared to high-

grade serous ovarian carcinomas, mOC is less responsive to

traditional cytotoxic chemotherapy; additionally, there is a lack of

consensus on the preferred treatment regimen (4).

Due to these challenges and the unique behavior of mOC,

researchers and clinicians have sought to characterize its distinct

molecular profile in the hopes of better understanding its

pathogenesis and identifying possible therapeutic targets. KRAS

and TP53 gene mutations are commonly implicated in many types

of cancer, including epithelial ovarian cancer (5). KRAS is a proto-

oncogene that functions as a key mediator of the RAS signaling

pathway, which drives cell growth and proliferation; specifically,

codon 12 is recognized as a mutational “hotspot” across many

cancer types. TP53 is a tumor suppressor gene commonly mutated

in a variety of cancers; its mutation leads to a variety of genetic

aberrations that can lead to cancer formation and progression. The

most common alterations in TP53 include missense and nonsense

mutations, many of which impair its DNA binding and

transactivation functions (6, 7). In this study, we sought to

characterize the mutational landscape of mOCs from patients

treated at our institution and to examine potential associations of

TP53 and KRAS mutations with patient outcomes.
Methods

Following IRB approval, a retrospective cohort study of all

patients diagnosed with mOC between 2005–2023 at a single

comprehensive cancer center was performed. Study subjects were

identified as part of an institutional internal rare cancers’ registry,
02
and histology was confirmed by central pathology review. Patients

were included if they had tumor molecular profiling (TMP) via

next-generation sequencing (NGS). Patients were excluded if

surgery was not performed at some point during their treatment,

if they had mixed histology or mOC from a separate site, a

synchronous malignancy, or an incomplete medical record

available for review (Supplementary Figure 1.1).

Basic demographic information was extracted from the electronic

medical record. Cancer-specific data were also abstracted, including

stage, grade, surgical records, all TMP and genomic data, as well as

dates of diagnosis, treatment, recurrence, and death. TMP and

genomic data were obtained from either internal or external

sequencing panels, which were ordered either at initial diagnosis or

at the time of recurrence, based on the discretion of the primary

treating oncologist. All pathogenic variants identified through these

panels were recorded (Supplementary Table 1.2). Individual

mutations in TP53 and KRAS were then independently cross-

referenced with ClinVar and the NCI’s TP53 Database to assess and

validate their functional significance. Study data were collected and

managed using REDCap (Research Electronic Data Capture) hosted at

our institution. Staging was based on FIGO 2014 criteria, and all cases

diagnosed prior to 2014 were “re-staged” for the purposes of this

study. Primary outcomes included progression-free survival (PFS) and

overall survival (OS). PFS was defined as the length of time from the

date of diagnosis to the date of disease recurrence, and OS was defined

as the length of time from the date of diagnosis to the date of death.

Patients were censored if they did not experience disease recurrence or

death by the end of data collection (December 31, 2023).

Demographic and clinical characteristics were analyzed and

compared using t-tests and chi-square/Fisher exact tests. Survival

indices were calculated on a Kaplan-Meier estimator using the log-

rank method. Multivariable analyses were performed using Cox

regression models. All statistical analyses were performed using

GraphPad Prism 10.2.1 (Dotmatics; Boston, MA, USA). Statistical

significance was set at p ≤ 0.05.
Results

A total of 40 patients were included in the final cohort

(Supplementary Table 1.1). All patients underwent primary
frontiersin.org
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surgery, and 25 (63%) received adjuvant systemic chemotherapy. At

least 1 genomic alteration was identified on TMP in 34 patients

(85%), with a median of 3 mutations (range 0-30). In total, 148

alterations in 73 different genes were found, with missense

mutations being the most common (55.9%), followed by

amplification (10.5%) and deletion (8.6%) (Figure 1). TP53

(67.5%) and KRAS (62.5%) were the most frequently altered

genes; 21 patients (53%) had tumors with TP53/KRAS co-

mutations. Most KRAS mutations occurred at codon 12, with

G12D (44%) and G12V (32%) being the most prevalent. TP53

mutations were more diverse, with 23 distinct variants identified

(Supplementary Table 1.3).
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Patients with TP53/KRAS co-mutations were younger (median

27.9 vs 54.1 y, p=0.01) and were more likely to have stage I disease

(86% vs 47%, p=0.02) than patients without TP53/KRAS co-

mutations (Table 1A). There were no differences in body mass

index (BMI), tumor grade, or chemotherapy administration

between the 2 groups. Samples collected from recurrent tumors

demonstrated more TP53/KRAS co-mutations than did primary

tumor samples (62% vs 38%), but this difference was not significant

(p=0.07). On subgroup analysis of patients with stage I disease,

there were no differences in age at diagnosis, BMI, tumor grade,

chemotherapy administration, or TMP timing (Table 1B). There

were also no differences in the proportion of patients with stage IA
FIGURE 1

Oncoplot of mOC patients with alterations (N=34) identified on NGS. Six patients without any identifiable mutations are not included. TP53 (N=27)
and KRAS (N=25) were the most frequently identified genes with alterations. Missense mutations were the most common detected type (56.4%),
followed by amplifications (10.7%) and deletions (9.4%).
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or IC disease at diagnosis (p>0.9). In this analysis, stage IC included

IC1 (N=8), IC2 (N=1), and IC3 (N=7); there were no patients with

stage IB disease at diagnosis. In the overall cohort, patients with

TP53/KRAS co-mutations and those without did not have

significantly different median PFS (18.9 vs 19.8 months, p=0.6) or

OS (46.5 vs 54.0 months, p=0.3); however, among patients with

stage I disease, those with TP53/KRAS co-mutated tumors had

significantly shorter median OS compared to those without the co-

mutation (47.9 months vs median not met, p=0.02) (Figure 2). No

significant differences in survival curves were observed when

stratifying by individual mutations in either KRAS or TP53 alone

(Supplementary Figures 1.2 & 1.3).

Clinically relevant variables were selected as potential

confounders. After adjusting for stage and age, as well as grade,

chemotherapy, and timing of TMP collection, multivariable

analyses demonstrated that the presence of TP53/KRAS co-

mutations was associated with both lower PFS (aHR 4.02, 95% CI

1.46-12.5, p=0.01) and OS (aHR 21.4, 95% CI 4.28-156, p<0.001)

(Table 2A). Other independent associations found were tumor

grade with worse OS (adjusted hazard ratio [aHR] 2.19, 95%CI

1.10-4.29, p=0.02), and stage with both worse PFS (aHR 7.42, 95%

CI 2.55-23.1, p<0.001) and OS (aHR 11.6, 95% CI 3.12-50.0,

p<0.001). On subgroup analysis of stage I tumors (N=27), the

presence of TP53/KRAS co-mutations remained independently
Frontiers in Oncology 04
associated with worse OS (aHR 8.66, 95% CI 1.50-93.8, p=0.03)

(Table 2B). High-grade disease was also independently associated

with worse OS (aHR 2.53, 95% CI 1.02-6.74, p=0.05). Substage

(stage IA vs IC) was not associated with changes in either PFS

or OS.
Discussion

For early-stage mOC, comprehensive surgery can be curative

without the need for adjuvant treatment, with reported 5-year

survival rates of 86-90% (8, 9). For patients with advanced-stage

or recurrent disease, however, there is a paucity of evidence to guide

treatment owing to the rarity of this tumor. There is also no clear

consensus on how to appropriately risk-stratify patients with early

stage mOC for the need for adjuvant chemotherapy. Current

guidelines are extrapolated from historical trials dominated by

other histological subtypes of high-grade epithelial carcinomas

(10). There is growing evidence that, much like low-grade serous

ovarian cancer, mucinous tumors represent a separate and distinct

entity from other epithelial ovarian malignancies with respect to

their pattern of invasion, recurrence, and response to therapy

(11, 12).
TABLE 1B Stage I cohort.

TP53wt or
KRASwt (n=9)

KRAS- & TP53-
altered (n=18)

p-
value

Age, median, y 38.2 36.4 0.4

BMI, median,
kg/m2

26.4 25.4 0.2

Stage >0.9

IA 4 (44) 7 (39)

IC 5 (56) 11 (61)

Grade 0.1

1 5 (56) 3 (17)

2 3 (33) 12 (67)

3 1 (11) 3 (17)

Timing of TMP 0.7

Primary 5 (56) 8 (44)

Recurrence 4 (44) 10 (56)

Adjuvant
chemotherapy

4 (44) 8 (44) >0.9

PFS,
median,
months

48.0 19.6 0.2

OS,
median,
months

Not met 47.9 0.002
front
Data are shown as no. of patients (%) unless otherwise indicated. Statistical significance was
determined using Student t-tests and Fisher exact tests. Statistically significant values are
bolded. BMI = body mass index; mOC = mucinous ovarian cancer; PFS = progression free
survival; OS = overall survival; TMP = tumor molecular profiling.
Statistically significant values are bolded.
TABLE 1A Comparison of demographic and clinical characteristics
between patients with and without KRAS/TP53 co-mutations.

TP53wt or
KRASwt (n=19)

KRAS- & TP53-
altered (n=21)

p-
value

Age, median, y 54.1 27.9 0.01

BMI, median,
kg/m2

27.0 25.4 0.3

Stage 0.02

I 9 (47) 18 (86)

II/III/IV 10 (53) 3 (14)

Grade 0.5

1 7 (37) 5 (24)

2 8 (42) 13 (62)

3 4 (21) 3 (14)

Timing of TMP 0.07

Primary 13 (68) 8 (38)

Recurrence 6 (32) 13 (62)

Adjuvant
chemotherapy

14 (74) 11 (52) 0.2

PFS,
median,
months

19.8 18.9 0.6

OS,
median,
months

54.0 46.5 0.3
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At present, the extent of disease warranting adjuvant treatment

for stage I mOC is up for debate, with some groups advocating more

aggressive treatment starting with stage IB rather than stage IC

disease (13, 14). There is less dispute about the management of stage

IA disease with surgery alone, though some recent evidence suggests

that consideration of adjuvant treatment for patients with

infiltrative subtypes may be reasonable given the potentially

higher risk of recurrence (15–17). Retrospective cohorts have

shown that patients with infiltrative stage I disease demonstrate

increased rates of recurrence when compared to those with

expansile histology, especially after fertility-sparing surgery, and

that survival outcomes were comparable to patients with stage I

high grade serous carcinomas (18, 19).

Furthermore, the choice of specific adjuvant therapies remains

unsettled. Following the early closure of GOG241 due to poor

accrual, some retrospective data have suggested the use of a

gastrointestinal-based regimen of oxaliplatin, capecitabine, and 5-

fluorouracil over the traditional ovarian cancer-based carboplatin

and paclitaxel regimen, but clear survival benefit has not been

consistently demonstrated (20–22).

Our data suggest that tumor mutational status could be an

important step in risk stratification, as patients with TP53/KRAS co-

mutations had significantly shorter OS than did patients without

co-mutations, particularly among those with stage I disease at
Frontiers in Oncology 05
diagnosis. Given that both stage I subgroups had otherwise

similar clinical and demographic features, it is possible that the

distinct genetic profiles could be driving their disparate outcomes.

These results may warrant consideration of collecting TMP for

patients with mOC.

In addition to determining who needs adjuvant treatment, there

is also a need for targeted treatment options more suited to the

distinct molecular profile of mOC. As TMP becomes more widely

implemented in oncology, specific actionable genetic targets have

been identified. In KRAS-altered carcinomas and adenocarcinomas,

codon 12 is the most frequently mutated, and the G12D mutation is

generally the most prevalent (23). Its favorable structural

conformation and downstream targeting has been shown to

create protein expression profiles distinct from other KRAS

mutations, contributing to its high oncogenic potential as well as

unique clinical outcomes (24). In our cohort, the G12D mutation

was present in most of the KRAS-altered tumors, consistent with its

reported prevalence in other KRAS-altered cancer types. In contrast,

TP53 mutations exhibit a much wider heterogeneity in mOC,

making therapeutic targeting more challenging in this population

(Supplementary Table 1.3).

Recent breakthroughs in targeting the RAS oncogene began

with KRAS-G12C inhibition, which has shown some promise in

phase I/II clinical trials for metastatic lung, pancreatic, and
FIGURE 2

Progression-free survival (PFS) and overall survival (OS) curves for the entire study cohort (N=40) and the stage I subgroup (N=27). Survival analyses
were calculated on a Kaplan-Meier estimator using the log-rank method. Y-axis (probability of survival) is quantified by percentages. X-axis (PFS or
OS) is quantified by number in months. mOC, mucinous ovarian cancer.
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colorectal carcinomas (25–28). Small molecules with anti-KRAS-

G12D activity have shown remarkable response in preclinical

models, and several first-in-human trials are currently in

recruitment, with clinical data anticipated as early as this year

(NCT05533463, NCT05737706, NCT06040541, NCT05382559)

(29–34). It is important to note that though these trials are open

to patients with all solid tumors with the KRAS-G12D mutation,

their supporting preclinical data rarely include gynecologic cancer

models. As underscored by our cohort, a substantial proportion of

mOCs harbor KRAS mutations. The negative associations of KRAS

mutations with recurrence and survival are not limited to mOC and

are evident in other subtypes of epithelial ovarian cancers as well

(35, 36). Additionally, somatic mutational analysis comparing mOC

with mucinous carcinomas of other primary origins showed

significant parallels between mOC and pancreatic carcinomas,

especially with respect to specific KRAS and TP53 mutations (37).

This may represent a potential alternative or subsequent therapy to

traditional chemotherapy for patients with mOC, especially in the

contemporary era of increasing approvals for mutation-driven,

tumor-agnostic treatment options (38–40).

This study is limited by its retrospective and single-institutional

nature. Though this work represents one of the largest single

institutional retrospective cohorts reported for mOC, statistical

associations should be carefully interpreted in the context of the

relatively small sample size and limited power, especially evident in

some of the wide confidence intervals in this analysis. Furthermore,

the 18-year duration of the study coincided with significant advances

in sequencing technology, including improvements in accessibility,

sensitivity, and throughput, both within our institution and across

commercial platforms. However, specific details regarding the

evolution of “generations” of testing used by external companies

are not publicly available (Supplementary Table 1.2). Although the

availability of molecular profiling was clearly beneficial for patient

care, the use of heterogeneous sequencing platforms introduces the

potential for unrecognized confounding variables, particularly in a

retrospective study where testing methodologies varied over time.

In this cohort, the histologic distinction between infiltrative and

expansile patterns was only available for a small portion of our patients,

and thus not included in the analysis; recent retrospective survival data

suggest that this classification may be a major confounding variable

and should remain an active area of focus in future studies.
TABLE 2 Multivariable analyses of independent associations of clinical
factors and KRAS/TP53 mutation status with survival.

TABLE 2A Full study cohort (N=40).

PFS OS

aHR 95%
CI

p-
value

aHR 95%
CI

p-
value

Age
at diagnosis

1.02 0.99-
1.04

0.1 1.02 0.99-
1.06

0.2

Stage 7.42 2.55-
23.1

<0.001 11.6 3.12-
50.0

<0.001

Grade 1.58 0.90-
2.71

0.1 2.19 1.10-
4.29

0.02

Chemotherapy 0.40 0.14-
1.06

0.07 0.63 0.18-
2.12

0.5

TMP Timing 1.18 0.55-
2.53

0.7 1.05 0.39-
2.85

0.9

Mutations

# Detected 0.95 0.87-
1.01

0.1 0.94 0.80-
1.03

0.3

KRAS 1.37 0.62-
3.29

0.5 2.29 0.82-
7.68

0.8

TP53 3.66 1.33-
11.2

0.02 7.95 2.06-
37.9

0.005

KRAS
& TP53

4.02 1.46-
12.5

0.01 21.4 4.28-
156

<0.001
TABLE 2B Stage I cohort (n=27).

PFS OS

aHR 95%
CI

p-
value

aHR 95%
CI

p-
value

Age
at diagnosis

1.03 0.99-
1.06

0.1 1.02 0.97-
1.06

0.5

Substage 1.21 0.49-
3.05

0.7 2.24 0.67-
8.52

0.2

Grade 1.48 0.71-
3.13

0.3 2.53 1.02-
6.74

0.05

Chemotherapy 0.74 0.25-
2.11

0.6 0.48 0.10-
2.21

0.3

TMP Timing 1.26 0.46-
3.51

0.7 1.19 0.29-
5.50

0.8

Mutations

# Detected 1.41 0.93-
2.21

0.1 1.45 0.90-
2.56

0.2

KRAS 0.77 0.26-
2.48

0.6 1.69 0.36-
12.8

0.5

TP53 1.21 0.34-
5.06

0.8 13.0 1.45-
334

0.05

(Continued)
TABLE 2B Continued

PFS OS

aHR 95%
CI

p-
value

aHR 95%
CI

p-
value

KRAS
& TP53

1.06 0.34-
3.61

0.9 8.66 1.50-
93.8

0.03
front
Cox regression analyses were used to control for age at diagnosis, stage, grade, receipt of
chemotherapy, and timing of TMP, and the Bonferroni adjustment was used to correct for
multiple comparisons. Statistically significant values are bolded. aHR = adjusted hazard ratio;
CI = confidence interval; PFS = progression free survival; OS = overall survival; TMP = tumor
molecular profiling.
Statistically significant values are bolded.
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While our findings demonstrated a survival difference, the

current data are not of sufficient quality to support changes in the

treatment paradigm for patients with early-stage mOC.We hope that

our genomic data contribute meaningfully to the existing literature

and may assist clinicians in risk-stratification when counseling

patients who have undergone tumor molecular profiling. However,

we emphasize that the evidence remains insufficient to justify

treatment decisions based solely on mutational status. Larger-scale

prospective studies are needed to validate these associations, though

their feasibility is limited by the rarity of this disease. Ongoing and

future tumor-agnostic biomarker-driven trials offer more immediate

clinical relevance for the mOC treatment landscape.

The broader implementation of TMP for patients with mOC is

not without significant challenges. Despite substantial advances in

sequencing technology and gradual improvements in accessibility

and insurance coverage over the past two decades, molecular

profiling remains underutilized, especially outside of major

academic centers. In the United States, many initial surgeries are

performed by general gynecologists for presumed benign masses, and

patients are referred to oncologists only after cancer is found on final

pathology. For patients whose original tissue blocks are not available

for testing, circulating tumor DNA (ctDNA) could serve as a proxy

for any minimal residual disease left after primary surgery. CtDNA-

based genomic sequencing has shown potential for predicting

recurrence and guiding adjuvant therapy decisions in several solid

tumors, including breast, colorectal, and lung cancers (41). Moreover,

multiple studies have demonstrated that ctDNA is a viable marker for

identifying specific mutations, estimating disease burden at diagnosis,

and monitoring treatment response in epithelial ovarian cancer (42–

44). Although further validation is needed, ctDNA remains a

promising adjunct—and in some cases, a potential alternative—to

traditional TMP in mOC and other gynecologic malignancies.

Our study underscores the importance of molecular profiling in

mOCs, especially in patients with early-stage disease. We propose

that universal TMP should be considered for all cases of mOC—

when available and financially accessible—given its potential

prognostic value and possibility of informing future shifts in

treatment strategies. While large-scale, prospective trials in mOC

will continue to pose logistical challenges due to the rarity of the

disease, they may become feasible through coordinated multi-

institutional collaboration.
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