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Background: Crotonylation, an emerging epigenetic modification, has been

implicated in various biological processes, including tumor progression.

However, its role in glioma remains poorly understood. This study aims to

investigate the prognostic and therapeutic implications of crotonylation-

associated genes in glioma.

Methods: Crotonylation levels were assessed by IHC in glioma tissues of varying

grades. Key crotonylation-associated genes were identified and analyzed across

five glioma datasets. A prognostic risk score was developed using machine

learning algorithms and validated in multiple cohorts. Genomic alterations,

immune landscapes, and therapeutic responses were examined in relation to

the risk score. Single-cell dataset GSE131928 was analyzed to explore the

relationship between the risk score and immune cell infiltration. After

crotonate treatment of T98G cells, ChIP-seq and qPCR were performed to

investigate the effect of crotonylation on gene expression. Finally, PD-1 and

GZMB expression levels were assessed in glioma tissues with varying

crotonylation levels.

Results: Crotonylation levels were negatively correlated with glioma grade.

Crotonylation-related genes stratified patients into two subtypes with distinct

overall survival outcomes. High-risk patients exhibited increased somatic

mutations, specific copy number variations, and an immunosuppressive tumor

microenvironment. The risk score correlated positively with TIDE scores,

indicating resistance to immune checkpoint blockade therapy. Single-cell

analysis revealed a positive association between the risk score and TAM

infiltration. Candidate therapeutic agents tailored for high- and low-risk groups

were identified. ChIP-seq and qPCR demonstrated that reduced crotonylation

suppressed CXCL1 expression and promoted GZMB expression in the

glioma microenvironment.
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Conclusion: Crotonylation-associated genes play a pivotal role in glioma

progression and prognosis. The risk score provides a robust tool for patient

stratification and treatment guidance, underscoring the importance of

crotonylation in glioma biology and its potential as a therapeutic target.
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Introduction

Gliomas, the most common and aggressive primary brain tumors,

are characterized by remarkable heterogeneity in their genetic,

epigenetic, and immune profiles, posing significant challenges for

effective treatment and prognosis (1–3). Among gliomas, glioblastoma

(GBM) is the most malignant subtype and remains refractory to

current therapeutic modalities (4). The standard treatment, known as

the Stupp protocol, combines maximal surgical resection with

radiotherapy and concurrent temozolomide (TMZ) chemotherapy

(5). Despite these interventions, the prognosis for GBM patients

remains dismal, with a median survival of approximately 14–18

months and a high likelihood of recurrence (6). The advent of

immunotherapy, which has revolutionized the treatment landscape

for cancers such as melanoma and lung cancer (7, 8), has also sparked

interest in developing immune-based strategies for glioma. However,

challenges such as the immunosuppressive tumor microenvironment

and low immunogenicity of gliomas necessitate further exploration of

novel biomarkers and therapeutic approaches to improve patient

outcomes (9, 10).

Recent studies have uncovered crotonylation, a novel post-

translational modification, as a crucial regulatory mechanism in

cancer biology (11, 12). This dynamic acylation modification occurs

on lysine residues of histones and non-histone proteins, influencing

chromatin structure and transcriptional activity (13). Unlike

acetylation, crotonylation is associated with transcriptionally active

chromatin and is tightly linked to cellular metabolism, particularly the

production of Crotonyl-CoA, a key substrate for this modification

(14). Crotonylation has been implicated in diverse cellular processes,

including DNA repair, cell proliferation, and immune responses,

suggesting its potential role in oncogenesis (15, 16). In glioma, while

other epigenetic modifications like methylation and acetylation have

been extensively studied, the specific contribution of crotonylation to

tumor progression, immune regulation, and therapy resistance

remains underexplored. Understanding the role of crotonylation-

associated genes and their regulatory networks in glioma may

uncover novel biomarkers and therapeutic targets, offering new

avenues for treatment (17, 18).

We systematically evaluated crotonylation-associated genes in

gliomas, focusing on their prognostic and therapeutic significance.

By analyzing multi-omics datasets from large glioma cohorts, we

constructed a prognostic risk score based on crotonylation-related
02
genes and assessed its relationship with genomic alterations, the

immune microenvironment, and therapeutic response. This work

highlights the potential of crotonylation-associated genes as

biomarkers for glioma stratification and treatment, providing a

foundation for future epigenetic studies in gliomas.
Result

Identification and prognostic impact of
crotonylation-associated gene clusters in
glioma

We first examined the levels of crotonylation modification in

human glioma samples of varying grades (D79717: grade 2; D88307:

grade 3; E22087: grade 4). The results revealed a progressive decline

in overall crotonylation levels with increasing glioma grade

(Figure 1A). To identify genes associated with crotonylation, we

focused on enzymes involved in the production of Crotonyl-CoA and

those catalyzing histone and non-histone crotonylation

modifications. Key genes identified “included” GCDH and ECHS1,

both of which play crucial roles in lysine metabolism. Specifically,

GCDH catalyzes the conversion of glutaryl-CoA to Crotonyl-CoA,

while ECHS1 facilitates the hydration of Crotonyl-CoA to produce 3-

hydroxybutyryl-CoA (19–21). Additionally,ACSS2,ACADS, ACOX1,

and ACOX3 are essential in short-chain fatty acid metabolism, where

ACSS2 catalyzes the formation of Crotonyl-CoA from crotonate, and

ACADS, ACOX1, and ACOX3 catalyze the conversion of butyryl-

CoA to Crotonyl-CoA (19, 22, 23). Reported crotonylation “writers”

include EP300, CREBBP, KAT8, and KAT2B, while “erasers” include

HDAC1, HDAC2, HDAC3, SIRT1, SIRT2, and SIRT3. Recognized

“readers” of crotonylation modifications include DPF2, MLLT3, and

YEATS2 (11, 12, 24–32) (Supplementary Table S1).

To assess the impact of these genes on glioma patient outcomes,

we analyzed five glioma datasets: TCGA (GBM + LGG), CGGA1,

CGGA2, GSE42669, and GSE7696. Batch effects were minimized

across these datasets using the “ComBat” function in the “sva” R

package, resulting in reduced inter-dataset variability, thus enabling

cohesive analysis (Figures 1B, C). To further explore the regulatory

role of crotonylation-related genes in relation to glioma patient

survival, we applied the ConsensusClusterPlus package in R.

Unsupervised clustering revealed several distinct clusters, all with
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FIGURE 1

Consensus clustering of crotonylation profiles in glioma. (A) IHC staining of Kcr in glioma samples with different grades (G2, G3, G4): D79717,
D88307, and E22087. (B) PCA of raw expression profiles for the combined dataset. (C) PCA after COMBAT adjustment for combined expression
profiles. (D) Unsupervised clustering of 20 crotonylation-related genes reveals two distinct clusters with patient annotations including cohort source,
survival status, gender, and age. (E) PCA indicating two distinct clusters within the combined cohorts. (F) Kaplan-Meier analysis estimating overall
survival differences between Cluster-A and Cluster-B.
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comprehensive survival data. Importantly, two independent clusters,

labeled A and B, were identified based on a consensus matrix with

k = 2 (Supplementary Figure S1; Figure 1D). Principal component

analysis (PCA) indicated a significant distinction between these

two clusters (Figure 1E). Survival analysis demonstrated that

patients in cluster B were associated with significantly improved

prognosis across TCGA (log-rank test, P < 0.001), CGGA1

(log-rank test, P = 0.041), CGGA2 (log-rank test, P < 0.001),

GSE7696 (log-rank test, P = 84), GSE42669 (log-rank test,

P = 0.011) and the combined cohort (log-rank test, P < 0.001)

(Figure 1E; Supplementary Figure S2).
Construction of the risk score in glioma

To quantify the relationship between crotonylation-related genes

and glioma patient survival, we developed a risk score system tailored to

glioma patients. crotonylation-associated genes were incorporated into
Frontiers in Oncology 04
this system using a variety of machine learning algorithm combinations.

Following the approach previously reported (33), we integrated 10

machine learning algorithms—including CoxBoost, Stepwise

Cox, Ridge, RSF, GBM, Survival-SVM, Lasso, Enet, plsRcox, and

SuperPC—to achieve a risk score with high accuracy and stability

across different cohorts. In the TCGA-glioma cohort, over 100

predictive models were constructed, and the average C-index of each

model was calculated across four independent validation cohorts

(Supplementary Figure S3). Among these models, the combination of

RSF and StepCox algorithms demonstrated the highest average C-index

in the validation cohorts. Genes such as SIRT,MLLT3, CREBBP, EP300,

KAT2B, GCDH, SIRT2, YEATS2, DPF2, SIRT3, KAT8, ECHS1, and

ACOX1 were negatively correlated with the risk score, while others

exhibited positive correlations (Figure 2A).

The C-index of the risk score was also assessed across individual

cohorts, where it showed strong predictive performance (Figure 2B).

Univariate Cox regression analyses confirmed the risk score as an

independent prognostic biomarker for overall survival in glioma
FIGURE 2

Construction of the risk score in glioma. (A) Heatmap showcasing the expression levels of 20 crotonylation-related genes alongside their associated
risk scores in combined glioma cohorts. A bar chart to the left displays the correlations between these genes and the risk score. (B) Concordance
index evaluating the predictive accuracy of the risk score across various cohorts. (C) Univariate Cox regression analyses depicting the association
between the risk score and survival across different cohorts. (D) Time-dependent Area Under the Curve for the risk score across different cohorts.
(E) Kaplan-Meier survival analysis comparing overall survival rates between low- and high-risk groups in a combined-cohort.
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patients (Figure 2C). Furthermore, the time-dependent area under the

curve (AUC) values underscored the risk score’s utility as a prognostic

indicator in the TCGA, CGGA, and GEO datasets (Figure 2D). Based

on the median risk score across combined cohorts, glioma patients

were categorized into high- and low-risk groups. Kaplan–Meier

survival analysis revealed significantly poorer overall survival for

patients in the high-risk group across all cohorts (Figure 2E;

Supplementary Figure S4). Collectively, these findings indicate that
Frontiers in Oncology 05
the risk score is both stable and robust across diverse independent

cohorts, making it a valuable tool for glioma prognosis.
Genomic status of different risk groups

To characterize the genomic landscape of different risk groups

within the TCGA-glioma dataset, we first examined the frequency
FIGURE 3

Genomic states of different risk groups in glioma. (A-C) Boxplots illustrating comparisons of total mutation counts (A), synonymous mutation counts
(B), and non-synonymous mutation counts (C) between low- and high-risk groups within the TCGA-glioma cohort. (D-F) Analysis of the correlation
between risk scores (log transformed) and mutation counts for total mutations (D), synonymous mutations (E), and non-synonymous mutations
(F) in the TCGA-glioma cohort. (G) Overview of copy number variations, showing gains and losses in groups categorized by low and high risk.
(H) Boxplots detailing the differences in neoantigen counts between low- and high-risk groups in the TCGA-glioma cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1573997
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yin et al. 10.3389/fonc.2025.1573997
of somatic mutations. A positive correlation was identified between

the risk score and somatic mutation count, indicating that the high-

risk group exhibited a higher frequency of somatic mutations,

encompassing both synonymous and non-synonymous types

(Figures 3A–F). To further explore the relationship between

genomic alterations and risk score, we analyzed copy number

variations (CNVs) across different risk groups. In the high-risk

group, genes on chromosomes 7 and 12 showed a tendency toward

amplification, while genes on chromosomes 1, 8, and 13 were more

prone to deletion (Figure 3G). Genomic instability in gliomas drives

somatic mutations and chromosomal copy number variations

(CNVs), both of which shape tumor evolution and therapeutic

responses. In high-risk gliomas, recurrent CNVs—such as

chromosome 7/12 amplifications (EGFR, CDK4/MDM2) and

chromosome 1/8/13 deletions (CHD5, DLC1, RB1)—play pivotal

roles in promoting proliferation, immune evasion, and DNA repair

defects. For instance, EGFR amplifications activate PI3K/AKT

signaling to fuel tumor growth (3), while CDK4 gains bypass cell

cycle checkpoints, and RB1 losses impair homologous

recombination repair (3, 34, 35). These CNVs synergize with

somatic mutations to amplify neoantigen burden, paradoxically

creating immunogenic tumors that remain therapy-resistant due to

compensatory immunosuppressive mechanisms.

Neoantigens are critical determinants of tumor immunogenicity.

In this study, we utilized a neoantigen gene set, defined by mutations

capable of generating neoepitopes, to investigate immune response

characteristics in glioma. As hypothesized, the high-risk group

displayed a significantly higher neoantigen count compared to the

low-risk group (Figure 3H). These findings indicate that an elevated

risk score is linked to an increased mutation burden in glioma tumor

cells, potentially contributing to a greater neoantigen load.
Distinct tumor microenvironment
characteristics in high- and low-risk glioma
groups

To characterize the biological features of tumors under the risk

classification system, Gene Set Enrichment Analysis was conducted

to determine pathways that were associated with differentially

expressed genes in high- and low-risk groups. Initially, differential

gene expression analysis between the high- and low-risk groups was

performed using three R packages: DESeq2, edgeR, and limma

(Supplementary Figure S5). The results from each package were

then analyzed separately to identify the top 10 enriched pathways

for each group. In the low-risk group, pathways such as adrenergic

signaling in cardiomyocytes, aldosterone synthesis and secretion,

cardiac muscle contraction, cortisol synthesis and secretion, long-

term depression, and nicotine addiction were predominantly

enriched. In contrast, the high-risk group showed enrichment of

pathways associated with IL-17 signaling, inflammatory bowel

disease, intestinal immune network for IgA production, and viral

protein interaction with cytokine and cytokine receptors

(Figures 4A, B; Supplementary Figure S6).
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To further investigate the cancer-related pathways underlying

these groups, a heatmap was generated using hallmark gene sets

from the msigdbr R package, revealing significant expression

differences between high- and low-risk groups (Figure 4C). In the

high-risk group, pathways related to immune and inflammatory

responses—such as interferon-gamma response, IL6-JAK-STAT3

signaling, IL2-STAT5 signaling, inflammatory response, and TNF-

alpha signaling via NF-kB—were markedly upregulated. In

contrast, genes associated with pancreatic beta-cell function,

hedgehog signaling, and KRAS signaling were highly expressed in

the low-risk group. The methylation status of the MGMT (O6-

methylguanine-DNA methyltransferase) promoter is a crucial

biomarker in gliomas, particularly in predicting the response to

temozolomide (TMZ) chemotherapy. Methylation silences MGMT

expression, thereby impairing its ability to repair DNA damage

induced by TMZ, leading to better therapeutic outcomes (36, 37).

IDH (isocitrate dehydrogenase) mutations, predominantly IDH1

and IDH2, are another critical molecular hallmark, commonly

associated with lower-grade gliomas and better prognoses. IDH

mutations result in the production of oncometabolites that alter

cellular metabolism and epigenetic states, including histone and

DNA modifications (38, 39). We observed that patients in the low-

risk group were more likely to have a methylated MGMT promoter,

while patients in the high-risk group were more frequently

characterized by IDH mutations. Moreover, glioblastoma patients,

representing high-grade gliomas, were almost exclusively classified

into the high-risk group. These findings suggest that the risk scoring

system effectively differentiates distinct tumor microenvironments

in glioma, highlighting the unique biological characteristics

associated with each risk group.
Immune landscape of different risk groups
in glioma

From the preceding analysis, we observed that the high-risk

group exhibited a greater number of neoantigens and significant

enrichment in immune response-related pathways. To further

characterize the immune status within different risk groups, we

employed four distinct methods—ESTIMATE, CIBERSORT,

xCELL, and MCPcounter—to evaluate immune cell infiltration.

Using the ESTIMATE algorithm, we found that the high-risk group

had significantly higher stromal, immune, and ESTIMATE scores

compared to the low-risk group (Figures 5A–C). Overall, gliomas

exhibited limited infiltration of lymphocytes such as CD8+ T cells,

CD4+ T cells, and B cells, as well as antigen-presenting cells like

dendritic cells, consistent with the generally immunosuppressive

nature of gliomas. Comparing the high- and low-risk groups, the

high-risk group demonstrated increased infiltration of relatively

immunosuppressive cell types, including macrophages (M0, M1,

and M2 types), Th2 cells, fibroblasts, monocytes, and neutrophils.

Conversely, the low-risk group showed a higher infiltration of NK

cells (Figure 5D), reflecting distinct immune microenvironments

between the two groups.
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Given that the risk score was constructed based on crotonylation-

associated genes, we further explored the connection between

crotonylation and immune-related regulation. Crotonylation, like

DNA methylation, acts as an epigenetic regulatory mechanism,

with both often working in concert to influence gene expression.

Although DNA methylation and histone crotonylation operate on
Frontiers in Oncology 07
different molecular substrates (DNA versus histones), they are closely

interlinked in gene regulation. DNA methylation typically recruits

methyl-binding proteins (such as MeCP2) that subsequently recruit

HDACs, leading to the removal of histone crotonylation. Since

histone crotonylation is associated with an open chromatin

structure, its removal results in tighter chromatin conformation,
FIGURE 4

Identification of two distinct patterns in high-risk and low-risk sample groups. (A) GSEA analysis showing pathway enrichment of differentially
expressed genes analyzed by the limma package in the low-risk group. (B) GSEA analysis showing pathway enrichment of differentially expressed
genes analyzed by the limma package in the high-risk group. (C) Analysis of hallmark gene sets in both low- and high-risk groups.
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FIGURE 5

Immune landscape of different risk groups in glioma. (A-C) The correlation between the risk score and stromal score (A), immune score (B), and
ESTIMATE score (C). (D) Heatmap showing the infiltration of immune cells between low- and high-risk groups in the TCGA-glioma cohort.
(E) Regulation of Immunomodulators, illustrating from left to right: mRNA expression, expression versus methylation, amplification frequency, and
deletion frequency (represented as amplifications) for 75 immunomodulatory genes by immune subtype. The colored blocks above, ranging from
red, yellow, green, cyan, to blue from left to right, represent the division of the risk score into five equally spaced groups, ordered from smallest to
largest. (F) Assessment of the risk score correlation with pathways related to anti-tumor immune response steps in TCGA glioma. (G) Correlations
between the expression of risk score and immune checkpoint markers at mRNA levels.
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further repressing gene expression (40, 41). To investigate the role of

immune-related molecules, we analyzed co-inhibitors, co-

stimulators, ligands, receptors, cell adhesion molecules, and antigen

presentation factors in glioma. We divided the TCGA-glioma

samples into five groups based on their risk scores. Most of these

molecules, except for HLA, exhibited relatively low expression levels

in glioma. To account for this low expression potentially obscuring

their intrinsic trends, we also examined their methylation levels and

mutation status, finding that alterations in methylation and

mutations were amplified to varying degrees (Figure 5E). In

particular, IL-13, C10orf54, ENTPD1, TNFSF4, and HLA-DR

showed significant correlations with the risk score. Further

correlation analysis of expression levels with the risk score revealed

a positive association for TNFSF4, HLA-DRA, and ENTPD1

(Supplementary Figure S7). Additionally, we observed that the risk

score negatively correlated with key processes such as T-cell priming

and activation, recognition of cancer cells by T cells, and killing of

cancer cells (Figure 5F). However, it positively correlated with

immune checkpoint molecules (Figure 5G), suggesting a distinct

immune profile linked to the risk score in glioma.
Predictive value of the risk score in
immunotherapy and chemotherapy

To predict immune checkpoint blockade (ICB) response, the

TIDE score, a widely recognized predictor, is commonly used to

evaluate immune response. The risk score was positively correlated

with TIDE and exclusion, while negatively correlated with

dysfunction and microsatellite instability (MSI Expr sig)

(Supplementary Figure S8A). To understand the impact of the

risk score on the clinical efficacy of glioma treatments, we analyzed

correlations between the risk score and the IC50 of candidate drugs

in the Genomics of Drug Sensitivity in Cancer (GDSC) database

(Supplementary Figure S8B). Over 50 candidate drugs (|Rs| > 0.5)

were identified, most of which exhibited a positive correlation

between IC50 and the risk score. These drugs targeted IGF-1R

inhibitors, CDK4 and CDK6 inhibitors, EGFR-TK inhibitors, and

other AMPK inhibitors. Additionally, six drugs exhibited a negative

correlation between IC50 and the risk score, including mTOR

inhibitors, Lck inhibitors, and Src/Abl inhibitors (Supplementary

Figures S8C, D).

In summary, these findings suggest that the risk score plays a

crucial role in mediating immune response and is associated with

drug sensitivity. Thus, the risk score could serve as a potential

biomarker for establishing appropriate treatment strategies.
Exploring the role of CXCL1 and tumor-
associated macrophages

To achieve a higher resolution in detecting the relationship

between risk scores and immune cell infiltration, we conducted a
Frontiers in Oncology 09
series of analyses on the single-cell dataset GSE131928, which

includes data from nine glioma patients. First, we clustered the

cells based on malignancy, categorizing them into malignant cells,

immune cells, and other cells (Figure 6A). Then, using SingleR, we

further subdivided the non-malignant cell populations and

compared the immune cell subgroup distributions across the nine

patients, with cluster identities validated by canonical marker genes

(Supplementary Figure S9). We found that Tumor-Associated

Macrophages (TAMs) constituted a relatively large proportion of

the cell populations (Figure 6B). After calculating the risk scores for

each patient, we discovered a positive correlation between the risk

score and the infiltration of TAMs (Figure 6C), thereby validating

our previous results at the single-cell level.

According to reports, crotonylation modification can occur on

histone lysine residues, thereby regulating the transcription levels of

DNA in those regions (13). To further determine the relationship

between TAMs and risk scores, we conducted a series of

experiments using the human glioma cell line T98G. Crotonate, a

crotonyl-CoA precursor, has been reported to increase intracellular

crotonylation modification levels. After treating the cells with

crotonate for 48 hours, we performed ChIP-seq analysis using a

pan-kcr antibody (Figure 6D). KEGG pathway analysis showed

that, compared to the crotonate-treated T98G cells, the peaks of

chemokine signaling pathway was significantly upregulated in

control group (Figure 6E), with CXCL1 exhibiting the greatest

difference (Figure 6F). Umap plots indicated that CXCL1 is

relatively high expressed in the malignant cell populations within

gliomas (Figure 6G). Subsequently, we detected the mRNA levels of

CXCL1 using qPCR. The results showed a significant reduction in

CXCL1 expression in crotonate-treated T98G cells compared to the

control group (Figure 6H). CXCL1 is a chemokine that mediates the

migration of macrophages to tumor sites through binding with its

receptor CXCR2 (42). Tumor cells and surrounding stromal cells

secrete CXCL1, creating a chemotactic gradient that attracts

monocytes from the circulation into the tumor tissue, where they

further differentiate into TAMs. Within the TME, CXCL1 not only

participates in the recruitment of macrophages but also influences

their polarization (43). TAMs typically exhibit an M2-like

phenotype, possessing pro-tumor, pro-angiogenic, and

immunosuppressive functions. CXCL1 promotes the polarization

of macrophages towards the M2 phenotype by regulating signaling

pathways such as PI3K/Akt and STAT3 (44), thereby supporting

tumor growth and metastasis. The interaction between CXCL1 and

TAMs also involves immunosuppressive mechanisms. M2-TAMs

secrete inhibitory cytokines such as IL-10 and express immune

checkpoint molecules like PD-L1, which suppress the activity of

effector T cells, helping tumors evade immune system surveillance

and attack (45). Therefore, we examined the expression levels of

PD-1 and GZMB in glioma samples with different levels of

crotonylation modification. Consistent with our previous results,

PD-1 expression was negatively correlated with crotonylation

modification levels, while GZMB expression was positively

correlated with crotonylation modification levels (Figure 6I).
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FIGURE 6

Exploring the role of CXCL1 and tumor-associated macrophages. (A) UMAP plot illustrating cell clustering in the single-cell dataset GSE131928.
(B) UMAP plot displaying immune cell subgroup distributions across different patients. (C) Boxplot showing the proportion of different immune cell
subgroups ordered by risk score from low to high for each patient in the GSE131928 dataset. (D) Schematic representation of the ChIP-seq
procedure after crotonate treatment of T98G cells. (E) KEGG enrichment analysis highlighting peak differences between crotonate-treated T98G and
control T98G cells. (F) MA plot depicting the distribution of peaks in control versus crotonate-treated groups. (G) UMAP plot demonstrating the
relative expression of CXCL1 across different subgroups, with malignant cells circled by dashed lines. (H) qPCR bar graph comparing CXCL1 mRNA
levels between control and crotonate-treated T98G cells (ND, Not Detected). (I) Immunofluorescence staining of PD-1 and GZMB in tissue samples
E22087 and D79717. PD-1 is shown in yellow, GZMB in pink, and nuclei are stained with DAPI in blue.
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Discussion

This study systematically investigates the prognostic and

therapeutic significance of crotonylation-associated genes in glioma,

revealing their critical role in tumor progression, immune regulation,

and patient outcomes. By focusing on the expression and functional

impact of crotonylation-related genes across large glioma cohorts, we

constructed a robust risk score that effectively stratifies glioma patients

into distinct prognostic groups. The results highlight crotonylation as a

pivotal epigenetic modification influencing glioma biology, providing a

foundation for potential therapeutic interventions.

Crotonylation is a post-translational modification first identified

in histones, characterized by the addition of a crotonyl group to lysine

residues (13). In the context of cancer, crotonylation has emerged as a

significant epigenetic marker influencing tumor biology. Studies have

shown that crotonylation plays a role in cancer cell proliferation,

invasion, and immune evasion. For instance, crotonylation

modifications have been implicated in colorectal cancer and liver

cancer, where dysregulated metabolic pathways alter the availability of

crotonyl-CoA, affecting chromatin dynamics and gene expression

(41, 46, 47). Despite these advancements, research on crotonylation

in gliomas remains sparse. Gliomas, particularly glioblastoma

multiforme, are known for their heterogeneity and poor prognosis,

yet the role of crotonylation in regulating their complex tumor

microenvironment and progression is largely unexplored. This

paucity of data underscores the need for studies like ours to

investigate the potential regulatory mechanisms and therapeutic

implications of crotonylation in glioma biology.

The crotonylation-associated risk score in this study was developed

using multiple machine learning approaches to identify the optimal

combination of prognostic genes (33). Methods such as random forest

analysis, and stepwise Cox regression were employed to select genes with

the most significant contribution to patient outcomes. Each method

offered unique advantages: random forest analysis identified feature

importance through ensemble learning, and stepwise Cox regression

refined the model to ensure that only the most independent predictors

were included. The use of combined machine-learning techniques

allowed for a more nuanced and data-driven selection process,

capturing complex relationships between gene expression and survival

outcomes. Additionally, this combination of methods ensured that the

risk score achieved a balance between simplicity and predictive accuracy.

We revealed a significant relationship between the crotonylation-

associated risk score and neoantigen burden in glioma patients,

suggesting that crotonylation-related genes may influence tumor

immunogenicity. High-risk patients exhibited a higher neoantigen

load, which is typically associated with increased tumor

immunogenicity. However, despite this elevated neoantigen burden,

the immune response in these tumors appeared to be suppressed,

likely due to the immunosuppressive tumor microenvironment. Gene

set enrichment analysis (GSEA) further supported these findings, as

immune-related pathways, including those involved in T cell activation,

antigen presentation, and cytokine signaling, were significantly enriched

in the high-risk group.

Furthermore, our study revealed the predictive value of the risk

score in immunotherapy and chemotherapy. High-risk patients
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exhibited higher TIDE scores, indicating resistance to immune

checkpoint blockade (ICB) therapy. This resistance was supported

by the positive correlation between the risk score and immune

exclusion signatures. Further drug prediction analysis identified

potential therapeutic agents with distinct efficacy profiles for high-

and low-risk gliomas. These findings emphasize the utility of the

risk score in guiding treatment decisions, enabling personalized

therapeutic strategies for glioma patients.

Our integrated single-cell and bulk sequencing analyses revealed a

significant correlation between tumor-associatedmacrophages (TAMs)

and the crotonylation-associated risk score. TAMs, predominantly

polarized into the M2 phenotype, drive tumor progression through

multifaceted mechanisms, including immune suppression, hypoxia

induction, and metastasis promotion (48). ChIP-seq analysis

demonstrated that crotonate treatment globally elevates crotonylation

levels but paradoxically reduces peaks at specific loci, such as the

chemokine CXCL1. We hypothesize: first, although crotonate

treatment globally upregulated crotonylation levels, different genes

may respond differently to crotonylation modification. Some genes

might, in a high crotonylation environment, regulate their

crotonylation status through feedback mechanisms or the action of

specific de-crotonylases (such as HDACs), leading to a decrease in their

crotonylation peaks. Second, crotonylation modifications can affect

chromatin openness and its interactions with various epigenetic

regulatory proteins. Crotonate treatment may alter the chromatin

structure of specific gene regions, reducing their sensitivity to

crotonylation modification or changing the binding affinity of

transcription factors associated with these modifications, thereby

causing a decrease in the crotonylation peaks of these genes. CXCL1,

suppressed under high crotonylation conditions, is critical for

recruiting monocytes via CXCR2 binding, a process further

amplified in hypoxic niches by damage-associated molecular patterns

like HMGB1 (49–51). Malignant cells secrete M2-polarizing cytokines

(e.g., IL-10, CCL5, CXCL12) to drive their differentiation into

immunosuppressive M2 TAMs (52), which in turn secrete IL-10,

TGF-b, and HLA-G while recruiting myeloid-derived suppressor

cells (MDSCs). MDSCs suppress T-cell function through arginine

depletion via arginase-1/iNOS and amplify immunosuppression by

producing IL-10, which skews macrophages toward the M2 phenotype

(53). M2 TAMs further enhance immune evasion by upregulating PD-

L1 and B7-H4, immune checkpoints induced through direct tumor cell

contact and correlated with poor prognosis in glioblastoma and

hepatocellular carcinoma (54, 55). These checkpoints inhibit

cytotoxic T-cell activity, as evidenced by restored CD4+/CD8+ T-cell

infiltration following TAM depletion in preclinical models.

Importantly, crotonylation is metabolically regulated by lysine-

derived crotonyl-CoA, positioning lysine metabolism as a therapeutic

lever to modulate epigenetic-immune crosstalk. Dietary or

pharmacological interventions targeting lysine intake or HDAC

activity could recalibrate crotonylation dynamics, potentially

disrupting TAM recruitment and polarization to enhance

immunotherapy efficacy in glioma. In parallel, our ongoing

development of crotonylation-enhancing therapeutic peptides

represents a complementary strategy to directly boost intracellular

crotonyl-CoA production through targeted activation of metabolic
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enzymes. These two approaches, though mechanistically distinct,

converge on the common goal of elevating global crotonylation levels

– a biochemical modification that appears to exert tumor-suppressive

effects through epigenetic reprogramming of both malignant cells and

immune components within the glioma ecosystem.

Additionally, our results identified specific immune-related

molecules—TNFSF4, HLA-DRA, and ENTPD1—that were

significantly correlated with the crotonylation-associated risk score,

further linking crotonylation pathways to the regulation of the

immune microenvironment in gliomas. Mechanistically,

crotonylation-mediated chromatin remodeling alters transcriptional

programs, ultimately reshaping the tumor immune landscape and

modulating immune exhaustion-related pathways. Among these

molecules, ENTPD1 (CD39) stands out due to its well-documented

role in tumor immunosuppression. ENTPD1 is an ectonucleotidase

that hydrolyzes extracellular ATP into AMP, a precursor of

immunosuppressive adenosine. This enzymatic activity contributes

to the establishment of an immunosuppressive microenvironment by

reducing pro-inflammatory ATP signaling and increasing adenosine-

mediated T cell suppression (56–58). Elevated expression of ENTPD1

has been associated with poor prognosis in multiple cancers, including

gliomas, where it promotes T cell exhaustion and supports the

expansion of regulatory T cells (Tregs). Subsequently, we examined

the correlation between Kcr levels and glioma grade in human glioma

samples and observed a correlation between Kcr and the expression

levels of PD-1 and GZMB in the glioma microenvironment.

Despite these significant findings, our study has some limitations.

Gliomas are characterized by profound intra- and intertumoral

heterogeneity, which manifests at genetic, epigenetic, and cellular

levels. While our risk score effectively stratifies patients into

prognostic groups using bulk transcriptomic data, this approach

inherently averages subclonal variations. For instance, spatially distinct

tumor regions may harbor subclones with divergent crotonylation

profiles, potentially leading to underestimation of high-risk

subpopulations in bulk analyses. Such heterogeneity could influence

the reliability of the risk score in predicting outcomes for patients with

mixed molecular subclones. Furthermore, gliomas with heterogeneous

IDH mutation status or MGMT promoter methylation—critical

molecular subtypes—may exhibit varying crotonylation dynamics.

Finer stratification across subtypes could refine the score’s precision

in future studies. First, functional studies are needed to elucidate the

mechanistic roles of crotonylation-related genes in glioma. Second, the

connection between crotonylation and specific immune processes

warrants further exploration to fully understand its impact on glioma

immunotherapy. Lastly, while the predictive performance of the risk

score was robust, additional prospective studies are necessary to

confirm its clinical utility. To overcome these limitations, we

propose integrating single-cell RNA sequencing and spatial

transcriptomics in subsequent research. scRNA-seq would enable

resolution of crotonylation-associated gene expression at the single-

cell level, identifying rare subclones or immune-stromal interactions

masked in bulk data. Spatial techniques could map crotonylation

patterns across tumor regions, clarifying their relationship to

microenvironmental niches. Additionally, multi-region sampling of

tumors in validation cohorts would help quantify regional variability
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in crotonylation and its prognostic relevance. Finally, validating the

risk score within homogeneous molecular subgroups could enhance

its clinical applicability.

In conclusion, this study underscores the critical role of

crotonylation-associated genes in glioma progression, prognosis, and

therapeutic response. The risk score based on these genes provides a

valuable tool for stratifying glioma patients and tailoring treatment

strategies. Further research into the mechanisms underlying

crotonylation and its interplay with the TME may pave the way for

novel therapeutic approaches in glioma management.
Method

Datasets

RNA sequencing datasets encompassing glioma patients were

sourced from multiple databases. For TCGA cohorts, which

included Lower Grade Glioma (LGG; WHO grade II–III) and

Glioblastoma Multiforme (GBM; WHO grade IV), data were

retrieved from the UCSC Xena platform (https://xenabrowser.net/

datapage/). Accompanying clinicopathological details were acquired

from the cBioPortal (http://www.cbioportal.org/). Additionally,

RNA sequencing and clinical data for patients from the Chinese

Glioma Genome Atlas (CGGA) were obtained from the CGGA’s

official website (https://www.cgga.org.cn). Further, two RNA

sequencing datasets (GSE42669, GSE7696 and GSE131928) along

with their clinical information were downloaded from the Gene

Expression Omnibus (GEO) database. Any patient records lacking

survival data were systematically excluded from subsequent survival

analyses. Pan-Kcr ChIP-seq data are accessible at GEO under

accession codes GSM8532192, GSM8532193, and GSE297117.
Data processing and mutation analysis

Batch effects across different cohorts were corrected using the

“ComBat” algorithm within the “SVA” package. Somatic mutation and

copy number alteration (CNA) data for glioma were obtained from

TCGA. Additionally, copy number variations associated with glioma

were assessed using GISTIC 2.0 through the GenePattern platform.
Construction of the risk score

To construct the risk score, we implemented a robust

methodological framework, evaluating 117 algorithmic

combinations to optimize the predictive utility of crotonylation-

related genes. This approach incorporated ten distinct algorithms:

Lasso, Ridge, Stepwise Cox, CoxBoost, Random Survival Forest

(RSF), Elastic Net (Enet), Partial Least Squares Regression for Cox

(plsRcox), Supervised Principal Components (SuperPC),

Generalized Boosted Regression Modeling (GBM), and Survival

Support Vector Machine (Survival-SVM). Each predictive model

was subjected to rigorous validation across multiple cohorts, with
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the Concordance Index (C-index) calculated to quantify predictive

accuracy (Supplementary Table S2). The final crotonylation risk

signature was derived using the RSF and Stepwise Cox algorithms,

which yielded the highest average C-index, affirming their superior

predictive reliability across the validation cohorts.
Prediction of response to immunotherapy
and chemotherapy

To explore various tumor immune evasion mechanisms, we

employed the Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm. Chemotherapy response predictions were generated for

each sample using the “pRRophetic” package, leveraging a ridge

regression model based on cancer drug sensitivity genomics.

Additionally, Spearman correlation and differential analyses were

performed across risk groups to identify promising therapeutic agents.
Functional and pathway enrichment
analysis

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

analyses were conducted to explore the functions of differentially

expressed genes, with significance criteria set at a corrected

p-value < 0.05 and an absolute log fold change > 1. Enrichment

analysis was performed using the “clusterProfiler” R package (v4.8.3),

and results were visualized with the “ggplot2” R package (v3.4.4).
Estimation of TME cell infiltration

Tumor microenvironment characteristics, including immune,

stromal, and ESTIMATE scores for tumor samples, were assessed

using the “ESTIMATE” R package. Immune cell infiltration levels

within the TME of glioma were quantified using the CIBERSORT,

xCell, and MCPcounter algorithms.
Single-cell data analysis

The single-cell dataset GSE131928 was downloaded from the

GEO database. Subsequent quality control, dimensionality

reduction, and normalization were performed following the steps

outlined on the Seurat website. Cell clustering was conducted using

the SingleR package.
Quantitative real-time PCR

Total RNA of T98G cells was extracted with Trizol reagent (Invi-

trogen, USA) following the manufacturer’s instructions.Reverse tran-

scription was performed using the 1st strand cDNA Synthesis kit

(Yeason, China).quantitative real-time PCR were performed using

the Hieff® qPCR SYBR® Green Master Mix (Yeason, China). The
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relative expression of RNA was calculated according to the 2− DDCT
method. The qPCR primers are: H− CXCL1− F: ACAACAATT

ACGCGCTGCGT; H− CXCL1− R: GTTTCTTAACTATGGGGG

ATGC; H− ACTIN− F: CACTCTTCCAGCCTTCCTTC; H− AC

TIN− R: GTACAGGTCTTTGCGGATGT.
Immunohistochemistry/
immunofluorescence staining

Glioma tissues and paraffin sections were provided by the

Department of Neurosurgery, Shanghai Changhai Hospital, Naval

Medical University. Tumor tissues were sent to Servicebio for

staining analysis.
Statistical analysis

All statistical analyses were conducted using R software (v4.3.1).

Associations between continuous variables were assessed via

Spearman’s correlation test, while differences between two groups

were evaluated with the Wilcoxon test. Survival differences were

analyzed using Kaplan-Meier curves with the log-rank test. A p-

value of less than 0.05 was deemed statistically significant.
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SUPPLEMENTARY FIGURE 1

Delineation of two distinct clusters through crotonylation profiling in glioma.
(A) Consensus matrices across combined cohorts for each potential cluster

number (k = 2–4), visualized through 1000 iterations of hierarchical
clustering. (B) Cumulative Distribution Function (CDF) plot demonstrating

the probability distribution based on consensus scores for each k in the

combined cohorts. (C) Changes in the area under the CDF curve, expressed
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relatively. (D) Tracking plot illustrating variations in sample clustering for

different k values.

SUPPLEMENTARY FIGURE 2

Kaplan-Meier analysis for cluster A and cluster B generated after unsupervised
clustering of crotonylation-related genes across five datasets. (A) TCGA, (B)
CGGA1, (C) CGGA2, (D) GSE7696, (E) GSE42669.

SUPPLEMENTARY FIGURE 3

Illustration of the machine learning-based integrative procedure. This figure
demonstrates a comprehensive evaluation involving a total of 117 predictive

models, with subsequent calculation of the Concordance Index for each
model across all validation datasets.

SUPPLEMENTARY FIGURE 4

Kaplan-Meier analysis for high- and low-risk groups across five datasets. (A)
TCGA, (B) CGGA1, (C) CGGA2, (D) GSE7696, (E) GSE42669.

SUPPLEMENTARY FIGURE 5

Differential gene analysis between high-risk and low-risk samples in glioma.

(A) Heatmaps displaying differential gene expression between high-risk and
low-risk samples analyzed using the DESeq2 (left), edgeR (center), and limma

(right) packages in R. (B) Volcano plots illustrating upregulated (red) and

downregulated (blue) genes in high-risk versus low-risk samples, as identified
by DESeq2 (left), edgeR (center), and limma (right) analyses.

SUPPLEMENTARY FIGURE 6

Pathway enrichment analyses in low-risk and high-risk Groups. (A, B) GSEA
analysis showing pathway enrichment of differentially expressed genes

analyzed by the DESeq2 package in the low-risk group (A) and high-risk

group (B). (C, D) GSEA analysis showing pathway enrichment of differentially
expressed genes analyzed by the edgeR package in the low-risk group (C)
and high-risk group (D).

SUPPLEMENTARY FIGURE 7

Correlation analysis between the risk score and mRNA expression levels. (A)
TNFSF4, (B) IL13, (C) C0orf54, (D) HLA-DRA, and (E) ENTPD1.

SUPPLEMENTARY FIGURE 8

Predictive value of the risk score in immunotherapy and chemotherapy. (A) The
correlations between the risk score with TIDE score, dysfunction score,

exclusion score, and MSI expression signature. (B) The relation between the
IC50 of candidate drugs and risk scores. (C, D) Boxplots showing the estimated

higher IC50 values of drugs in the high-risk group (C) and low-risk group (D).

SUPPLEMENTARY FIGURE 9

Validation of SingleR cell type annotation accuracy using lineage-specific
marker genes.

SUPPLEMENTARY FIGURE 10

Proposed mechanism of crotonylation-mediated regulation of macrophage
infiltration and polarization in gliomas. Elevated intracellular crotonyl-CoA

levels in glioma cells enhance global crotonylation, including histone

crotonylation modifications. This epigenetic alteration induces chromatin
structural remodeling, leading to transcriptional repression of the

chemokine CXCL1 . Reduced CXCL1 secret ion into the tumor
microenvironment diminishes monocyte recruitment via CXCR2 signaling,

thereby suppressing tumor-associated macrophage (TAM) infiltration.
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