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Objective: BRCA-mutated women are recommended to undergo bilateral risk-

reducing salpingo-oophorectomy (RRSO) after childbearing, due to the lack of

effective methods that could be able to early detect the occurrence of ovarian

cancer. Thus, predictive machine learning (ML) techniques could be crucial to aid

clinicians in identifying high-risk BRCA-mutated patients and determining the

appropriate timing for performing RRSO.

Methods: In this work, we addressed this task by developing explainable ML

models using clinical data referred to a multicentric cohort of 694 BRCA-

mutated patients from six Italian centers (Policlinico Gemelli, IRCCS San

Gerardo, Policlinico Bari, Istituto Tumori Regina Elena, Istituto Tumori Giovanni

Paolo II, Ospedale F. Miulli), who performed salpingo-oophorectomy, out of

which 39 patients showed tumor (5.6%). Data from Istituto Tumori Regina Elena

and Policlinico Bari were used as External Validation Cohort (EVC). The other data
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were employed as Investigational Cohort (IC). Resampling and ensemble

techniques were implemented to handle dataset imbalance. Explainable

techniques enabled us to identify some protective and risk factors predicted by

the models with respect to the task under study.

Results: The best ML model achieved an AUC value of 79.3% (95% CI: 75.3% -

83.0%), an accuracy value of 73.8% (95% CI: 69.6% - 78.2%), a sensitivity value of

66.7% (95% CI: 58.1% - 75.3%), a specificity value of 74.3% (95% CI: 68.7% -

80.0%), and a G-mean value of 70.4% (95% CI: 63.0% - 76.0%) on EVC. Although

themodel demonstrated good overall performance, its limited sensitivity reduces

its effectiveness in this high-risk population. The variables CA125, age and

MatoRRSO were found to be the most significant risk factors, in agreement

with the clinical perspective. Conversely, variables such as Estroprogestinuse and

PregnancyNfdt played a protective factor role.

Conclusion: Our ML proposal explores the intricate relationships between

multiple clinical variables, with a particular emphasis on understanding their

non-linear associations. However, while our approach provides valuable insights

into risk assessment for BRCA-mutated patients, its current predictive capacity

does not significantly improve upon existing clinical models.
KEYWORDS

BRCA-mutated patients, ovarian cancer risk, machine learning, artificial intelligence,
risk-reducing salpingo-oophorectomy
Introduction

Ovarian cancer remains a challenging disease with high

mortality rates, despite significant advances in medical and

surgical treatment. In 2022, 19,880 new ovarian cancer cases and

12,810 related deaths emerged in the United States. According to

the National Cancer Institute, ovarian cancer accounts for 1% of all

newly diagnosed cancers and 2.1% of all cancer-related deaths (1).

Mutations in BRCA1 and BRCA2 genes are major contributors to

ovarian cancer risk, as these genes play crucial roles in DNA repair

through the homologous recombination pathway, ensuring cellular

genetic stability. Pathogenic mutations in these genes can lead to

deficient protein function, increasing cancer risk (2). Women with

BRCA1 mutations have a 35-70% lifetime risk of ovarian cancer,

while BRCA2 mutation carriers have a 10-30% risk (3, 4). Ovarian

cancers associated with BRCA mutations tend to be high-grade

serous carcinomas, a particularly aggressive tumor type that often

develops at a younger age than sporadic ovarian cancers (5). Due to

the lack of effective early detection methods and the poor prognosis

associated with advanced-stage ovarian cancer, bilateral risk-

reducing salpingo-oophorectomy (RRSO) is recommended for

BRCA mutation carriers who have completed childbearing (6).

The NCCN Guidelines Panel recommends RRSO for carriers of a

known BRCA1/2 variant, typically between the ages of 35 and 40 for

carriers of a BRCA1 variant. Since the onset of ovarian cancer tends
02
to occur later in carriers of a BRCA2 variant, RRSO for managing

ovarian cancer risk in these women is recommended between the

ages of 40 and 45, unless the age at diagnosis in the family warrants

considering this prophylactic surgery at an earlier age. (NCCN

Guidelines Version 2.2025) (7).

Several important studies underscore the critical timing of

RRSO, such as the Normal Risk Ovarian Screening Study

(NROSS) (NCT00539162) and the UK Collaborative Trial of

Ovarian Cancer Screening (UKCTOCS), which highlight the need

to balance early detection benefits with the timing of preventive

actions (8, 9).

Recently, research works have explored machine learning (ML)

algorithms as tools to aid in ovarian cancer diagnosis and inform

treatment decisions (10–12). This growing interest reflects a

demand for automated, personalized analyses of clinical patient

data that can facilitate decision-making specific to each patient’s

risk profile (13).

According to the state of the art, however, few applications of

ML models to identify high-risk BRCA-mutated patients and to

determine the optimal timing for RRSO have been proposed. This

gap likely arises due to the relatively low incidence of ovarian cancer

compared to the number of BRCA mutation carriers undergoing

RRSO (14). In this vein, this study aims to develop a ML model for

predicting ovarian cancer risk in BRCA-mutated patients. We

expand upon our previous work (15) by applying this model to a
frontiersin.org
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multicenter cohort across six Italian centers, offering a broader

perspective. A key aspect of the study is the use of eXplainable

Artificial Intelligence (XAI) (16) to make the model’s decisions

interpretable, ensuring that clinical experts can align model

predictions with current clinical knowledge. By identifying and

analyzing key clinical features associated with ovarian cancer risk,

the study seeks to provide actionable insights for patient

management and inform future clinical practice.
Methods

Inclusion and exclusion criteria

In this study, we included women diagnosed with BRCA1 or

BRCA2 mutations who underwent bilateral RRSO at one of the six

participating referred Italian centers (Policlinico Gemelli, IRCCS

San Gerardo, Policlinico Bari, Istituto Tumori Regina Elena, Istituto

Tumori Giovanni Paolo II, and Ospedale F. Miulli). Patients eligible

for inclusion were those who had completed childbearing and were

advised to undergo RRSO as part of their clinical management for

ovarian cancer prevention. Only those with confirmed genetic

testing results for BRCA1 or BRCA2 mutations were considered.

The inclusion criteria further required that patients had a

comprehensive clinical record, including relevant demographic and

medical information, and had undergone RRSO based on their BRCA

mutation. Exclusion criteria included women who had not

undergone RRSO or had already a diagnosis of an ovarian cancer.

A total of 694 BRCA-mutated patients met these inclusion

criteria and underwent RRSO. Of them, 39 cases of ovarian or

fallopian tube cancer (5.6%) were identified based on their

postoperative pathology results. However, these 39 patients

reported to have a malignant tumor were asymptomatic and had

negative preoperative imaging.
Study design

This study employed a retrospective multicenter design, enrolling

two separate cohorts of BRCA-mutated patients who underwent

bilateral RRSO. The primary aim was to develop and validate a ML

model to predict the risk of ovarian cancer in BRCAmutation carriers,

addressing a critical classification problem due to the imbalanced

nature of the dataset. Specifically, the model was designed to classify

patients into two classes: those diagnosed with ovarian cancer (rare

class), and those without ovarian cancer (abundant class). The first

cohort, consisting of 550 patients, served as the investigational cohort

(IC) for model training and internal validation. The second cohort,

comprising 144 patients, was designated as the external validation

cohort (EVC) to assess the model’s generalizability to new, unseen

data. The imbalanced dataset posed a significant challenge in

developing an accurate ML model, as the rare class of ovarian

cancer cases represented only 5.8% and 4.9% of the total patient

populations in the IC and EVC cohorts, respectively. To address this

issue, we applied advanced techniques in ML to enhance the
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prediction of the rare class. The model’s objective was to predict the

ovarian cancer risk in these patients, so that it could be possible to

guide decisions on the timing of RRSO. Internal validation was

conducted using a leave-one-out cross-validation (LOO) scheme,

where each individual sample was used as a test set exactly once,

with the remaining data serving as the training set. The EVC was then

employed to assess the generalizability of the model. Overall, the total

study population consisted of 694 BRCA-mutated patients who met

the inclusion criteria and underwent RRSO. Among them,

postoperative pathological analysis identified 39 cases (5.6%) of

invasive ovarian or fallopian tube cancer, as well as serous tubal

intraepithelial carcinoma (STIC). Notably, However, these 39 patients

reported to have a malignant tumor were asymptomatic and had

negative preoperative imaging, underscoring the challenge of early

detection in this high-risk population.

A graphical overview of the study framework is provided in

Figure 1. The study adhered to the ethical standards of the

Declaration of Helsinki and was approved by the Ethics

Committee of IRCCS Istituto Tumori Giovanni Paolo II, Bari,

Italy (protocol code 596/CE). In accordance with the journal’s

guidelines, we will provide our data for independent analysis by a

selected team by the Editorial Team for the purposes of additional

data analysis or for the reproducibility of this study in other centers

if such is requested.
Data collection

Clinical data for the study were retrospectively collected from

medical records across six participating Italian cancer centers:

Policlinico Gemelli – Rome (Gemelli), IRCCS San Gerardo –

Monza (Monza), IRCCS Istituto Tumori Giovanni Paolo II – Bari

(OncoBa), Ospedale F. Miulli – Acquaviva delle Fonti – Bari

(Miulli), Istituto Tumori Regina Elena – Rome (Regina Elena),

and Policlinico Bari (Policl. Ba). Data related to the IC were

provided by the first four centers, while data for the external

validation cohort EVC were gathered from the latter two centers.

The information collected for this study included a total of 31

characteristics, which were divided into two main categories: 20

clinical features and 11 features related to breast cancer histology.

Clinical features encompassed patient-specific details such as age,

mutation type (BRCA1 or BRCA2), medical history, and RRSO-

related data. Among them, estroprogestins use was included due to

the reported effect on cancer risks in carriers of a known BRCA1/2

variant. Studies have shown that oral estroprogestins reduce the risk

of ovarian cancer by 45% to 50% in BRCA1 variant carriers and by

60% in BRCA2 variant carriers. Moreover, the protective effect

appears to increase with longer durations of oral contraceptive use,

although the long-term benefit diminishes following menopausal

hormone replacement therapy after bilateral salpingo-

oophorectomy. Oral contraceptives may be considered for

ovulation suppression and are not contraindicated for birth

control purposes in these patients. The breast cancer histology

features provided additional context relevant to the patient’s

oncological profile. A comprehensive list of these features, along
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with their respective abbreviations, is provided in Supplementary

File 1. To ensure the quality and reliability of the data, the clinical

teams affiliated with each participating center were responsible for

collecting and verifying the information. Data were cross-checked

within each center for transcription accuracy and logical

consistency. The finalized dataset was then reviewed by the

coordinating clinical team at the lead institution, which ensured

adherence to predefined inclusion and exclusion criteria. Statistical

analyses were conducted to identify any inconsistencies or outliers,

which were addressed through consultation with the contributing

clinicians from the respective centers. This rigorous validation

process ensured the integrity of the multicenter dataset used for

the development and validation of the machine learning model.

Supplementary Figure 1 illustrates the distribution of enrolled

patients across these centers, showing the numbers in both the

rare and abundant classes for each cohort.
Machine learning model

The dataset used was imbalanced, with fewer patients in the rare

class (patients with ovarian cancer) than in the abundant class

(patients without ovarian cancer). To address this, a ML model was

constructed using a Random Forest classifier with resampling and

ensemble techniques, both of which enhance model performance

on imbalanced datasets by ensuring better representation of the rare

class and aggregating strengths from multiple models to improve

prediction accuracy (17–19). Specifically, we developed two types of

ML models with the same architecture but differing in the input

features used: the first model, named AllCatModel, utilized all 31

characteristics listed in Supplementary File 1. The second model,

named CatModel, used the same characteristics with the exception

of those related to breast cancer histology, resulting in a final set of

20 features.
Frontiers in Oncology 04
Key concepts in the ML model
Resampling Technique

The model development involved resampling, creating multiple

models with varied ratios of samples from the rare and abundant

classes. Models were generated with ratios of 1:1, 1:2, and 1:3,

ensuring that each rare class sample had one, two, or three samples

from the abundant class. This approach provided balanced

representation during training, thus enhancing the model’s

capacity to accurately identify cases of ovarian cancer.

Ensemble Technique

The ensemblemethod combined predictions frommultiple models

to improve overall accuracy. Each patient’s final classification was

based on predictions from models trained on different resampling

ratios, with a unified prediction derived through aggregation. This

technique capitalizes on diverse model outputs, creating a stronger,

more reliable final prediction.

Model structure

The model was structured in two primary phases: feature

selection and classification, both implemented using the Random

Forest algorithm with 100 trees (20).

Feature Selection

The algorithm evaluated feature importance via Gini impurity,

a metric that assesses how well a feature splits the data. Features

with weights above the median were retained for classification.

Classification

In this phase, the classifier processed the selected features,

assigning a score from 0 to 1 to each patient based on ovarian

cancer risk, with higher scores suggesting a higher likelihood of

ovarian cancer.
FIGURE 1

A graphical overview of the study framework. The abbreviations reported in the Figure are explained: MatoRRSO (menopause at time of RRSO), BC
Nfdr (number of breast cancer first-degree relatives), LOO (leave-one-out).
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Workflow

Figures 2A, B illustrate theMLmodel’s workflow and its evaluation

using the IC and EVC cohorts. Internal validation was conducted with

a leave-one-out (LOO) validation scheme on the IC, while external

validation was performed on the EVC.

Internal Validation

To internally validate the model on the IC, we used a leave-one-

out (LOO) scheme, where each patient served as a test sample in

turn. The remaining patients were resampled in 1:1, 1:2, and 1:3

ratios to create training sets. For each excluded patient, we trained

150 models (50 for each ratio), performing feature selection and

constructing a Random Forest classifier that predicted the patient’s

cancer risk. A majority voting system combined predictions across

models, averaging results across the three ratios to generate a final

score for each patient (soft voting).
External Validation

Optimal feature selection was crucial for clinical application. We

determined the optimal set by calculating the frequency with which

each feature was selected as important in models trained with different

resampling ratios on the IC. Features that were consistently selected at

least 40% of the time were included in this set, and the 50 models for

each ratio were retrained with these features. This ensemble model was

then applied to the EVC, generating a unique classification score for

each patient.
Statistical analysis and performance evaluation
We assessed the association between each feature and the

outcome (abundant vs. rare class) using statistical tests. The

Wilcoxon-Mann-Whitney test was applied for continuous

features, and the Chi-Squared test was used for ordinal clinical

characteristics, considering p-values below 0.05 as significant (21,

22). The model’s performance was evaluated with both ranking and

threshold metrics: the Area Under the Curve (AUC) was used as a

ranking metric, while accuracy, sensitivity, specificity, F1-score, and

G-mean were applied as threshold metrics. These metrics were

calculated after defining the optimal threshold using Youden’s

index on the ROC curve (23), as follows:

Accuracy = (TP + TN)=(TP + TN + FP + FN)

Sensitivity = TP=(TP + FN)

Specificity = TN=(TN + FP)

F1 − score = 2 ∗ (Sensitivity ∗Precision)=(Sensitivity + Precision)

G�mean =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity ∗ Specificity

p
:

where TP and TN represent True Positives and True Negatives,

respectively, and FP and FN denote False Positives and False
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Negatives. The F1-score balances precision and sensitivity, while

the G-mean is beneficial for evaluating imbalanced datasets due to

its ability to measure performance across both classes evenly (24).

Additionally, to estimate the 95% Confidence Intervals (CIs) for the

model’s performance metrics, we applied bootstrap resampling with

1000 iterations. Source codes were implemented in MATLAB

R2022a (MathWorks, Natick, MA, USA).
Explainability technique

To interpret the predictions of the ML models (AllCatModel and

CatModel), we used an explainability approach based on SHapley

Additive exPlanations (SHAP) values (25). SHAP values quantify each

feature’s contribution to the model’s predictions, with positive values

indicating risk-enhancing contributions and negative values suggesting

non-risk contributions. SHAP values for each feature reflect its

importance to the prediction, considering interactions with other

features as per game theory principles. Calculations were performed

with a local-agnostic algorithm, creating a linear interpretative model

for each test patient by analyzing only the classifier’s input and output.

SHAP value computations were implemented using a ColabPro

Notebook with Python programming (26).
Results

Investigational and external validation
cohorts

The characteristics collected for both the IC and EVC cohorts are

summarized in Supplementary Table 1. were statistically compared to

assess their representativeness of the same underlying population.

Given the imbalanced distribution of ovarian cancer cases (the rare

class) and non-cancer cases (the abundant class), the IC cohort had a

rare class distribution of 5.8%, while the EVC cohort had a rare class

distribution of 4.9%. Statistical tests, including tests for equivalence of

proportions and continuous variables, were performed to detect

potential biases between the cohorts: Wilcoxon-Mann-Whitney test

was performed for continuous features, whereas Chi Squared test was

used for the clinical characteristics. These tests confirmed that the two

cohorts were similar, minimizing discrepancies and ensuring that the

ML model’s performance metrics accurately reflected its

generalizability to new data. The p-values for each variable were

reported in Supplementary Table 2.
Feature importance

In our study, we first conducted univariate statistical tests to

examine the relationship between each clinical factor and the

outcome, using both the training and validation datasets (see

Methods, Statistical analysis and performance evaluation). Only Age

(p-value = 0.004) in the IC and CA125 (p-value = 0.02) in the EVC
frontiersin.org
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showed significant associations with the outcome. These univariate

tests highlight the individual importance of each feature. To assess

feature value within the ML model, a more sophisticated feature

selection technique was employed. This method evaluates the relative

importance of features across the entire set used in the ML model.

Supplementary Table 3 shows the frequency with which each feature

was identified as important across the 50models at each resampling ratio

(1:1, 1:2, and 1:3) for both CatModel and AllCatModel. Three features—

Age, menopause at time of RRSO (MatoRRSO), and number of breast

cancer first-degree relatives (BCNfdr)—were frequently selected (over

50% of the time) across all resampling ratios for both models. Features

chosen at least 40% of the time were included in the optimal subset used

for validation. Supplementary Table 4 summarizes the optimal features

for CatModel and AllCatModel. Common features include CA125, Age,

number of pregnancy normal full term delivery (Pregnancynftd),

MatoRRSO, BRCA2, status of ovarian cancer first-degree relatives

(OCFDR), number of ovarian cancer first-degree relatives (OCNfdr),

number of ovarian cancer second-degree relatives (OCNsdr), and

BCNfdr. Unique features for CatModel were previous abdominal/

pelvic surgery (PAPS) and BRCA1, while AllCatModel included

Estroprogestin use and previous breast cancer (PreviousBC). Features

related to breast histology—HER2, grading (Grade), invasive ductal

carcinoma (IDC), and invasive lobular carcinoma (ILC)—were also part

of the optimal set. Comparison with our previously published model

(10) revealed that Age, Pregnancynftd, and CA125 were consistently

important across both models.
Performance evaluation and explanation

We performed a two-level validation of AllCatModel and

CatModel. Initially, we assessed their performance using a leave-

one-out (LOO) cross-validation scheme on the IC. The features

used for classification varied across patients and sub-models within
Frontiers in Oncology 07
the final ensemble models. In this case, AllCatModel and CatModel

achieved comparable performance in terms of all the evaluation

metrics (see Table 1). The ROC curves for these final ensemble

models are shown in Figures 3A, B. ROC curves for various

resampling ratios (1:1, 1:2, 1:3) are also depicted, with AUC

values of 62.3% (95% CI: 59.3% - 65.3%), 62.8% (95% CI: 59.8% -

65.8%), and 62.0% (95% CI: 58.9% - 65.0%) for AllCatModel and

64.5% (95% CI: 61.5% - 67.5%), 63.2% (95% CI: 60.2% - 66.2%), and

63.5% (95% CI: 60.5% - 66.5%) for CatModel, respectively.

Subsequently, we evaluated the models on the EVC using an

optimal subset of features. Conversely to LOO validation, the

CatModel overall outperformed AllCatModel. Figures 2C, D

shows the corresponding ROC curves, alongside the ROC curves

of the models at diverse ratio with AUC values equal to 59.5% (95%

CI: 56.5% - 62.5%) and 65.2% (95% CI: 62.2% - 68.2%) for ratio 1:1,

62.1% (95% CI: 59.1% - 65.1%) and 68.5% (95% CI: 65.5% - 71.5%)

for ratio 1:2, 63.3% (95% CI: 60.3% - 66.3%) and 59.1% (95% CI:

56.1% - 62.1%) are obtained for ratio 1:3, in correspondence of

AllCatModel and CatModel, respectively.

Figure 4 depicts the features that most influenced the

classification scores (Figure 4A for AllCatModel, Figure 4B for

CatModel, respectively). Features are ranked in descending order

according to their relative importance computed by the SHAP

algorithm. Each point represents the Shapley value for a feature

and a patient of the validation set. The relationship between a

higher or lower feature value and a higher or lower prediction

(classification score for the rare class) is also highlighted. In this

way, we were able to visualize some protective and risk factors

predicted by the models with respect to the task under study:

features whose higher values contribute to the outcome

occurrence were considered as risk factors (red points for positive

SHAP values, blue points for negative SHAP values, respectively);

features whose higher values go against the outcome occurrence
TABLE 1 Performance evaluation of the two ML models, i.e., AllCatModel and CatModel.

Evaluation set Feature set Metric (%) Model type

AllCatModel CatModel

Investigational
Cohort
(LOO)

Feature selected over each
model at diverse ratio

AUC 64.6 [60.0, 69.2] 65.5 [61.0, 70.0]

Accuracy 69.6 [65.0, 73.5] 70.7 [66.0, 74.6]

Sensitivity 53.1 [45.0, 61.0] 56.3 [48.4, 64.0]

Specificity 70.7 [64.0, 76.1] 71.6 [65.0, 77.0]

F1-score 29.8 [25.3, 35.0] 39.9 [33.4, 46.7]

G-mean 61.2 [55.0, 67.6] 63.5 [57.0, 69.0]

External Validation
Cohort

Optimal feature set AUC 64.1 [59.2, 69.0] 79.3 [75.3, 83.0]

Accuracy 79.8 [74.5, 84.0] 73.8 [69.6, 78.2]

Sensitivity 50.0 [40.0, 60.0] 66.7 [58.1, 75.3]

Specificity 82.1[78.2, 86.0] 74.3 [68.7, 80.0]

F1-score 30.0 [25.0, 35.5] 44.4 [37.7, 51.5]

G-mean 64.1 [58.3, 70.2] 70.4 [63.0, 76.0]
The evaluation set as well as the feature set adopted for the evaluation are reported. 95% Confidence Intervals (CI) for each metric are also included.
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were treated as protective factors (blue points for positive SHAP

values, red points for negative SHAP values, respectively). Similarly

to feature importance, since the importance of a feature was

computed by evaluating the relative importance of the features

with respect to all the features involved in the two models, as well as

the AllCatModel involved breast histology features not included in

the CatModel, features that were deemed as important for one

model not necessarily had the same importance for the other model.

Concerning AllCatModel, the variables CA125, age and

MatoRRSO were found to be the most significant risk factors, in

agreement with the clinical perspective. Conversely, variables such

as Estroprogestinuse and PregnancyNfdt played a protective factor

role. With respect to CatModel, the variables CA125, age, and

BRCA1 were revealed as the most remarkable risk factors.
Discussion

In this study, we developed a ML model to identify BRCA-

mutated patients at high risk of ovarian cancer, aiding in

determining optimal timing for RRSO. The model, trained and
Frontiers in Oncology 08
validated on clinical data from a multicenter cohort across six

Italian cancer centers, builds on our previous work, where we

initially developed a hypothesis-generating method for this

clinical challenge. The analysis utilized two cohorts: IC and EVC.

As evidenced by both the statistical analysis comparing the two

cohorts and the analysis within each cohort in relation to the

outcome, no selection bias was identified between the cohorts,

ensuring the robustness and generalizability of the model. By

expanding our study to a multicenter setting, we confirmed the

model’s predictive ability, demonstrating its broader feasibility and

potential for larger-scale use.

One of this study’s major contributions is the identification and

validation of clinical features impacting the MLmodel’s predictions.

The study includes a large, multicenter cohort and the use of

explainable machine learning techniques have provided valuable

insights into the key clinical variables associated with ovarian

cancer risk in BRCA-mutated patients. We analyzed how the

model classified each feature, distinguishing between those

identified as risk and protective factors. This process was further

strengthened by a multidisciplinary collaboration, which ensured

that model insights aligned with clinical knowledge and create a
FIGURE 3

Comparison of ROC curves and the resulting AUC values. (A, B) AllCatModel and CatModel in LOO scheme over the training set, respectively. (C, D)
AllCatModel and CatModel over the validation set, respectively. (A-D) TheROC curves of the models obtained after applying majority voting for each of the
three ratios were compared with the ROC curve of the Ensemble model.
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bridge between data interpretation and clinical expertise. This

collaborative approach enhances the clinical relevance and

potential application of the model in real-world settings.

Compared to other recently developed ML models applied in

ovarian cancer care, our study tackles a highly specific and

challenging context: the prediction of ovarian cancer risk in

BRCA-mutated patients considering prophylactic surgery. For

example, Ledger et al. (27) evaluated six machine learning

algorithms to estimate the probability that ovarian tumors are

benign, borderline malignant, or primary invasive, achieving

AUC values ranging from 76.0 to 85.0%. Similarly, He et al. (28)

compared the diagnostic efficacy of machine learning models with

expert subjective assessment in evaluating the malignancy risk of

ovarian tumors, achieving an AUC of 89.0%. Our model, in

contrast, focuses exclusively on BRCA-mutated patients and

addresses a significantly imbalanced dataset. This imbalance poses

additional challenges, as predictive models must balance sensitivity

and specificity under these constraints. Despite this, our model

achieved an AUC of 79.3% on the external validation cohort,

comparable to some models in the broader literature.

The ML analysis identified CA125 levels, patient age, and

MatoRRSO as primary risk factors for ovarian and fallopian tube

cancers in BRCA1 and BRCA2 mutation carriers, consistent with

current clinical understanding. Conversely, features such as

estroprogestin contraception use and the number of full-term

pregnancies (PregnancyNfdt) appeared as protective factors in the

model’s predictions. Notably, BRCA-related ovarian cancers often

develop without a family history of breast or ovarian cancer—about

40% of patients with ovarian or fallopian tube cancer who are BRCA

mutation carriers lack this family history. This finding underscores

the value of genetic testing for relatives, enabling first- and second-
Frontiers in Oncology 09
degree relatives to assess their own cancer risk and consider

preventive measures (29, 30).

Genetic screening is crucial, especially given variations in peak

risk ages among BRCA1/2 carriers. BRCA1 mutation carriers have

the highest risk of ovarian cancer between ages 50 and 59, with an

annual incidence of 1.7%, whereas BRCA2 mutation carriers peak

later, between 60 and 69, with an annual incidence of 0.6% (6, 31). A

retrospective cohort study of 474 BRCA1/2 carriers with high-grade

serous ovarian cancer also revealed a significantly higher average

age at diagnosis for BRCA2 versus BRCA1 mutation carriers (58.4

years vs. 53.3 years, P = .001) (6, 32).

Effective screening strategies remain a topic of ongoing

research. CA125 monitoring and transvaginal ultrasound (TVUS)

have been explored for early cancer detection in BRCA mutation

carriers but show variable sensitivity and specificity. The UK

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS)

compared multimodal screening (CA125 with TVUS) to TVUS

alone or no screening. While combining TVUS and CA125

improved early-stage detection, there was no significant reduction

in mortality after a median follow-up of 11 years (7, 33). Moreover,

CA125 levels can be elevated due to benign conditions or other

malignancies, which complicates interpretation, as high CA125

levels without abnormal ultrasound findings may indicate occult

ovarian or tubal cancer (8, 34, 35).

For BRCA mutation carriers, estrogen-progestin contraception

may reduce ovarian cancer risk by suppressing ovulation, serving as

a protective factor while awaiting RRSO. Similarly, pregnancy

suppresses ovulation and is protective against ovarian cancer in

high-risk populations (16, 36).

Despite its promising outcomes, themodel developed in this study is

not yet ready for clinical use due to its limited sensitivity (66.7%). While
FIGURE 4

Shapley value distributions for (A) AllCatModel and (B) CatModel. Each point on the plot is a SHAP value for a feature and a patient. The color bar
represents the value of the feature from low (in blue) to high (in red) for that instance. The abbreviations of all the features are summarized in
Supplementary File 1.
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the model shows good accuracy in distinguishing risk and protective

factors, the sensitivity remains a limitation that may reduce its clinical

utility in detecting all high-risk patients. Additionally, the model’s

performance may be influenced by the quality and consistency of the

clinical data from different centers, highlighting the need for further

validation and refinement. Moreover, the study is limited to Italian

centers, which may affect the generalizability of the results to other

populations or healthcare systems. Future work should focus on

improving model performance and developing an interface to assist

clinicians in identifying high-risk BRCA patients and determining RRSO

timing. Additionally, separate machine learningmodels for BRCA-1 and

BRCA-2 mutations will be explored to assess whether this approach

improves prediction accuracy by creating more homogeneous groups,

thereby enabling more tailored and precise risk assessments for BRCA-

mutated patients. Finally, although lifestyle factors such as smoking,

which has been associated with ovarian cancer risk (37), were not

considered in this study. Incorporating these factors into future models

could improve the overall prediction accuracy and provide a more

comprehensive understanding of ovarian cancer risk in BRCA-mutated

patients. Therefore, while the current work provides a valuable

foundation, further refinement of the model is necessary to enable a

personalized and accurate risk assessment, as it does not yet offer a more

tailored approach than the existing clinical strategies.
Conclusions

This study represents a first effort toward supporting clinicians in

risk stratification for BRCA mutation carriers. Current guidelines

recommend prophylactic adnexectomy for BRCA1/2 carriers at

specific ages, but early-onset ovarian cancer remains a possibility,

and many patients may never develop cancer. This underscores the

need for a nuanced approach to risk assessment. Our model leverages

non-linear relationships among patient variables, offering a more

personalized risk evaluation. Moving forward, further development is

needed, including performance optimization, integration into clinical

workflows, and validation through prospective clinical trials to assess its

real-world impact on patient outcomes.
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Overview on the multicentric data collection. Histogram of the number of

patients enrolled across the Italian centers. The number of patients belonging
to both the abundant and rare classes are also indicated.
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corresponding values.
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SUPPLEMENTARY TABLE 1

Clinical characteristics of both Investigational Cohort (IC) and External

Validation cohort (EVC). For categorical variables, absolute and

percentage counts are reported in round brackets. For continuous
variables, the median value and first (q1) and third (q3) quartiles of the

distribution are indicated in squared brackets. The number of missing
values (NA) is also specified.

SUPPLEMENTARY TABLE 2

Summary of p-Values from Statistical Tests Comparing Clinical Data of

the Investigational Cohort (IC) and External Validation Cohort (EVC). A
result was considered statistically significant when the p-value was less

than 0.05.

SUPPLEMENTARY TABLE 3

Feature selection for (A) AllCatModel and (B) CatModel on the training set.
Frequency of the features in all the diverse ratio models have been reported.

Frequencies greater than 40% are highlighted in bold. The abbreviations of all
the features are summarized in Supplementary File 1.

SUPPLEMENTARY TABLE 4

Overview on the optimal feature set. Features selected with frequency

higher or equal than 40% for all the model ratios were reported in
each column.
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