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Objective: To develop and validate a radiomics model based on vertebral

calcium-suppressed (CaSupp) images derived from dual-layer computed

tomography (DLCT) for predicting chemotherapy-induced myelosuppression

in patients with locally advanced nasopharyngeal carcinoma (LANPC).

Methods: This retrospective study included 150 LANPC patients treated with

induction chemotherapy (IC). Radiomics features were extracted from lumbar

vertebral CaSupp obtained from baseline DLCT scans. Models were developed to

predict myelosuppression after the first chemotherapy cycle (IC - 1) and entire

chemotherapy cycles (IC-n). The clinics, radiomics, and combined models were

conducted via multivariate logistic regression. Models performance was

evaluated by the area under the receiver operating characteristic curve (AUC).

Clinical utility was analyzed with decision curve analysis.

Results: For predict myelosuppression after IC - 1, the clinics, radiomics, and

combined models had AUC values of 0.716, 0.825 and 0.859 in the train cohort,

respectively; and AUC of 0.687, 0.752 and 0.790 in the test cohort, respectively.

And for IC-n, the clinics, radiomics, and combined models exhibited AUC values

of 0.771, 0.824, and 0.889 in the train cohort, respectively; and AUC of 0.652,

0.740 and 0.806 in the test cohort, respectively. For predictingmyelosuppression
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after both IC - 1 and IC-n,the combined models demonstrated significantly

higher AUC values than the clinics models for both IC - 1 and IC-n (all P<0.05).

Conclusions: Radiomics model based on vertebral CaSupp images from DLCT

could predict chemotherapy-induced myelosuppression in LANPC patients. This

study highlights the potential of DLCT technology to provide quantitative bone

marrow assessments and aid in personalized treatment planning. External validation

and comparison with other imaging modalities are warranted in the future.
KEYWORDS

dual-layer computed tomography (DLCT), myelosuppression, nasopharyngeal
carcinoma, calcium-suppressed (CaSupp) imaging, radiomics
Introduction

Nasopharyngeal carcinoma (NPC) is a prevalent head and neck

malignancy in East and Southeast Asia (1), with over 70% of new

diagnoses in the locally advanced stage (III-IVa) (2). For patients with

locally advanced nasopharyngeal carcinoma (LANPC), the primary

treatment approach is concurrent chemoradiotherapy following

induction chemotherapy (IC) (3). However, while platinum-based

drugs effectively eliminate tumor cells, they also inhibit or destroy

simultaneously normal proliferating cells, such as hematopoietic stem

and progenitor cells in the bone marrow (4). Chemotherapy-induced

myelosuppression is one of the most common hematological and dose-

limiting toxic reactions (5). A recent study showed that all patients with

LANPC experience different degrees of myelosuppression during IC

(6). Myelosuppression primarily manifests leukopenia, neutropenia,

anemia, and thrombocytopenia, leading to infections, fatigue, and

bleeding, potentially delaying treatment schedules, reducing the

therapeutic dosage, and affecting treatment efficacy (7–9). Therefore,

predicting myelosuppression occurrence before patients undergo IC

could alleviate patient burden and improve treatment outcomes. The

response to hematologic toxicity induced by chemotherapy varies

among patients, thus necessitating the establishment of predictive

models for myelosuppression risk. Up to now, research on predicting

myelosuppression induced by chemotherapy mainly focused on

clinical factors, such as age, laboratory results, etc., and demonstrated

good predictive performance (10–13). However, the investigation
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involved in predicting myelosuppression after chemotherapy for

NPC is scarce, whether based on clinical or imaging data.

Radiomics aims to convert medical images into high-

dimensional, quantitative imaging features, thereby improving

disease management in a cost-effective and non-invasive manner

(14). Radiomics models based on pre-radiotherapy CT images of

NPC have shown promising performance in predicting lymphopenia

(15). For example, Ren et al. (16) demonstrated that radiomics

models based on pre-radiotherapy CT images in cervical cancer

patients have predictive value for hematological toxic reactions.

Dual-layer detector CT (DLCT) is an emerging imaging

technology that acquires two sets of image data with high and low

energy in a single image acquisition, enabling the virtual removal of

specific materials (e.g. calcium) (17). Based on calcium suppression

algorithms, calcium-suppressed (CaSupp) imaging can identify and

virtually remove calcium content (18, 19), allowing for the estimation

of fat and soft tissue components in the bone marrow (19, 20).

CaSupp technology eliminates the influence of calcium, making it

potentially valuable for describing vertebral bone marrow (17–19).

Reportedly, texture features extracted from CaSupp images obtained

before and after treatment are correlated with specific hematological

parameters in patients with multiple myeloma (21, 22), indicating the

potential value of radiomics models from DLCT-based CaSupp

images in predicting hematological toxicity of chemotherapy.

Therefore, this study aims to develop a radiomics model

utilizing DLCT-derived CaSupp images to predict the occurrence

of myelosuppression after chemotherapy in LANPC, to help guide

clinical practice in predicting the hematological response

to chemotherapy.
Materials and methods

Patients

The ethics committee of our hospital approved this study. This

was a retrospective study based on routine CT examination and

clinical data analysis, so patients’ individual written informed consent
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was not required. We retrospectively analyzed NPC patients who

underwent non-enhanced abdominal DLCT examination in our

hospital from July 2022 to March 2024. Inclusion criteria were as

follows: (1) age over 18 years; (2) pathologically confirmed LANPC;

(3) CT scanning range included all lumbar vertebrae; (4) received at

least one cycle of IC, regardless of subsequent concurrent

chemoradiotherapy. Exclusion criteria included: (1) poor DLCT

imaging quality (n=2); (2) other clinical TNM stage (n=51);(3)

presence of vertebral metastasis, fractures, or surgical implants

(n=6); (4) receipt of other antitumor therapies before IC or DLCT

examination (n=6); (5) impaired baseline liver or kidney

function (n=4),defined as alanine aminotransferase or aspartate

aminotransferase levels > 40 U/L, and serum creatinine > 106

mmol/L in males or > 97 mmol/L in females, according to our

hospital’s laboratory reference ranges; (6) other therapies, such

immunotherapy (n=29); (7) normal complete blood count before

IC (n=5); or (8) incomplete clinical data (n=3). NPC staging for all

patients followed the 8th edition of the American Joint Committee on

Cancer TNM staging system. A total of 256 NPC patients were

initially screened, and 150 cases were ultimately included (Figure 1).
Frontiers in Oncology 03
Clinical data

We collected data before IC from the hospital medical record

information system, including (1) baseline clinical information:

gender, age, smoking history, drinking history, hypertension

history, diabetes history, body mass index (BMI), tumor

pathology type, clinical TNM stage, chemotherapy regimen, etc.;

and (2) laboratory indices in baseline and IC periods: liver and

kidney function, complete blood count, neutrophil-to-lymphocyte

ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-

monocyte ratio (LMR), and prognostic nutritional index (PNI),

where PNI is defined as serum albumin (g/L) + 5× total lymphocyte

count (10^9/L). In this study, the assessment of myelosuppression

was based on the blood routine data collected from the medical

record information system after IC. According to the Common

Terminology Criteria for Adverse Events (CTCAE) version 5.0

from the National Cancer Institute, the occurrence of

myelosuppression is defined as the observation of any of the

following indicators in peripheral blood samples during IC:

Leukocyte count < 4×10^9/L, Neutrophil count < 2×10^9/L,
FIGURE 1

Flowchart for patients’ selection.
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Platelet count < 100×10^9/L, or Hemoglobin count < 110g/L. Our

study endpoints were the incidence of myelosuppression during the

first cycle (IC - 1) and the entire cycle of induction chemotherapy

(IC-n). Here, IC - 1 and IC-n referred to the occurrence of

myelosuppression in the first and any cycle of the IC

treatment, respectively.

All treatment regimens for patients adhered to the first-line

therapeutic recommendations outlined in the National

Comprehensive Cancer Network (NCCN) Clinical Practice

Guidelines in Oncology for head and neck cancers(3), with the

GP (Gemcitabine and Cisplatin) or TPF (Docetaxel, Cisplatin and

5-Fluorouracil) regimens being the preferred IC strategies for

LANPC. Concurrently, the current guidelines of the Chinese

Society of Clinical Oncology (CSCO) for NPC recommend the

GP, TPF, and TP (Docetaxel and Cisplatin) regimen as the initial IC

options (23). The selection of the IC regimen was contingent upon

the patient’s clinical profile, the therapeutic directives from both the

NCCN and CSCO, as well as the patient’s choice. Following the

treatment protocols of our institution, a total of three distinct

platinum-based chemotherapy regimens were included,

encompassing the GP (n=56), TPF (n=41),and TP (n= 53)

regimen for 1 to 4 chemotherapy cycles.
Image acquisition, segmentation and
radiomics feature extraction

Patients underwent abdominal DLCT scans (IQon Spectral CT;

Philips Healthcare), covering all lumbar vertebrae. Scanning

parameters followed the factory default scan protocol: tube

voltage, 120 kV; adaptive tube current; pitch, 0.5; gantry rotation

time, 0.5s; and section collimation 64×0.625 mm. After completing

the scanning process, the acquired data was projected for spatial-

spectral reconstruction (Spectral level 4), with a thickness and an

image spacing of 0.992mm. Calcium suppression index (CaSupp-I)

of 25% was automatically generated from the Spectral Base Image

data. The second and the fourth lumbar vertebrae were selected as

the target vertebrae, which referred to a previous study (25).

Subsequently, in the reconstructed image with CaSupp-I 25%, the

region of interest (ROI) was delineated manually in the cancellous

area at the axial plane of the vertebral body, centered between

midvertebral and the superior endplate, using 3D-slicer software

(version 5.6, https://www.slicer.org/).All procedures were

conducted by a radiologist with five years of clinical experience in

diagnostic imaging. Care was taken to avoid including cortical bone.

Radiomics features were extracted from ROIs of the two

vertebrae in CaSupp-I 25% image, which had an original axial

imaging matrix of 512×512. Preprocessing was performed to ensure

image comparability, including: (1) resampling images to a voxel

size of 1×1×1 mm3; (2) discretizing grayscale values with a bin

width of 25 gray levels (26); and (3) normalizing grayscale values

across all images to a uniform range of [0,1] using PyRadiomics

(normalize = True, normalizeScale = 50), applying a Z‐score

transform f(x)=50 (x−m)/s to all voxels (27).
Frontiers in Oncology 04
Radiomics feature selection and radiomics
construction

The 150 subjects were randomly divided in a 7:3 ratio into the

train (N = 105) and test cohorts (N = 45). The following methods

were conducted in the train cohort to identify the most stable and

predictive features for constructing the final radiomics model:

maximum relevance minimum redundancy (mRMR) (28)

algorithm and least absolute shrinkage and selection operator

(LASSO) regression (29). Specifically, all extracted features were

first imported into the mRMR algorithm for feature selection

according to different endpoints, with redundant and irrelevant

features eliminated. Subsequently, the LASSO analysis was applied

to the features selected previously to determine the optimal features

for establishing the radiomics model. Considering the potential

interrelationships between radiomics features rather than their

independence, the selected features were combined by adding the

product of each feature and its corresponding regression coefficient

to calculate the radiomics score (Rad_score). The workflow for

image segmentation, feature selection, model construction, and

model evaluation are illustrated in Figure 2.
Clinical and combined models
construction and performance evaluation

In the train cohort, univariate and multivariate regression

analyses were performed to screen predictive clinical variables.

Variables with P < 0.05 in the univariate analysis were included

in a backward multivariate regression, and subsequently, these

selected variables were utilized to construct the clinics models.

Meanwhile, these clinical variables, along with the Rad_score, were

incorporated to construct the combined models for predicting

myelosuppression. Nomograms were generated to visualize the

combined models. The Hosmer-Lemeshow test was used to assess

the goodness-of-fit of the models and calibration curves were

employed to visualize model fit. Additionally, decision curve

analysis (DCA) was used to evaluate the clinical utility of

the models.
Statistical analysis

All statistical analyses were conducted using R software (version

4.0.2). Feature selection through mRMR and LASSO was performed

with the “mRMRe” and “glmnet” packages, respectively. Normality

of continuous variables was assessed using the Shapiro–Wilk test.

Based on the results of normality tests, continuous data were

compared between groups using either the t-test or the Wilcoxon

test. For categorical variables, group differences were analyzed using

the chi-square test, or Fisher’s exact test when applicable. The

diagnostic performance of different models was assessed by

calculating the area under the receiver operating characteristic

curve (AUC). To compare the predictive accuracy of our
frontiersin.org
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radiomics models, pairwise AUC differences were assessed by

DeLong’s test, and P-values were adjusted using the Bonferroni

correction to maintain an overall family-wise error rate of 0.05 (i.e.,

per-comparison a = 0.05/number_of_tests). A two-tailed P-value

<0.05 was considered statistically significant.
Results

Clinical characteristics

A total of 150 participants (101 males and 49 females), aged

between 21 and 70 years, were enrolled in the study. The occurrence

rates of myelosuppression in IC - 1 and IC-n were 38.67% (58/150)

and 73.33% (110/150), respectively. Compared with the non-

myelosuppression group, the myelosuppression group had

significantly lower baseline Leukocyte count, Neutrophil count,

Lymphocyte count, and PNI (all P<0.05, Table 1). Additionally,

for IC - 1, patients experiencing myelosuppression were found to be

older than those without myelosuppression; for the IC-n, the

myelosuppression group showed a higher PLR, a lower LMR, and

a more advanced cl inical TNM stage than the non-

myelosuppression group (all P<0.05, Table 1).
Radiomics model construction

A total of 1130 features were extracted from the vertebral ROIs,

categorized into three types: shape-based features, first-order

statistical features, and texture features which include gray-level

co-occurrence matrix (GLCM), gray-level run length matrix

(GLRLM), gray-level size zone matrix (GLSZM), gray-level

dependence matrix (GLDM) and neighborhood gray-tone

difference matrix (NGTDM). Based on the IC - 1 and IC-n

endpoints, 10 features most relevant to the outcomes were

ultimately selected by the mRMR and LASSO algorithms

(Supplementary Table S1). These features were used to calculate
Frontiers in Oncology 05
the Rad_score values and develop the radiomics and

combined models.
Radiomics feature selection

The myelosuppression group had significantly lower Rad_score

values than the non-myelosuppression group (-1.22 vs 0.59 for IC - 1,

P<0.001; and 0.11 vs 1.85 for IC-n, P<0.001). Among the 10 features

radiomics selected to calculate the Rad_score values, the most strongly

assoc ia ted wi th mye losuppress ion for IC - 1 were

wavelet.LLH_glszm_SizeZoneNonUniformityNormalized (Feature 1)

and wavelet.HHL_firstorder_Mean (Feature 2). For IC-n, the most

relevant features were original_glcm_InverseVariance (Feature 3) and

wavelet.LHH_glszm_SizeZoneNonUniformityNormalized (Feature 4).

The median values of these features in the myelosuppression and non-

myelosuppression groups were as follows: 0.228 vs. 0.216 (Feature 1; P

= 0.003), -0.163 vs. -0.121 (Feature 2; P = 0.007), 0.479 vs. 0.489

(Feature 3; P = 0.039), and 0.293 vs. 0.285 (Feature 4; P = 0.031).
Clinics and combined models construction

Multivariate logistic regression analyses indicated that age and

PNI were independent predictors of myelosuppression for IC - 1,

while Leukocyte and Neutrophil count emerged as independent

predictors for IC-n (Table 2). These clinical predictors were used to

develop the clinics models.

The nomograms integrating radiomics features and clinical

variables are shown in Figure 3. As illustrated, the nomogram

visualizes the combined model’s predicted risk using a point scale.

The predictive formulas for each endpoint are as follows:

YIC−1 = 2:73252 + 0:03381 ∗Age(Years) − 0:10418 ∗PNI + 0:37493 ∗Rad _ scoreIC−1

YIC−n = 4:1441 − 0:8383 ∗ Leukocyte(109=L) + 0:7166 ∗Neutrophil(109=L)

+ 0:3498 ∗Rad _ scoreIC−n
FIGURE 2

Flowchart of the radiomics model.
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TABLE 1 Baseline clinical characteristics for patients with or without myelosuppression in the first and the entire induction chemotherapy cycle.

First cycle (IC - 1) Entire cycle (IC-n)

elosuppression Myelosuppression
(n = 110)

P

4 49.85 ± 8.35 0.259

74 (67.27) 0.979

, 26.75) 23.77 (21.37, 25.38) 0.258

, 84.60) 68.50 (58.05, 74.90) 0.129

, 44.92) 43.05 (40.73, 44.70) 0.429

, 12.40) 11.95 (11.50, 12.30) 0.416

, 34.80) 32.20 (28.50, 35.18) 0.652

, 17.50) 16.70 (16.10, 17.38) 0.843

.82 143.61 ± 15.80 0.153

.24) 6.25 (5.41, 7.45) <.001

.47) 3.92 (3.11, 4.78) 0.010

.61) 0.48 (0.35, 0.57) 0.061

75, 293.25) 236.00 (207.00, 271.00) 0.178

.84) 1.73 (1.41, 2.18) <.001

.43) 2.23 (1.75, 2.87) 0.094

5, 145.13) 129.92 (107.01, 180.00) 0.015

28, 692.66) 546.14 (360.11, 758.06) 0.642

, 56.50) 51.42 (49.49, 54.56) <.001

.23) 3.73 (3.12, 4.76) 0.010

51 (46.36) 0.693

39 (35.45) 0.737

17 (15.45) 0.763

2 (1.82) 0.619
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Variables Total (n = 150) Non-myelosuppression
(n = 92)

Myelosuppression
(n = 58)

P
Non-my
(n = 40)

Age (Year) 49.24 ± 9.39 47.83 ± 9.96 51.48 ± 7.98 0.020 47.55 ± 11.7

Gender (male, %) 101 (67.33) 63 (68.48) 38 (65.52) 0.706 27 (67.50)

BMI (kg/m²), 23.73 (21.67, 25.76) 23.73 (21.51, 26.62) 23.67 (22.05, 24.90) 0.359 23.72 (22.55

Creatinine (mmol/L) 68.04 ± 12.79 68.38 ± 13.57 67.51 ± 11.54 0.688 68.15 (58.00

Serum Albumin(g/L) 42.90 (40.80, 44.77) 42.95 (41.18, 45.15) 42.85 (40.30, 44.58) 0.234 42.75 (41.60

PT(s) 11.90 (11.40, 12.38) 11.90 (11.28, 12.30) 12.00 (11.50, 12.47) 0.228 11.70 (11.17

APTT(s) 31.55 (27.57, 35.10) 31.05 (27.50, 34.78) 32.30 (28.68, 35.27) 0.504 31.20 (27.45

TT(s) 16.75 (16.10, 17.40) 16.70 (15.90, 17.22) 16.90 (16.20, 17.50) 0.111 16.80 (16.23

Hemoglobin count (g/L) 144.73 ± 15.86 146.01 ± 16.53 142.69 ± 14.65 0.213 147.80 ± 15

Leukocyte count (g/L) 6.50 (5.57, 7.92) 6.87 (5.81, 8.24) 5.88 (5.24, 7.45) 0.002 7.63 (6.42, 9

Neutrophil count (×109/L) 4.06 (3.26, 5.04) 4.21 (3.38, 5.25) 3.76 (3.00, 4.68) 0.032 4.49 (3.64, 5

Monocyte count (×109/L) 0.49 (0.37, 0.59) 0.52 (0.39, 0.61) 0.48 (0.34, 0.55) 0.090 0.55 (0.41, 0

Platelet count (×109/L)
241.00
(210.25, 282.75)

247.00 (213.75, 287.75) 233.00 (202.00, 270.25) 0.153 246.50 (213

Lymphocyte count (×109/L) 1.94 (1.47, 2.43) 2.03 (1.53, 2.55) 1.75 (1.34, 2.16) 0.018 2.34 (1.91, 2

NLR 2.14 (1.71, 2.84) 2.06 (1.68, 2.85) 2.19 (1.77, 2.83) 0.569 1.84 (1.56, 2

PLR
125.33
(100.23, 170.04)

123.16 (97.42, 161.11) 134.45 (105.27, 180.00) 0.176 116.89 (84.2

SII
520.70
(361.50, 743.45)

489.06 (371.38, 737.94) 543.62 (349.25, 743.45) 0.912 477.21 (372

PNI 52.50 (50.10, 55.56) 53.10 (50.90, 56.35) 51.20 (49.41, 53.60) 0.004 54.83 (52.12

LMR 4.14 (3.22, 4.87) 4.33 (3.28, 4.90) 3.77 (3.05, 4.76) 0.218 4.65 (3.81, 5

Smoking (+, %) 71 (47.33) 45 (48.91) 26 (44.83) 0.626 20 (50.00)

Drinking (+, %) 52 (34.67) 33 (35.87) 19 (32.76) 0.697 13 (32.50)

Hypertension (+, %) 24 (16.00) 19 (20.65) 5 (8.62) 0.050 7 (17.50)

Diabetes (+, %) 4 (2.67) 3 (3.26) 1 (1.72) 0.961 2 (5.00)
.

.
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TABLE 1 Continued

First cycle (IC - 1) Entire cycle (IC-n)

Non-myelosuppression
(n = 40)

Myelosuppression
(n = 110)

P

8 0.498

30 (75.00) 85 (77.27)

10 (25.00) 21 (19.09)

0 (0.00) 4 (3.64)

7 0.333

5 (12.50) 5 (4.55)

8 (20.00) 29 (26.36)

16 (40.00) 48 (43.64)

11 (27.50) 28 (25.45)

1 0.256

1 (2.50) 2 (1.82)

8 (20.00) 20 (18.18)

11 (27.50) 48 (43.64)

20 (50.00) 40 (36.36)

3 0.023

12 (30.00) 56 (50.91)

28 (70.00) 54 (49.09)

0.388

1 (2.50) 9 (8.18)

39 (97.50) 101 (91.82)

Platelet-to-lymphocyte ratio. SII, Systemic immune-inflammation index. LMR, Lymphocyte-to-monocyte
ta were expressed as mean ± standard deviation or median (interquartile range), and categorical variables
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Variables Total (n = 150) Non-myelosuppression
(n = 92)

Myelosuppression
(n = 58)

P

EB concentration
(copies/ml)

0.5

0-999 115 (76.67) 68 (73.91) 47 (81.03)

1000-9999 31 (20.67) 21 (22.83) 10 (17.24)

≥10000 4 (2.67) 3 (3.26) 1 (1.72)

Clinical T stage 0.11

1 10 (6.67) 8 (8.70) 2 (3.45)

2 37 (24.67) 18 (19.57) 19 (32.76)

3 64 (42.67) 38 (41.30) 26 (44.83)

4 39 (26.00) 28 (30.43) 11 (18.97)

Clinical N stage 0.9

0 3 (2.00) 2 (2.17) 1 (1.72)

1 28 (18.67) 18 (19.57) 10 (17.24)

2 59 (39.33) 34 (36.96) 25 (43.10)

3 60 (40.00) 38 (41.30) 22 (37.93)

Clinical TNM stage 0.11

III 68 (45.33) 37 (40.22) 31 (53.45)

IVa 82 (54.67) 55 (59.78) 27 (46.55)

Pathological type 1

WHO II 10 (6.67) 6 (6.52) 4 (6.90)

WHO III 140 (93.33) 86 (93.48) 54 (93.10)

BMI, Body Mass Index.PT, Prothrombin Time. APTT, Activated Partial Thromboplastin Time. TT, Thrombin Time. NLR, Neutrophil-to-lymphocyte ratio. PLR
ratio. PNI= Serum albumin value (g/L) + 5× Total number of peripheral blood lymphocytes count (×109/L). WHO, World Health Organization. Measurement d
are expressed by quantity (percentage). T-test or rank sum test for count data, and chi square test or Fisher exam for categorical data.
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The specific calculation formulas for Rad_score corresponding

to IC - 1 and IC-n are provided in Supplementary Table S1.

The combined model exhibited good predictive accuracy,

achieving AUC values for IC - 1 of 0.859 (95% CI: 0.790 - 0.928)

in the train cohort and 0.79 (95% CI: 0.657 - 0.922) in the test

cohort. Similarly, for IC-n, the AUC values were 0.889 (95% CI:

0.808 - 0.971) and 0.806 (95% CI: 0.638 - 0.973) in the train and test

cohorts, respectively (Table 3, Figure 4).
Models evaluation and comparison

For IC - 1, the clinics model, radiomics model, and combined

model had AUC values of 0.716,0.825 and 0.859 in the train cohort,

respectively; and AUC of 0.687, 0.752 and 0.790 in the test cohort,

respectively. For IC-n, the clinics model, radiomics model, and

combined model exhibited AUC values of 0.771, 0.824, and 0.889 in

the train cohort, respectively; and AUC of 0.652, 0.740 and 0.806 in

the test cohort, respectively (Table 3, Figure 4).

The combined models demonstrated significantly higher AUC

values than the clinics models for both IC - 1 and IC-n (all P<0.05).

The combined models showed significantly higher AUC values than

the radiomics models for IC-n (P<0.05), but not for IC - 1. The

differences in the AUC values between the radiomics and clinics

models tended to reach statistical significance for IC - 1 (P = 0.086

and 0.093), but not for IC-n (Table 3, Supplementary Table S2).

However, for both IC - 1 and IC-n, the radiomics models

demonstrated higher accuracy than the clinics models.

Calibration curves for the combined model showed good

agreement between the predicted and observed probabilities of
Frontiers in Oncology 08
myelosuppression occurrence in both the train and test cohorts

for IC - 1 and IC-n (Figure 5). Additionally, the Hosmer-Lemeshow

test indicated no significant deviation (For IC - 1, P = 0.154 in the

train cohort and P = 0.054 in the test cohort, respectively; For IC-n,

P = 0.202 in the train cohort and P = 0.148 in the test cohort,

respectively), confirming good calibration of the combined model.

DCA of the combined model indicated greater clinical net benefit in

predicting myelosuppression after IC for LANPC patients

compared to either the radiomics or clinics model alone

(Supplementary Figure S1). These findings suggest that the

combined model offers higher clinical utility for predicting

myelosuppression compared to the clinics model alone.
Discussion

In this study, we have developed and internally validated

models predicting myelosuppression at different IC stages based

on baseline vertebral CaSupp radiomics features combined with

clinical characteristics of LANPC patients. As we understand it, this

is a pioneering study focused on the prediction of myelosuppression

in LANPC, using the CaSupp radiomics derived from DLCT images

of bones. Overall, both the radiomics and combined models

achieved good predictive performance, with the combined model

outperforming the clinical model.

Consistent with previous reports, our observations also

demonstrated that patients with relatively abnormal baseline

hematological parameters (such as lower Leukocyte, Neutrophil,

and Lymphocyte count) (30, 31), lower PNI (32) and older age (13)

are more prone to myelosuppression after chemotherapy. Lower
TABLE 2 Clinical risk factors for myelosuppression in the first and entire induction chemotherapy cycle.

Variable
Univariate logistic regression Multivariate logistic regression

P Odds ratio (95%CI) P Odds ratio (95%CI)

First cycle (IC - 1)

Age 0.022 1.05 (1.01 ~ 1.09) 0.039 1.04 (1.01 ~ 1.08)

Leukocyte count 0.023 0.80 (0.66 ~ 0.97) – –

Lymphocyte count 0.022 0.54 (0.32 ~ 0.92) – –

PNI 0.006 0.90 (0.83 ~ 0.97) 0.01 0.91 (0.84 ~ 0.98)

Entire cycle (IC-n)

Leukocyte count <.001 0.71 (0.58 ~ 0.87) <.001 0.42 (0.25 ~ 0.70)

Neutrophil count 0.022 0.76 (0.60 ~ 0.96) 0.024 2.07 (1.10 ~ 3.89)

Lymphocyte count <.001 0.33 (0.19 ~ 0.59) – –

PLR 0.026 1.01 (1.01 ~ 1.02) – –

PNI <.001 0.86 (0.78 ~ 0.94) – –

Clinical TNM stag

III 1.00 (Reference) – –

IVa 0.025 0.41 (0.19 ~ 0.89) – –
Only clinical variables with P<0.05 in univariate analysis were shown. PNI= Serum albumin value (g/L) + 5× Total number of peripheral blood lymphocytes count (×109/L). PLR, Platelet-to-
lymphocyte ratio.
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baseline Leukocyte and Neutrophil counts reflect insufficient

hematopoietic capacity and limited hematopoietic reserves, which

make these patients more susceptible to myelosuppression.

Chemotherapy agents can impair hematopoietic stem cells or

disrupt the hematopoietic microenvironment, leading to a

decrease in the ability of bone marrow to generate hematopoietic

cells, which in turn causes a rapid decrease in blood cells. Given the

short survival time of granulocytes, patients with lower baseline

levels of Leukocyte and Neutrophils are more likely to experience

myelosuppression or leukopenia after chemotherapy. Older patients

are more l ikely to experience chemotherapy-induced

myelosuppression, which may be related to the decline in physical

function and reduced hematopoietic capacity in aging individuals.

Additionally, elderly patients have lower tolerance to chemotherapy

drugs, making them more likely to experience chemotherapy-

induced toxicities, such as liver and kidney dysfunction and

gastrointestinal reactions. These factors may also affect the

metabolism of chemotherapy drugs, leading to drug accumulation

in the body, which in turn triggers myelosuppression. PNI reflects

the nutritional and inflammatory status of the body. A low PNI

value generally reflects poor nutritional status and reduced immune

function, which may affect the nutritional support required for

hematopoiesis or alter the bone marrow microenvironment.

Reportedly, breast cancer patients with low PNI are more likely to

develop myelosuppression after neoadjuvant chemotherapy (32),

which is consistent with our findings. Nevertheless, although

basel ine clinical factors can contribute to predicting

myelosuppression in this study, their predictive performance
Frontiers in Oncology 09
remains relatively low (AUC values of 0.687 and 0.652 in the test

cohort), suggesting the need to explore better predictive indicators.

Chemotherapy-induced myelosuppression depends on bone

marrow reserve function, which is directly related to the

condition of bone marrow in cancellous bone, particularly in axial

bones such as the lumbar spine and pelvis. Abdominal CT is a

routine imaging examination required for clinical staging before

treatment in LANPC, making it possible to use lumbar spine CT

images to characterize bone marrow status. Unlike conventional

CT, DLCT can remove the calcium-induced attenuation from each

voxel through material decomposition, allowing simultaneous

assessment of trabeculae and marrow in a single scan (33, 34),

thus overcoming the limitations of conventional CT in bone

marrow imaging. Reportedly, CaSupp imaging can simultaneously

evaluate high-contrast (trabecular bone) and low-contrast tissue

(bone marrow) in one examination (17, 34). Therefore, CaSupp

images hold the potential for qualitative and quantitative diagnosis

of bone marrow diseases (35, 36). In DLCT, CaSupp-I can be

manually adjusted between 25% and 100% as needed (35).

Theoretically, a low CaSupp-I value indicates a high degree of

calcium suppression, therefore a low contribution of calcium to the

VNCa image. When CaSupp-I is set to 25%, the amount of calcium

subtracted reaches its maximum (37). Based on our experience (24),

at this CaSupp-I the contribution of calcified components to the

vertebral CT images can be completely removed, which means that

only the non-calcified components are displayed, primarily

including red and/or yellow bone marrow. Therefore, we

hypothesized that this CaSupp-I setting may accurately reflect the
FIGURE 3

The nomogram of the combined model for predicting myelosuppression. The nomogram of the combined model integrates clinical variables and
Rad_score for predicting myelosuppression in the first (A) and the entire (B) induction chemotherapy cycle in the train cohort.
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bone marrow conditions, which was the primary rationale for our

selection of this index. Nevertheless, despite a comprehensive

review of the current literature, no published studies have, to our

knowledge, applied radiomics models based on CaSupp images to

predict chemotherapy-induced myelosuppression in NPC patients.

As such, whether CaSupp-I of 25% is the optimal choice for

radiomics analysis, which is needed in future research.

Radiomics extracts high-throughput features from medical

images, hypothesized to reflect patients’ pathophysiological

information (14, 38), which provides potential opportunities for

using radiomic features to predict toxicities related to anti-tumor

therapy. For example, Huang et al. (15) demonstrated that

radiomics features extracted from pretreatment cranial and

cervical CT images of NPC patients correlated with post-

radiotherapy lymphopenia, and the constructed radiomics model

achieved high accuracy in predicting grade 4 lymphopenia (ACC =

0.81). Similarly, a radiomics model based on preprocessed pelvic

and sacral CT images of cervical cancer can help predict anemia and

leucopenia after radiotherapy (16). A previous report found that the

variations in texture feature derived from CaSupp images were

associated with changes in serum M-protein in myeloma patients

(22), suggesting the potential of CaSupp-based radiomics analysis

for evaluating hematopoietic status. Our findings preliminarily

confirmed the predictive performance of baseline CaSupp-based

radiomic features for chemotherapy-induced myelosuppression,

with AUC values (0.752 for IC - 1 and 0.740 for IC-n in the test

cohorts, respectively) slighter higher than the clinical models.

Although the difference in predictive performance between the

radiomic and clinical models did not reach statistical significance,

the observed trend warrants further investigation. In this study, the

combined model outperformed the clinics model, indicating that

incorporating radiomic imaging information on top of clinical

factors can significantly enhance predictive performance. This is
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particularly true for IC-n, as the combined model outperformed

both the clinics model and the radiomics model. Therefore, in

clinical practice, we should make full use of all available information

whenever possible. Although mRMR and LASSO were used for

feature selection, the performance difference between the train and

test cohort was still observed. For both IC - 1 and IC-n, the AUC of

the combined model in the test cohort (IC - 1: 0.790; IC-n: 0.806),

was notably lower than those in the train cohort (IC - 1: 0.859; IC-n:

0.889), suggesting the possibility of overfitting, and the necessary to

increase the sample size and conduct external multi-

center validation.

Regarding the four radiomics features (Features 1 to 4) that

were most strongly associated with myelosuppression, they may

reflect differences in vertebral heterogeneity and bone marrow

composition between the myelosuppression and non-

myelosuppression groups. Feature 2 represents the mean gray-

value of the region (39), and the lower the value, the weaker the

signal strength. In this study, a lower value of Feature 2 corresponds

to lower CT attenuation in vertebral CaSupp image and therefore a

higher proportion of yellowmarrow (fatty components) and a lower

proportion of red marrow. Features 1 and 4 measure normalized

size zone non-uniformity (39), reflecting the variability in region

volumes within the ROI. Higher feature value indicates increased

heterogeneity in region sizes, implying worse uniformity in texture

(39). Feature 3 captures the degree of local variation in image

texture, and a lower value is associated with higher tissue

heterogeneity (40, 41). In this study, the patients who developed

myelosuppression exhibited higher value of Features 1 and 4, as well

as lower values of Features 2 and 3, indicating that their vertebrae

exhibited greater heterogeneity and higher fat content compared to

those without myelosuppression. A more homogeneous

microenvironment of bone marrow can enhance the survival and

self-renewal capacity of hematopoietic stem cells by reducing
TABLE 3 Diagnostic performances of the models for predicting myelosuppression in the first and entire induction chemotherapy cycle.

Models

Train cohort Test cohort

AUC
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Accuracy
(95%CI)

AUC
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Accuracy
(95%CI)

First cycle (IC - 1)

Clinics
model

0.716
(0.614 - 0.818)

0.651
(0.533 - 0.769)

0.744
(0.7607 - 0.881)

0.686
(0.587 - 0.775)

0.687
(0.520 - 0.845)

0.643
(0.465 - 0.820)

0.792
(0.642 - 0.842)

0.694
(0.581 - 0.811)

Radiomics
model

0.825
(0.745 - 0.906)

0.921
(0.856 - 0.987)

0.559
(0.435 - 0.744)

0.800
(0.797 - 0.803)

0.752
(0.606 - 0.899)

0.679
(0.506 - 0.852)

0.804
(0.642 - 0.898)

0.711
(0.557 - 0.836)

Combined
model

0.859
(0.790 - 0.928)

0.603
(0.482 - 0.724)

0.949
(0.8779 - 1.000)

0.810
(0.807 - 0.812)

0.790
(0.657 - 0.922)

0.714
(0.547 - 0.882)

0.765
(0.563 - 0.966)

0.733
(0.581 - 0.854)

Entire cycle (IC-n)

Clinics
model

0.771
(0.658 - 0.884)

0.643
(0.465 - 0.820)

0.857
(0.779 - 0.935)

0.800
(0.711 - 0.820)

0.652
(0.469 - 0.834)

0.667
(0.400 - 0.933)

0.727
(0.575 - 0.879)

0.710
(0.702 - 0.720)

Radiomics
model

0.824
(0.730 - 0.918)

0.536
(0.351 - 0.720)

0.974
(0.938 - 1.000)

0.857
(0.775 - 0.918)

0.740
(0.558 - 0.922)

0.750
(0.505 - 0.995)

0.788
(0.648 - 0.927)

0.778
(0.770 - 0.785)

Combined
model

0.889
(0.808 - 0.971)

0.857
(0.728 - 0.987)

0.870
(0.795 - 0.945)

0.867
(0.786 - 0.925)

0.806
(0.638 - 0.973)

0.706
(0.485 - 0.913)

0.939
(0.858 - 1.000)

0.867
(0.732 - 0.949)
AUC, Area under ROC curve; 95% CI, 95% confidence interval.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1574250
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1574250
intercellular competition and interference (42), and therefore be

more beneficial for hematopoiesis.

Our opinion in the differences in vertebral heterogeneity and

bone marrow composition between the myelosuppression and non-

myelosuppression groups could be supported by the finding in age

between the two groups, namely the myelosuppression cohort were

older in this study. As age increases, bone marrow heterogeneity

also grows (43). This is primarily due to the degeneration and

remodeling of the bone marrow microenvironment with aging,

characterized by a decrease in osteoblasts and an increase in

adipocytes (44). These changes affect the structure and function

of bone marrow, and thereby negatively impact the maintenance of

hematopoiesis (45). Furthermore, during aging, bone marrow

mesenchymal stem cells exhibit altered differentiation abilities,

shifting from osteogenesis toward adipogenesis (46), which
Frontiers in Oncology 11
further leads to increased bone marrow heterogeneity and an

increase in fat content.

This is the first study to demonstrate the predictive value of

radiomic features extracted from DLCT CaSupp images for

predicting chemotherapy-induced myelosuppression in NPC

patients. CT was selected as the imaging modality primarily due

to its widespread availability and routine application in the

metastatic evaluation of NPC. We believe that prediction models

based on DLCT CaSupp images may offer a more cost-effective and

clinically practical alternative to functional imaging modalities such

as positron emission tomography (PET). A previous study reported

that dose–volume histogram parameters of red bone marrow

derived from MRI images could predict grade ≥2 hematologic

toxicity (47). In addition, Dieckmeyer et al. (43) demonstrated the

utility of texture analysis for assessing bone marrow heterogeneity.
FIGURE 4

Receiver operating characteristic (ROC) curve among different models for the prediction of myelosuppression. ROC curve among clinics, radiomics
and combined model for the prediction of myelosuppression in the train (A) and test (B) cohort in the first induction chemotherapy cycle, and the
train (C) and test (D) cohort in the entire induction chemotherapy cycle.
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Nevertheless, further research is needed to directly compare the

performance of different imaging modalities for bone

marrow evaluation.

Of note, the present exploration might have some advantages.

First, the CaSupp images were based on DLCT. Considering that

DLCT allows retrospective analysis of dual-energy data without

requiring a prospective scanning protocol for dual-energy data

collection, it is more convenient than other dual-energy CT

approaches in clinical practice. Second, the representative

trabecular bone region between the midvertebral and the superior

endplate of the lumbar vertebra was chosen for its advantages: (1)

the lumbar vertebrae are the main site of hematopoiesis in adults,

second only to the pelvis, and can reflect the hematopoietic and

reserve capacity of the patient’s bone marrow well; (2) this region

avoids the higher-density areas in the center of the vertebral body,

minimizing the influence of non-bone marrow regions on the
Frontiers in Oncology 12
results. Finally, we have developed a visual scoring system to

quantify the risk of myelosuppression, which may enable

personalized prediction for NPC patients undergoing

chemotherapy in the future.

However, this study has several limitations. First, the

retrospective nature of the study may lead to selection bias.

Second, this study was conducted at a single center with a

relatively small sample size. The enrolled population may not

represent the entire NPC patient population and may not even

reflect the demographic characteristics of NPC patients in China.

Thus, future multi-center and prospective studies are warranted to

construct models with broader generalizability and to confirm their

clinical effectiveness. Third, this study solely focused on lumbar

spine CT images and did not include data from other axial bones

(such as the thoracic spine and pelvis) that may contain information

on bone marrow reserve function. The extracted bone marrow
FIGURE 5

Calibration curves of the combined model. Calibration curves of the combined model in the train (A) and test (B) cohorts for the first induction
chemotherapy cycle, as well as in the train (C) and test (D) cohorts for the entire induction chemotherapy cycle.
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information might not fully represent the heterogeneity of bone

marrow reserves across different anatomical sites. Therefore, further

research is needed to analyze and compare different imaging sites

and modalities (such as MRI and PET) to determine the optimal

imaging approach. Finally, considering the model’s interpretability

and the relatively small sample size, logistic regression was selected

as the primary analytical method. Nonetheless, it is necessary to

explore more complex machine learning approaches for model

construction in future studies.
Conclusions

In summary, our study developed and validated a radiomics

model based on CaSupp images of DLCT, which has the potential to

predict the risk of myelosuppression in LANPC patients after

chemotherapy. By integrating clinical variables and radiomics

features, our model achieved encouraging predictive performance

in identifying patients at high risk for myelosuppression. These

findings not only confirm the potential of DLCT technology in bone

marrow imaging but also provide a potentially valuable tool for

clinical use in predicting and possibly preventing chemotherapy-

induced myelosuppression.
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