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Background:Glioma stands as one of themost lethal brain tumors in humans, and its

accurate diagnosis is critical for patient treatment and prognosis. Magnetic Resonance

Imaging (MRI) has been widely utilized for glioma diagnosis and research due to its

non-invasive nature and clinical accessibility. According to the 2021 World Health

Organization Central Nervous System Tumor Classification guidelines, glioma

subtypes can be determined through molecular status information of Isocitrate

Dehydrogenase (IDH), Chromosome 1p/19q codeletion (1p/19q), and Alpha

Thalassemia/Mental Retardation Syndrome X-linked (ATRX) genes.

Method: In this study, we propose a dual-path parallel fusion network (MDPNet)

designed to comprehensively extract heterogeneous features across different

MRI modalities while simultaneously predicting the molecular status of IDH, 1p/

19q, and ATRX. To mitigate the impact of data imbalance, we developed a cross-

gene feature-sharing classifier and implemented an adaptive weighted loss

function, substantially enhancing the model’s predictive performance.

Results: In this study, each gene classification task was formulated as a binary

classification problem. Experiments conducted on public datasets demonstrate

that our method outperforms existing approaches in accuracy, Area Under the

Curve (AUC), sensitivity, and specificity. The achieved classification accuracies for

IDH, ATRX, and 1p/19q reach 86.7%, 92.0%, and 89.3%, respectively. The source

code of this study can be viewed at https://github.com/whz847/MDPNet.

Conclusion: The proposed framework exhibits significant advantages in

integrating heterogeneous features from multi-modal MRI data. Experimental

results from internal datasets further validate themodel’s superior generalizability

and clinical utility in assisting glioma diagnosis, highlighting its potential for real-

world clinical applications.
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1 Introduction

Gliomas are the most common primary brain tumors in the

central nervous system (1). According to the 2021 World Health

Organization Central Nervous System Tumor Classification (WHO

CNS5), gliomas are classified as low-grade gliomas (LGG, grades 1-

2) and high-grade gliomas (HGG, grades 3-4) (2). Low-grade

gliomas are less invasive and have a more favorable prognosis

compared to high-grade gliomas (3). Depending on the cell type,

gliomas are mainly divided into glioblastoma, astrocytoma, and

oligodendroglioma. In the WHO CNS5 classification, glioblastoma

is explicitly classified as the most malignant high-grade glioma

(grade 4), while astrocytomas and oligodendrogliomas can be

classified as low-grade (grade 2) or high-grade (grades 3 to 4)

based on their molecular characteristics and pathological

characteristics (2). Treatment strategies and survival outcomes

differ significantly between glioma subtypes, making an accurate

classification crucial to determine appropriate treatment plans and

evaluate prognosis.

According to the WHO CNS5, the types of gliomas can be

determined based on the status information of gene molecules such

as IDH, 1p/19q, and ATRX. Specifically, IDH and ATRX can be

classified into two categories based on mutation status: wild-type

and mutant. Meanwhile, the 1p/19q status is determined by the

presence or absence of co-deletion of chromosome 1p and

chromosome 19q, categorized as intact or co-deleted. If an IDH

mutation is present along with a 1p/19q co-deletion, the tumor is

classified as an oligodendroglioma. If there is no 1p/19q co-deletion

but an ATRX mutation is present, the tumor is classified as an

astrocytoma. In cases where IDH remains wild-type, the tumor is

diagnosed as a glioblastoma (2). IDH is a key enzyme involved in

cellular metabolism and its mutation status is crucial to the

diagnosis and treatment of gliomas. In general, gliomas with IDH

mutations have a more favorable prognosis than those with wild-

type IDH (4, 5). The 1p/19q codeletion is a rare chromosomal loss

event in gliomas (6). ATRX is a protein involved in DNA repair and

replication, and its mutation status also affects the diagnosis and

prognosis of gliomas (7).

Traditionally, the gold standards for identifying these gene

statuses mainly include immunohistochemistry and gene

sequencing, both of which typically rely on tissue samples

obtained through surgery. Although these methods form the basis

for precise diagnosis, they require postoperative procedures, which

leads to delays in the obtaining of molecular diagnostic information

(8, 9). In contrast, if gene status information could be obtained

preoperatively through non-invasive imaging analysis, it would

provide supplementary support for surgical planning and

postoperative treatment strategies. Therefore, exploring non-

invasive preoperative detection methods holds significant value in

optimizing treatment strategies and minimizing patient burden.

Magnetic resonance imaging (MRI) is widely used due to its non-

invasive nature and diagnostic utility. It can acquire different

sequence modalities of the patient’s brain, such as T1, T1-ce, T2,

and FLAIR. These modalities provide information such as the

morphology, spread range, and surrounding tissues of gliomas
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(10). Among them, the T2 and FLAIR modalities mainly provide

information such as lesion boundaries, edema, and invasion related

to glioma lesions (11). Figure 1 presents MRI scans from the four

modalities discussed.

In Figure 1, the MRI in the first row shows IDH wild-type,

ATRX wild-type, and 1p/19q non-codeletion; the MRI in the

second row shows IDH mutation, ATRX mutation, and 1p/19q

non-codeletion. The red arrow in the image indicates the glioma

lesion area. Normally, IDH wild-type gliomas exhibit peripheral

annular enhancement with accompanying necrosis; however, most

IDH-mutant gliomas demonstrate less contrast enhancement and

more non-enhancing solid components (12). Compared to ATRX

wild-type gliomas, ATRX-mutant gliomas exhibit a lower frequency

of tumor edema (13). Gliomas with 1p/19q codeletion often have

indistinct tumor margins and commonly contain calcifications (12).

In clinical practice, due to the heterogeneity of gliomas, even

experienced neuroradiologists often struggle to accurately

differentiate glioma types and genotypes directly from MRI scans.

In recent years, deep learning algorithms have been extensively

applied in radiomics studies of gliomas, demonstrating remarkable

progress in molecular subtyping based on multi-modal MRI and

genomic profiles (14, 15). However, existing deep learning-based

approaches for glioma genotyping using multi-modal MRI

predominantly focus on individual classification of IDH or 1p/

19q, neglecting inter-gene correlations (16–18). This limitation not

only constrains model performance but also diminishes clinical

utility. Consequently, simultaneous joint classification of three

molecular markers (IDH, 1p/19q, and ATRX) within a unified

deep learning framework represents a promising research direction.

Gliomas are biologically and morphologically highly

heterogeneous brain tumors, with this heterogeneity constituting

a fundamental aspect of the disease and a critical feature that deep

learning models must effectively capture (19).Previous studies have

indicated that the T2-FLAIR mismatch serves as a significant

biomarker for predicting gene mutations, such as IDH and 1p/

19q, characterized by high heterogeneity (14). As illustrated in

Figure 1, the characteristic heterogeneity between T2 and FLAIR is

demonstrated as follows: gliomas exhibit nearly complete and

uniformly high-intensity signals on T2 imaging, while FLAIR

imaging reveals high-intensity peripheral edges and relatively low

intensity central regions. This high feature heterogeneity in T2 and

FLAIR is crucial for the prediction of genes such as IDH. As these

heterogeneous features can be used to identify gliomas with

mutations in such genes. Therefore, how to effectively utilize the

heterogeneous features between T2 and FLAIR and adaptively fuse

them with other discriminatory features related to such genes has

become a key issue in improving the prediction performance of

those genes.

The issue of data imbalance is highly prevalent in medical

imaging data analysis, posing significant challenges for disease

classification tasks (20). When a particular disease constitutes

only a small fraction of the entire dataset, deep learning classifiers

tend to favor the majority class, thereby underestimating the

importance of the minority class. In such scenarios, although the

network may achieve high disease prediction accuracy on the
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training and validation sets, its actual predictive performance—

often evaluated using metrics such as the area under the curve

(AUC)—frequently falls short. This discrepancy can lead to

misdiagnoses, ultimately compromising patient outcomes.

Therefore, developing effective strategies to mitigate the adverse

impact of data imbalance on network models and enhance their

clinical applicability remains a critical research priority.

In this study, we propose a dual-path parallel fusion network

(MDPNet),as shown in Figure 2, which performs joint classification of

gene molecules from multimodal MRI in an end-to-end manner. The

network comprises two core components: 1) attention-guided

asymmetric dual-path feature extraction (ADFE), integrating

convolutional neural networks with attention mechanisms to

comprehensively capture local global information and T2-FLAIR

heterogeneous features; 2) gene typing guided by inter-gene

relationships (IGT), which constructs a sophisticated classifier by

modeling gene-gene interactions to achieve accurate classification of

IDH, 1p/19q, and ATRX. Furthermore, a tailored loss function is

introduced to mitigate the adverse effects of data imbalance during

model training. These methodological advancements not only address

the limitations of existing studies by enhancing both the

comprehensiveness and accuracy of predictions but also provide robust

support for precision medicine in glioma diagnosis and treatment.
2 Methodology

In this study, we propose a novel dual-path parallel fusion

network model (MDPNet) for glioma genotyping, as shown in

Figure 2. MDPNet consists of two parallel paths designed to

efficiently genotype gliomas using multimodal MRI data. The
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model is composed of two main components: attention-guided

asymmetric dual-path feature extraction (ADFE) and gene typing

guided by inter-gene relationships(IGT).

ADFE primarily employs two parallel pathways to extract and

enhance feature information from input multi-modal MRI data. By

utilizing strategies of feature fusion and residual connections, this

approach particularly strengthens the heterogeneous features

associated with glioma lesions in T2 and FLAIR modalities.

Consequently, it enhances the network’s capability to discern

subtle differences in the structural characteristics of glioma lesion

tissues. Subsequently, by employing various attention mechanisms

to extract distinct features from the enhanced data, global

contextual information can be captured to address the limitations

of CNN, while also extracting more discriminative high-order

feature information, thereby providing essential conditions for

accurate classification in future analyses. IGT leverages

the higher-order feature information provided by ADFE and the

inter-gene relationships to construct a pathway for guiding the 1p/

19q classification using the genotyping results of the IDH and

ATRX genes. This strategy allows for the simultaneous prediction of

IDHmutation status, 1p/19q codeletion status, and ATRXmutation

status, while also significantly enhancing the network’s typing

ability for the three gene molecules. Detailed descriptions of these

two components are provided in the following sections.
2.1 Attention-guided asymmetric dual-path
feature extraction (ADFE)

Currently, research on gene molecular typing of gliomas

typically employs a singular approach to extract feature
FIGURE 1

MR images of different modalities. From left to right, the images correspond to T1, T1-ce, T2, and FLAIR modalities. The first row represents cases
with IDH wild-type, ATRX wild-type, and 1p/19q non-codeletion status. The second row represents cases with IDH mutant, ATRX mutant, and 1p/
19q non-codeletion status.
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information from multimodal MRI data. Although this method

accounts for the heterogeneity of gliomas and is advantageous for

gene molecular typing, it overlooks the impact of mismatched

features between T2 and FLAIR modalities on gene molecular

typing, particularly regarding IDH. This study proposes an

attention-guided asymmetric dual-path feature extraction method

(ADFE) designed to extract multimodal MRI features while

thoroughly exploring and enhancing the heterogeneity of T2 and

FLAIR modalities, thus further improving the performance of gene

molecular typing.

Specifically, ADFE comprises two parallel feature extraction

paths. The first path comprehensively processes the fused feature

information from four modalities: T1, T1-ce, T2, and FLAIR. The

second path focuses on extracting mismatched features between the

T2 and FLAIR modalities. Feature enhancement is performed in the

middle to enable information interaction between the two paths,

thereby enhancing the heterogeneous feature information from the

T2 and FLAIR modalities, ultimately improving the prediction

performance of the network.

2.1.1 Enhancement of T2 and FLAIR feature
information

In ADFE, the first path initially performs a 3 × 3 × 3

convolution operation on the fused images of four MRI

modalities, generating a feature map with 16 channels. To capture

spatial and feature representations, a feature map is generated

through multiple stacked residual convolution blocks and

downsampling operations, producing a feature map F ∈
RC�H�W�D. Each residual convolution block consists of two

convolutional layers with kernel sizes of 3×3×3. For the

downsampling operation, a 3×3×3 convolution with a stride of 2

is used instead of pooling, and the output channel is set to twice the

input channel. The second path, based on 3D ResNet18, begins by
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performing an initial convolution on the fused images of two MRI

scans. The resulting feature maps are then processed through

multiple stacked residual convolution blocks with kernel sizes of

3 × 3 × 3 to capture feature information.

After extracting feature information from each input image

through both paths, the network fuses the low-level feature

information from the two paths. This step achieves information

exchange between the two paths through concatenation and

convolution of the initially extracted low-level features. After

passing through the residual convolution blocks of both paths

and the downsampling operation with a kernel size of 3 × 3 × 3

and a stride of 2 in the first path, feature maps F1 and F2 with 128

channels and dimensions of 16 × 16 × 16 are obtained, respectively.

The feature maps F3 and F4 are then concatenated along the channel

dimension to produce a feature map F5 of size 16 × 16 × 16 with 256

channels. Subsequently, this feature map is integrated and its

dimensionality is reduced through a convolution with a kernel

size of 1×1×1, reducing the number of channels to 128. Finally, the

reduced feature information is fused with the previously extracted

feature information via a residual connection to enhance feature

representation. This feature enhancement process not only retains

all the feature information from both paths but also promotes the

complementarity and enhancement of mismatched features

between the T2 and FLAIR modalities. The 1 × 1 × 1 convolution

operation promotes deep feature fusion while controlling model

complexity through channel dimensionality reduction, thus

reducing the risk of overfitting and maintaining the network’s

ability to distinguish glioma molecular typing tasks. Through this

process, effective information exchange is achieved between the two

paths, enhancing key lesion features relevant to both.

To demonstrate that our method effectively enhances key

features of glioma lesion areas, we used the lesion area from the

first row of the MR image in Figure 1 as the center and cropped the
FIGURE 2

The network architecture of MDPNet.
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image data to a size of 128 × 128 × 128 for input into the MDPNet

model. In Figure 3, we presented 2D slices of the 16 × 16 × 16

feature maps generated by MDPNet at different training stages. The

yellow regions in the feature maps represent the highly focused

areas of the network, and the expansion of these yellow regions

corresponds to the enhanced ability of the network to capture key

features of lesion areas. To further demonstrate the effectiveness of

our proposed method, we visualized a channel of the 3D feature

map obtained at different stages during the feature enhancement

process in Figure 3. The visualized 3D feature map is shown

in Figure 4.

From Figures 3, 4, it can be observed that our method improves

the network’s attention to the glioma lesion area, providing more

accurate and detailed feature inputs for subsequent high-order

feature extraction and gene typing.

2.1.2 Deep feature information extraction
Convolutional neural networks(CNN) excel at extracting local

features and structural information from data, while the attention

mechanism dynamically assigns different weights to the features

extracted by the CNN, emphasizing important feature information

and downplaying irrelevant parts. Therefore, combining the two

can enhance the learning and utilization efficiency of the model for

key features (21, 22).

To improve the representation of high-order features, the latter

half of ADFE employs the attention mechanism. In the first path, we
Frontiers in Oncology 05
used the Vision Transformer (ViT) (23). For three-dimensional

volume data, we extended the ViT model to handle 3D data by

partitioning the data into 3D blocks. However, embedding large-

sized 3D patches inevitably increases the computational overhead of

transformer. To address this issue, the low-resolution feature map

Fl ∈ R128�16�16�16, extracted from the CNN, is fed into the Vision

Transformer to learn global feature representations. To ensure

comprehensive and in-depth feature representation for each 3D

volume, we utilized a linear projection layer composed of

convolutions with kernel sizes of 3 × 3 × 3. This layer expands

the number of channels in the feature map from 128 to 512, thereby

enhancing its expressive power. Subsequently, to provide a more

compact and efficient input for the model, we reshaped the adjusted

feature maps into input tokens for the Vision Transformer. To

encode positional information, learnable position embeddings Epos
are integrated into patch embeddings Epat through addition

operations, resulting in the final feature embedding Z. Then, Z is

fed into 4 stacked Transformer layers. Each transformer layer

consists of Multi-Head Self-Attention(MSA) and a multi-layer

perceptron block. The self-attention input at layer l is as shown

in Equation 1:

Q = Zl−1WQ,K = Zl−1WK ,V = Zl−1WV (1)

where WQ,WK,WV are learnable parameters of three linear

projection layers. The self-attention computation is as shown in

Equation 2:
3×3×3F1

F2

F3

F4

F5
F6

F7

F8

3×3×3

3×3×3

3×3×3

3×3×3

1×1×1

FIGURE 3

The feature enhancement process of T2 and FLAIR modalities by MDPNet.
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SA   Zl−1
� �

= Softmax  
QKTffiffiffi

d
p

� �
V (2)

where d is the dimension of the triplet (Q,K,V). The output of

the multi-head self-attention module is then transformed by a

multi-layer perceptron block with residual connections, serving as

the output of that layer.

The first pathway is designed to process data from four MRI

modalities: T1, T1ce, T2, and FLAIR. This requires the network to

capture global dependencies to establish an accurate contextual

representation. Therefore, we adopt a Vision Transformer (ViT)

architecture, as ViT excel at capturing global information. In

contrast, the second pathway focuses on learning the mismatched

features between T2 and FLAIR modalities. These mismatches

typically manifest as local rather than global variations,

necessitating a network with strong local feature extraction

capabilities. To achieve this while maintaining computational

efficiency, we constructed a 3D Residual Dual Attention Module

(3D-RDA), as shown in Figure 5. This module extracts high-order

features from the enhanced features by sequentially embedding

channel attention and spatial attention in each residual block of 3D

ResNet18. This design aims to refine features through the residual

architecture while utilizing attention mechanisms to enhance the

model’s ability to identify and extract key information. 3D-RDA

takes feature map F8 as input.

In the channel attention section, the inputM ∈ RC0�H0�W 0�D0
is

processed through a series of transformations to obtain a three-

dimensional channel attention map, generating channel features

M0 ∈ RC0�H0�W 0�D0
. The channel attention mechanism promotes
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effective feature differentiation and enhancement by learning the

interdependence between channels, thereby improving the feature

representational power (24). The output of this part, U ∈
RC0�H0�W 0�D0

, is as shown in Equation 3:

UM = s (MLP(AvgPool(M)) +MLP(MaxPool(M)))�M (3)

where s is the sigmoid activation function. The spatial attention

part focuses on the spatial information of the glioma lesions. The

input of this part is U, and the output U 0 ∈ RC0�H0�W 0�D0
, is as

shown in Equation 4:

U 0(U) = s (Conv(½AugPool(U);MaxPool(U)�))� U (4)

where Conv represents a 7 × 7 × 7 3D convolution. Residual

connections and feature fusion then perform element-wise addition

of the input feature map F0 and the spatial attention output U 0,
yielding output F0 + U 0. Embedding these two attention

mechanisms into each residual structure greatly enhances the

model’s ability to capture glioma lesion features.

By extracting differentiated features from the enhanced features,

our model can thoroughly capture and learn the lesion

characteristics of gliomas from multiple perspectives. This

strategy, which integrates various information processing

methods, has further strengthened the model’s foundational

performance and improved the network’s ability to classify gene

molecules. In summary, ADFE significantly enhances the network’s

ability to capture key lesion features of gliomas through a carefully

designed dual-path parallel fusion architecture and feature fusion

strategy, providing more precise and enriched feature inputs for
3×3×3 3×3×3

GMP

··· ··· ···

MLP

GAP

C 7×7×7

Channel Attention Spatial Attention

FIGURE 5

3D Residual Dual Attention Module (3D-RDA).
FIGURE 4

The 3D feature maps of MDPNet at different stages during the feature enhancement process for T2 and FLAIR modalities, from left to right,
represent one channel of the 3D feature maps F3, F4, F6, F7, and F8, respectively.
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subsequent gene typing. It is a core component for achieving

efficient molecular typing.
2.2 Gene typing guided by inter-gene
relationships (IGT)

In the study of molecular subtyping of glioma genes, the task of

multi-gene joint subtyping often treats each gene as an independent

unit for individual predictions. This approach overlooks the

complex interactions between genes and fails to fully utilize their

relationships, thereby limiting the model’s predictive performance.

To address this limitation, we designed a gene typing guided by

inter-gene relationships(IGT) strategy in this study. This strategy

leverages weight sharing between different genes and utilizes inter-

gene relationships to improve the overall performance of the

network, particularly enhancing its performance in the

classification of 1p/19q.

Regarding the interrelationships among the IDH, ATRX, and

1p/19q genetic markers, in brief: when the IDH gene is wild-type,

the 1p/19q is typically in a non-codeletion state; when the ATRX

gene is mutant, the 1p/19q gene is also generally non-codeletion.

However, these relationships are unidirectional and not absolute,

meaning that the state information of a single genetic marker is

insufficient to directly infer the specific status of other markers (25,

26). Therefore, we propose simultaneously classifying these three

genetic markers. In our model architecture, we designed two

auxiliary paths: one guides the classification of 1p/19q based on

the IDH classification results, and the other influences 1p/19q

classification through the ATRX classification results.

Specifically, after extracting advanced features from the input

image using ADFE, we fuse the features at different scales to

construct a multi-scale classification network for the three gene

molecular subtypes. We use global average pooling(GAP) and

global max pooling(GMP) to transform the multi-scale feature

maps from each channel into a uniform size. GAP and GMP

were chosen because they do not require any additional

parameters for optimization. These collected multi-scale features

are then fused via concatenation and input into a fully connected

layer consisting of 1792, 1280, 512, 32, and 2 neurons. Finally, the

softmax function outputs the probabilities of the three gene

molecular subtypes. The probability representation is as shown in

Equations 5–7:

P(i)
idh = Softmax(Nidh) (5)

P(i)
atrx = Softmax(Natrx) (6)

P(i)
1p=19q = Softmax(Concat½N1p=19q; max (P(i)

idh); max (P(i)
atrx)�) (7)

where N represents the fully connected network for gene typing,

Concat represents the concatenation operation, and P(i) ∈ R1�2 is

the output probability of sample i belonging to a certain category.
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The design of IGT aims to leverage the known typing

information of IDH and ATRX to guide the determination of 1p/

19q gene status, thereby enhancing the model’s ability to utilize

interdependencies between genes, improving the overall

performance of the network, and addressing the shortcomings of

traditional gene typing methods. Moreover, this strategy mitigates

the issue of biased predictions that arise during training due to the

severe class imbalance between the 1p/19q non-codeletion and

codeletion subtypes, ultimately enhancing the model’s accuracy in

distinguishing 1p/19q genetic subtypes.

The subsequent ablation experiments in this study will validate

the effectiveness of our proposed method, revealing the specific

contributions and limitations of each gene to the final typing

performance through comparative analysis.
2.3 Loss function

The issue of class imbalance is a significant challenge that

cannot be overlooked in the analysis of medical imaging data. In

our study, the number of IDH wild-type cases is approximately

twice that of IDH mutant cases, highlighting the uneven data

distribution. Furthermore, among the 241 samples, ATRX mutant

and 1p/19q codeleted cases account for only 20% (48 cases) and

11% (27 cases), respectively. The severe imbalance in sample

categories not only poses a significant challenge to the model’s

classification accuracy but also may lead to overfitting toward the

majority class, thus neglecting the learning of minority

class features.

To address this challenge, we adopted a strategy by introducing

large margin aware focal(LMF) loss (27) to mitigate the class

imbalance problem in medical imaging. LMF loss jointly

optimizes focal loss and LDAM loss, aiming to alleviate the

negative impact of class imbalance by dynamically adjusting the

loss weights. This ensures that the model can significantly improve

its detection accuracy for minority classes while efficiently

classifying the majority class. This loss function is as shown in

Equation 8:

L = aLLDAM + bLFL (8)

where LLDAM and LFL are the LDAM Loss (28) and Focal Loss

(29), respectively, and a and b are two hyperparameters. The

calculations for Focal Loss and LDAM Loss are shown in

Equations 9, 10:

LFL(pt) = −at(1 − pt)
g  log(pt) (9)

where pt denotes the probability of correct classification by the

model, at is the weight of class t, and g is a modulation factor.

LLDAM   = −o
c

i−1
yi ·  

1

1 − e−m(max(0, mi−d )+1)
· log(pi) (10)

where yi represents the label of class i, pi is the probability

predicted by the model for class i , m is a predefined
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hyperparameter, mi represents the margin for class i (with smaller

values for more frequent classes), and d is a threshold. In our study,

as the typing of the three gene molecules is combined, improper

task weight settings can lead to network bias, causing the network to

focus more on predicting one specific gene molecule. To mitigate

this negative impact, we designed a method to adaptively adjust the

weights for the loss functions of the three gene molecular typings.

This loss function is as shown in Equation 11:

Lmul =
1

3s2
idh

Lidh +
1

3s 2
1p=19q

L1p=19q +
1

3s2
atrx

Latrx

+ log (sidhs1p=19qsatrx) (11)

where Lidh, L1p=19q, and Latrx are the LMF Loss used for the

typing of IDH, 1p/19q, and ATRX gene molecules, respectively. sidh

, s1p=19q, and satrx are uncertainty weights and learnable parameters

during network training. Initially, sidh, s1p=19q, and satrx are

initialized to tensors with values 5.0, 6.0 and 6.0, respectively, and

are iteratively updated adaptively during the training phase.
3 Experiments

3.1 Datasets

In the field of medical image processing, the scarcity of data has

severely constrained the progress of related research. Due to limited

data availability, researchers face challenges in conducting

comprehensive studies. In our study, we utilized two datasets: (1)

BraTS2020, which is a publicly available dataset that initially

included 494 independent glioma cases, officially recommended

to be divided into 369 training cases and 125 validation cases. By

integrating gene status information obtained from the TCGA

database and performing data cleaning, we ultimately compiled a

dataset of 241 cases with both imaging and molecular data.

Following the official recommended split, these cases were divided

into a training set (166 cases) and a validation set (75 cases) for

model training and performance evaluation. Detailed data statistics

are shown in Table 1. (2) A private dataset from the General

Hospital of Ningxia Medical University, which contains data from

95 patients from the Department of Neurosurgery of the General

Hospital of Ningxia Medical University between January 2023 and

June 2024,with detailed data statistics shown in Table 2.

For the public dataset, we utilized all four imaging modalities,

namely T1, T1-ce, T2, and FLAIR. The fused images of these four

modalities were used as input for our model. In clinical practice, due

to the limited number of patients who undergo full modality

imaging, most patients have incomplete modality imaging. In our

private dataset, the majority of patients possess only a subset of

modalities, typically T1, T2, and FLAIR, or T1-ce, T2, and FLAIR.

To address this issue, we employ a “Zero Padding” strategy during

the initial fusion stage, where missing modalities are replaced with

zero-filled input matrices. This approach ensures that all input data

maintain a consistent dimensionality across samples, enabling the

network to process various modality combinations while mitigating
Frontiers in Oncology 08
data loss that would otherwise occur if incomplete samples were

discarded. A detailed statistical summary of the available MRI

modalities within our internal dataset is provided in Table 3.

For our own dataset, each patient underwent pathological and

immunohistochemical (IHC) examinations to confirm the glioma

type and its corresponding genotype, and was assessed based on

preoperative MRI scans. All selected patients met the following

inclusion criteria: (1) age greater than 18 years; (2)

histopathologically confirmed diagnosis of glioma; (3)

preoperative MRI scans; (4) availability of IDH, ATRX, and 1p/

19q genetic status results. Specifically, pathologists used

immunohistochemistry (IHC) to detect mutations in the IDH and

ATRX genes, and fluorescence in situ hybridization (FISH) to

determine if the short arm of chromosome 1 and the long arm of

chromosome 19 were deleted. This study has received

ethical approval.

For these 95 patients’ data, we first used the dicom2nifti package

in Python to convert DICOM-format MR images into NIFTI

format. Then, we used the SPM package in Matlab (https://

www.fil.ion.ucl.ac.uk/spm/) to register the NIFTI files to a

uniform resolution of 1mm³. Finally, we applied FSL software

(https://fsl.fmrib.ox.ac.uk/fsl) to perform skull stripping on the

registered MR images.
3.2 Implementation details

3.2.1 Data preprocessing
Before training and testing the model, the first critical step

involves the fusion of multi-modal imaging data. This fusion

process enables the network to effectively capture inter-modal

associations, thereby enhancing its ability to comprehend and

model multi-modal information. During the fusion process, the

Z-score normalization method is first applied to adjust the pixel

values, and the images from each modality are processed to a size of

240×240×155 voxels. The standardized 3D volumes from all

modalities are then stacked along the last dimension to form a

unified multi-modal representation. This fusion strategy not only

preserves the unique information from each modality but also

facilitates the effective integration of multi-modal information.

Given the insufficient number of samples and the extreme

imbalance in the sample distribution across different classes, this

could potentially lead to overfitting or underfitting during training,

which would diminish the model’s generalization ability. Therefore,

in order to provide more training samples, the fused images

undergo random cropping and flipping operations. Specifically,

the original 240×240×155 images are randomly cropped to

128×128×128 voxels, which are subsequently used as inputs to

the network.

3.2.2 Experimental setup and evaluation metrics
In this study, all model training and ablation studies were

conducted on a NVIDIA GeForce RTX 3090 GPU with 24GB of

memory. The model was optimized using the Adam optimizer, with

an initial learning rate set to 1e-4 and a weight decay of 1e-5. The
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batch size was configured to 2, and the total number of epochs was

set to 1000. The final performance metrics were derived from the

epoch in which the validation loss reached its minimum across the

1000 training iterations.

To evaluate the performance of the model, we used several

metrics: area under the curve (AUC), accuracy (Acc), sensitivity

(Sens), and specificity (Spec) for the quantitative evaluation of

genetic subtyping.
4 Results

4.1 Ablation experiments

4.1.1 Importance analysis of T2 and FLAIR
modalities

To verify the impact of mismatched features between the T2 and

FLAIR modalities on genetic subtyping, as well as the necessity of the

second path, we conducted an ablation study on the second path and

its input modalities. While the first pathway utilized all four

modalities as input, the second pathway was separately fed with

T2, FLAIR, and a fusion of these two modalities. The experimental

results are shown in Table 4. As observed, the network’s ability to
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classify the three genetic markers was the weakest when only the first

pathway was used. In contrast, the best classification results were

achieved when the second pathway utilized the fused T2 and FLAIR

image data. Among the modalities, T2 had the most significant

impact on the classification of 1p/19q, while FLAIR had the

greatest influence on the classification of IDH. The experimental

results indicate that the T2 and FLAIR modalities contain significant

heterogeneous information related to the IDH and 1p/19q molecular

status. By enhancing the network’s learning of key glioma features in

the T2 and FLAIR modalities, the model’s precision in molecular

classification tasks was effectively improved. This further confirms the

effectiveness and rationality of the proposed strategy.

4.1.2 Analysis of the effectiveness of
heterogeneous attention mechanisms

To investigate the impact of employing different attention

mechanisms in the upper and lower pathways on model

performance, we designed an ablation study that evaluates various

attention mechanism configurations. The experimental results are

summarized in Table 5, which includes four configurations: (1)

both pathways utilizing 3D-RDA(All_3D-RDA); (2) both pathways

adopting the Vision Transformer(All_ViT); (3) a hybrid model

where the first pathway employs 3D-RDA and the second pathway

utilizes ViT(3D-RDA+ViT); and (4) the proposed architecture in

this study, where the first pathway adopts ViT and the second

pathway employs 3D-RDA. As shown in the table, our proposed

network architecture achieves the best performance in genetic

subtyping. This finding suggests that employing ViT in the first

pathway effectively captures long-range dependencies in the input

data, thereby enhancing the model’s ability to recognize and utilize

global contextual information. Meanwhile, integrating 3D-RDA

into the second pathway strengthens the model’s capacity for

local feature representation, allowing it to extract heterogeneous

features between the T2 and FLAIR modalities more effectively.

This synergistic combination enhances the accuracy of glioma

genetic subtyping.

4.1.3 Analysis of the impact of IDH and ATRX on
1p/19q gene molecular typing

To validate the effectiveness of the IGT strategy, we performed

ablation experiments, with the results shown in Table 6. The

experiments involved progressively removing the IDH or ATRX

auxiliary paths to quantify their direct impact on overall

classification performance. The data analysis indicates that

incorporating the classification information of IDH and ATRX

significantly enhances the 1p/19q classification accuracy as well as
TABLE 3 Detailed statistics of available MRI modalities for all patients in
the internal dataset.

Modalities combination Quantity Percentage

T1+T1ce+T2+FLAIR 16 16.8%

T1+T2+FLAIR 47 49.5%

T1ce+T2+FLAIR 32 33.7%
TABLE 1 Dataset statistics for genotyping experiments.

Statistics Training data Validation data

Subject n 166 75

Age median (range) 54 (18-84) 55 (23-80)

Sex

Male Male Male

Female Female Female

Unknown Unknown Unknown

IDH status

Mutant Mutant Mutant

WT WT WT

ATRX status

Mutant Mutant Mutant

WT WT WT

1p/19q status

Codel Codel Codel

Non-codel Non-codel Non-codel
TABLE 2 Internal dataset statistics.

Genetic
subtype

IDH ATRX 1p/19q

Mutant (codel) 49 [51.6%] 67 [70.5%] 15 [15.8%]

WT (no-codel) 46 [48.4%] 28 [29.5%] 80 [84.2%]
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the classification performance of IDH and ATRX themselves. This

directly confirms the effectiveness of the IGT strategy. This strategy

not only optimizes the model’s classification performance but also

effectively addresses the prediction bias caused by data imbalance,

reinforcing the model’s practicality and accuracy in glioma gene

molecular classification tasks. This strategy provides a new

perspective for deep learning-assisted precision medicine research.
4.2 Comparison with the state-of-the-art
methods

To demonstrate the superiority of our proposed method, we

compared it with various existing classification methods using the

BraTS2020 dataset, with the experimental results presented in

Table 7. MDPNet exhibited promising performance across key

evaluation metrics, including accuracy, AUC, sensitivity, and

specificity. Specifically, the classification accuracies for IDH,

ATRX, and 1p/19q reached 86.7%, 92.0%, and 89.3%,

respectively. Compared to existing methods, MDPNet achieved

an average improvement of 5.4% in IDH prediction accuracy,

6.2% in ATRX prediction accuracy, and 13.7% in 1p/19q

prediction accuracy. The accuracy curve of our model on the

validation set is shown in Figure 6. To better showcase the

performance of our network, we also conducted experiments on

several commonly used baseline networks in addition to the

comparison with state-of-the-art models. The experimental results

indicated that our method significantly outperformed these baseline
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networks. Simultaneous typing of the three gene markers can not

only assist doctors in determining the type of glioma preoperatively

but also help reduce the high costs associated with genetic testing

for patients.
4.3 Performance of MDPNet on internal
dataset

The internal dataset used in this study was treated as an

independent test set to evaluate the generalization capability of

the proposed MDPNet. The accuracy of the test results are

presented in Table 8. The experimental results indicate that,

although only three modalities from the internal dataset were

used, MDPNet still demonstrated excellent and stable

performance, particularly in its ability to predict ATRX, achieving

an accuracy of 92.6%. These findings indicate that MDPNet has

robust stability and generalizability to predict the statuses of IDH,

ATRX, and 1p/19q.
4.4 Prognostic analysis of IDH and ATRX
genotypes

To investigate the clinical relevance of molecular subtypes, we

performed Kaplan-Meier survival analysis using clinical data from

887 glioma patients sourced from the TCGA-LGG and TCGA-

GBM datasets. These data include genetic subtyping information,
TABLE 5 Ablation study on heterogeneous attention mechanisms.

Combi-
nation of
different
attention
mechani-

sms

IDH ATRX 1p/19q

ACC AUC Sens Spec ACC AUC Sens Spec ACC AUC Sens Spec

All_3D-RDA 84.0% 0.86 84.4% 83.7% 82.7% 0.85 53.3% 90.0% 81.3% 0.75 0 100%

All_ViT 81.3% 0.86 59.4% 97.7% 85.3% 0.80 33.3% 98.3% 85.3% 0.75 21.4% 100%

3D-RDA+ViT 86.7% 0.91 81.3% 90.7% 85.3% 0.82 66.7% 90.0% 82.7% 0.79 14.3% 98.4%

MDPNet 86.7% 0.90 75.0% 95.3% 92.0% 0.88 80.0% 95.0% 89.3% 0.80 42.9% 100%
fron
Bold values: Indicates the best result for the current metric.
TABLE 4 Ablation experiment on the importance of T2 and FLAIR modalities.

T2 FLAIR
DH ATRX 1p/19q

Acc AUC Sens Spec ACC AUC Sens Spec ACC AUC Sens Spec

84.0% 0.86 84.4% 83.7% 82.7% 0.82 53.3% 90.0% 81.3% 0.75 0 100%

✓ 81.3% 0.86 59.4% 97.7% 85.3% 0.80 33.3% 98.3% 85.3% 0.75 21.4% 100%

✓ 86.7% 0.91 81.3% 90.7% 85.3% 0.82 66.7% 90.0% 82.7% 0.79 14.3% 98.4%

✓ ✓ 86.7% 0.90 75.0% 95.3% 92.0% 0.88 80.0% 95.0% 89.3% 0.80 42.9% 100%
✓: Indicates whether this modality is used in the second path.
Bold values: Indicates the best result for the current metric.
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patient age, sex, survival time, and follow-up records. After applying

the selection criteria outlined in Figure 7, a total of 598 cases were

included in the prognostic analysis for IDH, while 390 cases were

available for ATRX prognostic evaluation. Detailed statistics are

provided in Table 9. Since the survival data were recorded in days,

we adjusted them to a standardized monthly scale by grouping

every 30 days during the Kaplan-Meier survival analysis.

For each gene molecule, we conducted three experiments based

on the grade of glioma, including the low-grade glioma group

(LGG), high-grade glioma group (GBM), and a mixed group of

LGG and GBM (LGG+GBM). The prognostic experiment for the

ATRX gene molecule is shown in Figure 8.The prognostic

experiment for the IDH gene molecule is shown in Figure 9.

Kaplan-Meier analysis revealed that patients with ATRX

mutations exhibited significantly longer survival than those with

wild-type ATRX in the LGG group (p = 0.004) and the mixed group

(p < 0.001). Similarly, IDH-mutant patients demonstrated a

markedly improved survival prognosis compared to their wild-

type counterparts in both the LGG group (p < 0.001) and the mixed

group (p < 0.001). These findings are consistent with existing

clinical evidence, further reinforcing the importance of precise

preoperative genetic subtyping. Early molecular characterization
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not only facilitates timely therapeutic decision-making for clinicians

but also reduces the financial burden of expensive genetic testing for

certain patients. Ultimately, accurate genetic stratification plays a

crucial role in guiding prognosis assessment and optimizing

subsequent treatment strategies.
5 Discussion

In this study, we propose a Dual-Path Parallel Fusion Network

(MDPNet) for multimodal MRI-based glioma genotyping,

specifically targeting three critical genetic biomarkers: IDH, 1p/

19q, and ATRX. Experimental results demonstrate that MDPNet

achieves superior performance on public datasets, effectively

predicting these molecular subtypes in glioma patients. This

methodology shows potential for assisting clinicians in

preoperative assessment of glioma molecular profiles. Compared

with existing approaches, MDPNet demonstrates significant

improvements across multiple performance metrics.

The enhanced performance stems from two principal

innovations: (1) A dual-branch parallel architecture enabling

efficient integration of multimodal MRI features, particularly
TABLE 7 Comparative experiments with the state-of-the-art models.

Models IDH ATRX 1p/19q

ACC AUC Sens Spec ACC AUC Sens Spec ACC AUC Sens Spec

MTTU-Net (17) 84.0% 0.86 84.4% 87.3% 82.7% 0.82 53.3% 90.0% 81.3% 0.65 0 100%

DST (30) 78.7% 0.85 50.0% 100% 88.0% 0.86 73.3% 91.7% 73.3% 0.66 35.7% 82.0%

PRIYANKA (31) 84.0% 0.89 78.1% 88.4% 84.0% 0.80 40.0% 91.7% 81.3% 0.71 0 100%

Sebastian (32) 84.0% 0.85 75.0% 90.7% 84.0% 0.88 73.3% 86.7% 82.7% 0.76 14.3% 98.4%

Shi (33) 81.3% 0.90 59.4% 97.7% 88.0% 0.86 73.3% 91.7% 85.3% 0.80 35.7% 96.7%

M3D-
DenseNet (34)

76.0% 0.83 46.9% 97.7% 88.0% 0.85 73.3% 91.7% 70.7% 0.61 28.6% 80.3%

Resnet50 (35) 78.7% 0.85 50.0% 100% 88.0% 0.86 73.3% 91.7% 73.3% 0.66 35.7% 82.0%

Densenet121 (36) 77.3% 0.86 46.9% 100% 84.0% 0.81 60.0% 90.0% 74.7% 0.66 35.7% 83.6%

Senet101 (24) 82.7% 0.87 59.4% 100% 78.7% 0.77 60.0% 83.3% 74.7% 0.71 50.0% 80.3%

MDPNet 86.7% 0.90 75.0% 95.3% 92.0% 0.88 80.0% 95.0% 89.3% 0.80 42.9% 100%
fron
Bold values: Indicates the best result for the current metric.
TABLE 6 Ablation study on the impact of IDH and ATRX on 1p/19q genetic molecular subtyping.

IDH ATRX
IDH ATRX 1p/19q

ACC AUC Sens Spec ACC AUC Sens Spec ACC AUC Sens Spec

81.30% 0.90 68.8% 90.7% 88.0% 0.84 46.7% 98.3% 86.7% 0.79 28.6% 100%

✓ 82.70% 0.85 75.0% 88.4% 88.0% 0.92 60.0% 95.0% 85.3% 0.70 28.6% 100%

✓ 85.30% 0.90 81.3% 88.4% 88.0% 0.87 73.3% 91.7% 85.3% 0.80 21.4% 100%

✓ ✓ 86.70% 0.90 75.0% 95.3% 92.0% 0.88 80.0% 95.0% 89.3% 0.80 42.9% 100%
✓: Indicates whether incorporating the genotyping results of this gene during classification has an impact on the 1p/19q molecular genotyping.
Bold values: Indicates the best result for the current metric.
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emphasizing the extraction of heterogeneous characteristics

between T2 and FLAIR sequences. This design prioritizes

discriminative feature learning from these critical modalities. (2)

A novel classification framework incorporating crossgeneic feature

sharing and molecular interrelationships, complemented by

specialized loss functions. This approach not only improves 1p/

19q classification accuracy and mitigates prediction bias during

model training, but also enhances IDH and ATRX subtyping

capabilities. Ablation studies confirm that leveraging T2-FLAIR

heterogeneity significantly boosts genotyping performance for all

three biomarkers. Furthermore, the utilization of inter-molecular

relationships proves instrumental in optimizing model efficacy.

In this study, we integrated multi-modal MRI data into the

dual-branch architecture of our model, MDPNet, and compared its

performance with state-of-the-art methods such as MTTU-Net and

DST. Unlike these approaches, MDPNet places greater emphasis on
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extracting the heterogeneity between T2 and FLAIR modalities

while incorporating a gene relationship-guided classifier and an

optimized loss function. As a result, our model demonstrated

significant performance improvements, achieving the highest

accuracy and AUC scores across all key metrics. Specifically, the

classification accuracy and AUC values for IDH, ATRX, and 1p/19q

reached 86.7% and 0.90, 92.0% and 0.88, and 89.3% and 0.80,

respectively. Compared to widely used deep learning models such as

ResNet50, DenseNet121, and SENet101, MDPNet outperformed

them by a substantial margin, with accuracy improvements of 7.1%

for IDH, 8.4% for ATRX, and 15.1% for 1p/19q. These results

indicate that MDPNet achieves superior classification precision and

more reliable predictions. In addition to training and validation on

the public BraTS2020 dataset, we further evaluated MDPNet on an

independent clinical dataset comprising 95 preoperative brain MRI

cases provided by the Department of Neurosurgery at Ningxia
TABLE 8 Test results of MDPNet on internal datasets.

Datasets
IDH ATRX 1p/19q

ACC AUC Sens Spec ACC AUC Sens Spec ACC AUC Sens Spec

BraTS2020 86.7% 0.90 75.0% 95.3% 92.0% 0.88 80.0% 95.0% 89.3% 0.80 42.9% 100%

Internal 80.0% 0.81 75.5% 84.8% 92.6% 0.85 92.5% 92.9% 84.2% 0.80 33.3% 93.8%
fron
FIGURE 6

Accuracy curve of MDPNet on validation set.
Data acquired

originally

Remove data lacking

information on IDH/

ATRX genes

Exclude data with

incomplete survival

information

Delete data of

recurrent patients

Obtain the final dataset

for analysis

FIGURE 7

Workflow for the selection of prognostic analysis data for IDH and ATRX.
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Medical University General Hospital. The model achieved

consistently strong performance on this real-world dataset,

further demonstrating its potential and applicability in

clinical settings.

In the Kaplan-Meier survival analysis of IDH and ATRX genetic

subtypes, although the GBM group did not show a clear survival

advantage for mutation-positive patients over wild-type patients, we

believe this outcome is primarily due to the extreme class imbalance

between these groups. Specifically, in the analysis of IDH subtypes,

among the 480 GBM cases included, only 9 patients had an IDH

mutation, while the remaining cases were IDH wild-type. Similarly,

in the ATRX subtype analysis, only 18 out of 274 GBM cases

harbored an ATRX mutation, with the rest classified as ATRX wild-

type. Given this imbalance, it would be premature to conclude that

IDH and ATRXmutations have no prognostic significance for high-

grade glioma patients.

This model can be seamlessly integrated into existing clinical

workflows, assisting radiologists in evaluating key genetic subtypes
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of gliomas based on MRI scans or serving as a decision-support tool

for neurosurgeons during diagnosis. Additionally, it holds

significant potential for real-time deployment in clinical settings,

enabling automated MRI processing for on-the-fly genetic subtype

prediction. However, several challenges remain, including the need

for standardized imaging protocols across institutions to ensure

consistent model performance and the necessity of enhancing

model interpretability to build clinicians’ trust in its predictions.

By providing a non-invasive, accurate, and rapid method for glioma

molecular subtyping, the proposed model could have a profound

impact on patient management by improving diagnostic precision,

guiding personalized treatment strategies, and reducing the reliance

on invasive biopsies. For instance, patients identified as having

high-grade gliomas (e.g., IDH wild-type gliomas) could be

prioritized for systemic therapy, while those with lower-grade

gliomas may benefit from less aggressive treatment approaches.

Furthermore, the model’s rapid inference capability allows for

timely clinical decision-making. Future research will focus on

validating these impacts in real-world clinical environments.

Our study has several limitations. First, our test dataset was

obtained from a single medical center, resulting in a relatively small

and localized sample. Variations in patient populations and

imaging protocols may introduce biases, potentially limiting the

generalizability of our findings across diverse clinical settings.

Future research should build on the work of Cepeda et al. (37) in

multi-center data standardization to minimize imaging

discrepancies between different MRI scanners and improve the
TABLE 9 Dataset statistics for prognostic analysis of IDH and ATRX.

Statistics LGG
(IDH)

GBM
(IDH)

LGG
(ATRX)

GBM
(ATRX)

WT 52 471 76 256

Mutant 66 9 40 18

Total 118 480 116 274
FIGURE 8

Prognostic analysis based on different genetic states of ATRX.
FIGURE 9

Prognostic analysis based on different genetic states of IDH.
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model’s cross-institutional generalizability. Second, the learning

and inference processes of the model remain largely opaque,

lacking strong interpretability. Although we have made efforts to

enhance model transparency through visualization techniques,

further improvements are needed before clinical deployment.

Lastly, our study primarily focuses on IDH, 1p/19q, and ATRX,

while other glioma-related genetic markers, such as TP53 and

MGMT, remain unexplored. Future work will aim to address

these challenges by standardizing and validating multi-center

data, improving model interpretability, and expanding genetic

subtype prediction to include a broader range of glioma-

related biomarkers.
6 Conclusion

In this study, we introduce MDPNet, a novel network designed

to address the challenges of glioma genetic molecular subtyping.

This network is capable of performing joint classification of the

IDH, 1p/19q, and ATRX genetic molecules. The network is

meticulously designed to capture the heterogeneity between T2

and FLAIR modalities, facilitating deep feature extraction and

enhancement of glioma imaging characteristics. Additionally, by

leveraging inter-gene relationships, MDPNet optimizes the

prediction of 1p/19q status while further improving classification

performance for IDH and ATRX. To mitigate the adverse effects of

data imbalance, we introduce an adaptive weighted loss function,

effectively reducing biased predictions during model training.

Experimental results demonstrate that the proposed method

achieves superior performance on both public and internal

datasets, consistently outperforming state-of-the-art models.

Furthermore, we conducted a preliminary analysis of the

association between ATRX/IDH status and patient survival

prognosis using available clinical data. This analysis reinforces the

clinical applicability of our approach, highlighting its potential

utility in precision oncology. Collectively, these findings suggest

that the proposed framework serves as a reliable computer-aided

glioma genotyping system for multi-modal MRI-based prediction.
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